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Purpose: Inflammatory activation of immune cells plays a pivotal role in the development of coronary artery diseases (CAD). This 
study aims to investigate the immune responses of peripheral blood mononuclear cells (PBMCs) in CAD and to identify novel 
signature genes and biomarkers using machine learning algorithms.
Methods: The GSE113079 dataset was analyzed and differentially expressed genes (DEGs) were identified between CAD and normal 
samples. The intersection of DEGs with inflammation-related genes was used to identify the differentially expressed inflammation- 
related genes (DIRGs). Then, the receiver operating characteristic (ROC) curves were plotted for each DIRG, and those with an area 
under the curve (AUC) greater than 0.9 were selected for subsequent analysis. Furthermore, machine learning algorithms were 
employed to identify biomarkers. A nomogram was developed based on these biomarkers. The CIBERSORT algorithm and Wilcoxon 
test method were used to analyze the differences in immune cells between the CAD and normal samples. The identified biomarkers 
were validated in PBMCs from patients with CAD and in atherosclerotic aortas from ApoE−/− mice.
Results: A total of 574 DEGs were identified between CAD and normal samples. From this intersection, 29 DIRGs were identified, of 
which 14 DIRGs (PTGER1, IL17RC, KLKB1, GPR32, ADM, NUPR1, SCN9A, IL17B, CX3CL1, FFAR3, PYDC2, SYT11, RORA, and 
GPR31) exhibited high diagnostic efficacy. Four biomarkers (ADM, NUPR1, PTGER1, and PYDC2) were identified using Support 
Vector Machine (SVM). Ten types of immune cells, including CD8+ T cells, regulatory T cells (Tregs), and resting NK cells, showed 
significant differences between the CAD and normal groups. Furthermore, increased levels of ADM, NUPR1, PTGER1, and PYDC2 
were validated in PBMCs isolated from CAD patients. In addition, ADM, NUPR1, and PTGER1 were upregulated in the mouse 
atherosclerotic aorta.
Conclusion: Our findings revealed novel inflammatory gene signatures of CAD that could be potential biomarkers for the early 
diagnosis of CAD.
Keywords: inflammation, coronary artery disease, machine learning, immune infiltration

Introduction
Coronary artery disease (CAD) is the most common cause of mortality globally.1,2 The pathogenesis of coronary artery 
disease is complex and asymptomatic in the early stages. Coronary angiography is the gold standard for the diagnosis of 

Journal of Inflammation Research 2025:18 2033–2044                                                     2033
© 2025 Liu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                     

Open Access Full Text Article

Received: 30 October 2024
Accepted: 30 January 2025
Published: 10 February 2025

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0002-4048-8173
http://orcid.org/0000-0001-8241-401X
http://orcid.org/0009-0006-2887-4449
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


CAD; however, its high cost limits its widespread use, and approximately 39.2% of patients undergoing invasive 
coronary angiography exhibit less than 20% stenosis in the coronary artery.3 Thus, it is important to identify reliable 
biomarkers for the early diagnosis of CAD and reduce invasive coronary angiography in patients with low coronary 
artery stenosis.

CAD is characterized by chronic inflammatory responses within the arterial walls that lead to atherosclerotic lesions 
and blockage of vessels.4 Inflammation is a key driver of all the steps involved in atherosclerosis, including endothelial 
damage, activation of innate and adaptive immune responses, and recruitment of immune cells.5 A growing number of 
studies have suggested that anti-inflammatory and immunomodulatory therapies targeting atherosclerosis and cardiovas-
cular disease are promising.6–9 However, the crosstalk between inflammation-related genes and the immune microenvir-
onment in CAD remains unclear and warrants further investigation. Assessing and treating the residual inflammatory risk 
is expected to provide new directions for preventing CAD.

In recent years, comprehensive bioinformatics analysis and machine learning algorithms have led to the discovery of 
new genes associated with various diseases, which can serve as biomarkers for diagnosis and prognosis.10 However, the 
diagnostic value of the genes associated with inflammatory activation in CAD remains unclear. Identifying effective 
inflammatory biomarkers is critical for the prevention and treatment of CAD. In the present study, we analyzed the 
GSE113079 dataset from various perspectives and developed an optimal diagnostic model for CAD using machine 
learning methods to identify inflammation-related genes that can serve as diagnostic markers for CAD. Further validation 
of the biomarkers was performed in patients with CAD and in a mouse atherosclerosis model. Our results provide 
a theoretical basis for the diagnosis of CAD and the identification of potential therapeutic targets.

Materials and Methods
Data Sources
A transcriptomic dataset of coronary artery disease (CAD) was obtained from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/). The GSE113079 dataset comprised 48 normal and 93 CAD samples, all of 
which were peripheral blood samples. In addition, 910 inflammation-related genes were retrieved from the Molecular 
Signatures Database (MSigDB) Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

Differential Expression Analysis and Enrichment Analysis
In this study, differentially expressed genes (DEGs) between CAD and normal samples in the GSE113079 dataset were 
acquired using the limma (v 3.46.0) package (p.value < 0.05, |log2FC| > 1).11 A heat map and volcano map of DEGs 
between CAD and normal samples were plotted using the pheatmap and ggplot2 packages,12 respectively. Furthermore, 
DEGs between CAD and normal samples and inflammation-related genes were crossed to identify the differentially 
expressed inflammation-related genes (DIRGs). Subsequently, to better understand the related biological functions and 
signaling pathways involved in the above DIRGs, the Gene Ontology (GO), REACTOME, and Genomes (KEGG) 
enrichment analyses were performed using clusterProfiler (v 4.0.2) package (p.adj < 0.05, count ≥ 2).13

Construction of Diagnostic Model
Receiver operating characteristic (ROC) curves for each DIRGs were plotted to select genes with high diagnostic efficacy 
(area under the curve (AUC), > 0.9). In the GSE113079 dataset, we divided the samples into training and validation set 
according to 7:3. Subsequently, nine types of machine algorithms–K-Nearest Neighbor (KNN), Random Forest (RF), 
logistic regression (LR), Support Vector Machine (SVM), decision tree (DT), XGBoost, LightGBM, Artificial Neural 
Network (ANN), and CatBoost–were used in the training set to construct diagnostic models based on genes with high 
diagnostic efficacy. ROC curves of the nine models were plotted for the validation set. The model with the highest AUC 
value was selected as the final diagnostic model to identify biomarkers. In addition, principal component analysis (PCA) 
was performed based on the expression levels of biomarkers in GSE113079 dataset, and a coefficient diagram of the 
biomarkers was drawn.
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Construction of Nomogram
Based on the biomarkers obtained from the above analysis, a nomogram for disease probability prediction in patients 
with CAD was created using the rms (v. 6.1–0) package. Moreover, calibration, decision, and clinical impact curves were 
analyzed to evaluate the precision of the prediction.

Gene Set Enrichment Analysis (GSEA)
To further explore the related signaling pathways and functional items associated with the biomarkers, we first calculated 
the correlation between the biomarkers and all other genes in the GSE113079 dataset. We then sorted all genes according 
to this correlation from high to low; GSEA was performed using the clusterProfiler (v 4.0.5) package.13

Immune Microenvironment Analysis
To study the infiltration of immune cells in the CAD and normal groups, the CIBERSORT algorithm and LM22 gene set 
were used to calculate the proportion of 22 immune cells. Furthermore, the Wilcoxon test was used to analyze whether 
there were differences in immune cells between CAD and normal samples (p < 0.05). Finally, we calculated the 
relationship between the biomarkers and all immune cells using the Pearson’s method.

The Construction of miRNA-TF-mRNA Network
The miRNAs corresponding to the biomarkers were obtained from the miRWalk online database. The transcription 
factors (TFs) of the biomarkers were predicted using the AnimalTFDB online database. The regulatory relationship 
between TF and miRNAs was predicted using the TransmiR online tool. In addition, we used the miRWalk database to 
predict the regulatory relationships between miRNAs and TFs. Based on the reference,14 we defined that if two miRNAs 
contained three or more co-regulated mRNAs, they were considered to have potential interaction possibilities. Finally, 
a miRNA-TF-mRNA network was created. To further analyze whether the network conformed to a scale-free network, 
we created a regression model using the connection degree as the independent variable and the number of nodes as the 
dependent variable, and then drew a topological feature map of the network. In addition, FANMOD software was utilized 
to draw the 3-node and 4-node network models of the above network. Additionally, we selected the network mode with 
a feedforward loop from the 3-node network mode, and the network mode with two feedforward loops from the 4-node 
network mode.

Subject Characteristics
Patients aged 18 years or older diagnosed with CAD by coronary computed tomography angiography or coronary 
angiography (stenosis ≥ 50% of the diameter of the major coronary arteries and their large branches) were enrolled 
in the CAD group (n=8, 6 males and 2 females, CAD group). Age-matched patients without CAD were enrolled in 
the control group (n=8; 6 males and 2 females, normal group). Patients with a history of malignancy, acute coronary 
syndrome, pulmonary embolism, or renal failure [glomerular filtration rate<60 mL/(min.1.73 m2)] were excluded. 
The characteristics of the CAD and control groups are presented in Supplementary Table 1. This study was approved 
by the Institutional Review Board of the Third Affiliated Hospital of Sun Yat-sen University, which complies with 
the Declaration of Helsinki. Informed consent was obtained from all participants before participation in the study.

Animal Experiment
ApoE-deficient mice (ApoE−/−) were obtained from GemPharmatech (Nanjing,China). All animal experiments received 
approval from the Institutional Animal Care and Use Committee of the First Affiliated Hospital of Sun Yat-sen 
University, adhering to the Guidelines for Ethical Review of Laboratory Animals—General Code of Animal Welfare 
(GB/T 42011–2022) issued by the Standardization Administration of China. ApoE−/− mice were fed a 45% high-fat diet 
(TP26303; Trophic Animal Feed High-tech Company, Nantong, China) or normal chow for eight weeks. After 8 weeks, 
the mice were anesthetized with 10% chloral hydrate, euthanized, and their tissues were collected.
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Realtime-PCR
RNA from peripheral blood mononuclear cells (PBMCs) and mouse aorta was extracted using Nuclezol LS RNA 
Isolation Reagent (ABP Biosciences Inc.) according to the manufacturer’s instructions. Total RNA was extracted using 
the TRIzol reagent (Invitrogen, Thermo Fisher, CA, USA) following the manufacturer’s protocol. The extracted RNA 
was reverse-transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). 
Reverse transcription was performed using a Transcript II real-time polymerase chain reaction (RT-qPCR) kit (Transgen, 
Beijing, China), followed by semi-quantitative RT-PCR using the Bio-Rad iQ5. Data were normalized to the mRNA 
levels of GADPH, which was used as a control gene, and analyzed using the 2−ΔΔCT method. The detailed primer 
sequences are provided in Supplementary Table 2.

Statistical Analysis
All data were analyzed using the R software (version 4.0.0). The Two-sample t-test and Wilcoxon test were used to 
compare data between the two groups, and significant differences were considered at p < 0.05, unless specified otherwise.

Results
Acquisition of DEGs and DIRGs in CAD
A total of 574 DEGs were identified between CAD and normal samples (Figure 1A, Supplementary 3). The expression 
heatmap of the top 100 DEGs is shown in Figure 1B. Twenty-nine DIRGs were identified by intersecting DEGs with 
inflammation-related genes (Figure 1C). According to the GO functional enrichment analysis, DIRGs were involved in 
264 GO items including ‘regulation of inflammatory response’, ‘chemokine-mediated signaling pathway’, ‘response to 
chemokine’ (Figure 1D, Supplementary 4). The KEGG functional enrichment analysis revealed that DIRGs were 
enriched in 24 KEGG pathways, including ‘Cytokine-cytokine receptor interaction’, ‘Lipid and atherosclerosis’, and 
“IL-17 signaling pathway” (Figure 1E, Supplementary 5). Furthermore, the REACTOME functional enrichment analysis 
demonstrated an association with 12 REACTOME pathways, including ‘Chemokine receptors bind chemokines’, 
“Interleukin-10 signaling”, and “GPCR ligand binding” (Figure 1F, Supplementary 6). These enriched pathways 
represent key inflammatory mechanisms involved in the development of atherosclerosis.15–17

Biomarker Exploration and Diagnostic Model Construction by Machine Algorithms
We divided the GSE113079 dataset into training and validation sets in a 7:3 ratio. Based on an AUC greater than 0.9, 14 
DIRGs (PTGER1, IL17RC, KLKB1, GPR32, ADM, NUPR1, SCN9A, IL17B, CX3CL1, FFAR3, PYDC2, SYT11, RORA, 
and GPR31) with high diagnostic efficacy were identified (Figure 2A and B). Nine machine learning algorithms (KNN, 
RF, LR, SVM, DT, XGBoost, LightGBM, ANN, and CatBoost) were employed to construct diagnostic models based on 
genes with high diagnostic efficacy. The Support Vector Machine (SVM) exhibited the highest AUC value for the 
validation set. Consequently, the SVM was selected as the final diagnostic model, and four model genes (ADM, NUPR1, 
PTGER1, and PYDC2), regarded as biomarkers, were screened out (Figure 2C and D). Through Principal Component 
Analysis (PCA), the expression levels of these four biomarkers in the GSE113079 dataset distinguished the CAD and 
normal groups (Figure 2E). Among the four biomarkers, NUPR1 exhibited the highest coefficient (Figure 2F). 
A nomogram was developed to predict disease probability in patients with CAD based on ADM, NUPR1, PTGER1, 
and PYDC2 (Figure 3A). The calibration, decision, and clinical impact curves were plotted based on the nomogram, 
demonstrating the predictive ability of the model was favorable (Figure 3B-D).

Functional Enrichment and miRNA-TF-mRNA Network Analysis
To further investigate the role of the selected biomarkers in inflammatory responses to CAD, GSEA and network 
analyses were conducted. GO functional enrichment analysis revealed that ADM, NUPR1, PTGER1, and PYDC2 
predominantly participated in the processes of “macroautophagy”, “ubiquitin-like protein ligase activity”, and “peptide 
receptor activity”. KEGG enrichment analysis indicated that these four biomarkers (ADM, NUPR1, PTGER1, and 
PYDC2) were involved in “cellular senescence”, the “TNF signaling pathway”, and “linoleic acid metabolism” 
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Figure 1 Identification of DEG and DIRGs in CAD. (A) Volcano map of DEGs between CAD and normal samples. (B) Heatmap of DEGs between CAD and normal samples. (C) Venn diagram of the intersection of DEGs and 
inflammatory related genes. (D) GO functional enrichment analysis of DIRGs. (E) KEGG functional enrichment analysis of DIRGs. (F) REACTOME functional enrichment analysis.
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(Figure 4A-B, Supplementary 7–14). Moreover, a total of 1661 miRNA-mRNA regulatory relationship pairs were 
predicted using the miRWalk database, including 1283 miRNAs, and 66 regulatory relationship pairs of TF-mRNAs 
were acquired using the AnimalTFDB database, comprising 23 TFs. According to the TransmiR database, 35 regulatory 
relationship pairs of TF-miRNAs were predicted, encompassing 25 miRNAs and 23 TFs. A total of 212 miRNA-TF 
regulatory relationships were predicted using the miRWalk database, encompassing 23 TFs and 25 miRNAs. A total of 
559 pairs of miRNA-miRNAs were identified as having potential interactions with 51 miRNAs (Figure 4C, 
Supplementary 15). The predicted TFs have been reported as master regulators of inflammatory activation (CEBPB, 
JUN, NFKB1, HIF1A, FOXO3),18–22 the cell cycle (RUNX1, E2F1, RB1)23,24 and cellular apoptosis (MYCN, TP53).25,26

Immune Cell Profile in CAD
The proportion of immune cells was analyzed using the CIBERSORT algorithm, and 22 types of immune cells were 
identified in both normal and CAD samples (Figure 5A-B). CD8+ T cells, CD4+ memory T cells (activated), and NK cells 

Figure 2 Machine learning in screening candidate diagnostic biomarkers for CAD. (A-B). The area under curve (AUC) for candidate biomarkers. (C) ROC analysis of 
diagnostic models constructed by machine algorithms (KNN, RF, LR, SVM, DT, XGBoost, LightGBM, ANN and CatBoost). (D) Cross-validation (CV) of diagnostic models 
constructed by machine algorithms. (E) PCA analysis of CAD and normal groups based on the expression levels of ADM, NUPR1, PTGER1 and PYDC2. (F) The coefficient of 
ADM, NUPR1, PTGER1 and PYDC2.
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(resting and activated) were significantly lower in the CAD group, whereas monocyte, regulatory T cells (Tregs) and CD4 
naïve T cells were higher than those in the normal group (Figure 5C). According to Pearson correlation analysis, 
PYDC2 had the strongest positive correlation with Tregs (R=0.46), while PTGER1 (R=0.4), NUPR1 (R=0.54), and ADM 
(R=0.46) exhibited significant positive correlations with monocytes. Furthermore, it was observed that these four 
biomarkers (ADM, NUPR1, PTGER1, and PYDC2) were highly negatively correlated with resting NK cells, with 
correlation coefficients of −0.4, −0.45, −0.32, and −0.3, respectively (Figure 5D). These results indicate that the selected 
biomarkers may participate in the regulation of monocyte- and Treg cell-mediated immune responses in CAD.

Validation of Biomarkers
To further validate the expression levels of the four selected biomarkers, PBMCs were isolated from the enrolled CAD 
patients and age-matched controls. qPCR analyses confirmed the increased mRNA levels of ADM, NUPR1, PTGER1 and 
PYDC2 in the CAD group (Figure 6A). A mouse atherosclerosis model was established to further investigate the role of 
these biomarkers in atherosclerotic arteries. ApoE−/− mice fed a high-fat diet exhibited aggravated atherosclerotic lesions 
compared to those fed a normal chow diet (Figure 6C). As PYDC2 is not expressed in mice, the mRNA levels of ADM, 
NUPR1, and PTGER1 were analyzed in the mouse aorta. The expression of ADM, NUPR1, and PTGER1 was 

Figure 3 The prediction performance of selected biomarkers. (A) nomogram of disease probability prediction in CAD. (B) The calibration curve of nomogram. (C) The 
decision curve of diagnostic model. (D) The clinical impact curve of diagnostic model.
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significantly upregulated in the aorta of the high-fat diet (HFD) group (Figure 6B), which validated the increased levels 
of these biomarkers in atherosclerotic arteries as well as in PBMCs.

Discussion
CAD diagnosis predominantly depends on angiography, an invasive and costly procedure. This study utilized a comprehensive 
bioinformatic approach and machine learning algorithms to identify potential diagnostic biomarkers for CAD. Four candidate 
genes (ADM, NUPR1, PTGER1, and PYDC2) were identified, demonstrating diagnostic value for CAD for the first time. 
Furthermore, the expression levels of these biomarkers were validated in peripheral blood mononuclear cells (PBMCs) from 
CAD patients and atherosclerotic aortas in mice. Our study demonstrates that the selected biomarkers are closely associated with 
the pathogenic mechanisms of atherosclerosis, thereby facilitating the development of innovative therapeutic targets.

CAD is a chronic inflammatory disease characterized by inflammatory activation and the recruitment of immune cells to 
atherosclerotic lesions.27 GO and KEGG analyses of DIRGs in CAD patients indicated an enrichment in the “Regulation of 
inflammatory response”, “Chemokine-mediated signaling pathway” and “IL-17, TNF, NF-KappaB signaling pathways”. 
These pathways are recognized as key mechanisms underlying the inflammatory activation of CAD, and the identified 
biomarkers are implicated in these pathways.28–31 ADM (Adrenomedullin) is a vasodilatory peptide with multiple physiolo-
gical functions, including the maintenance of vascular tone and endothelial barrier function.32 Evidence suggests that ADM 
levels increase in sepsis and cardiovascular diseases and that ADM is considered a biomarker for inflammatory and 
cardiovascular conditions, including atherosclerosis and heart failure.33–35 Andrade et al reported that NUPR1 (Nuclear 
protein 1) serves as a key regulator of the type I IFN response in monocyte-derived macrophages, suggesting that NUPR1 may 
participate in the pro-inflammatory activation of monocytes/macrophages.36 PTGER1 (Prostaglandin E receptor 1) is one of 
the four prostaglandin receptors involved in biological processes, including immunity, inflammation, and blood pressure 
regulation.37,38 Notably, we found that the expression of PTGER1, NUPR1, and ADM was significantly positively correlated 
with monocytes. Furthermore, our animal experimental results demonstrated increased levels of PTGER1, NUPR1, and ADM 

Figure 4 GSEA and miRNA-TF-mRNA network analysis of selected biomarkers. (A) GO enrichment analysis of biomarkers. (B) KEGG pathway enrichment analysis of 
biomarkers. (C) miRNA-TF-mRNA network analysis of biomarkers.
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Figure 5 Different immune cell profile between CAD and normal subjects. (A-B) The proportion of immune cells was analyzed by CIBERSORT algorithm. (C) The difference of immune cell between CAD and normal subjects. (D) The 
correlation of selected biomarker with immune cells. (ns represented P > 0.05, not significant; * represented P < 0.05; ** represented P < 0.01; *** represented P < 0.001; ****P < 0.0001 between the two group).
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in the atherosclerotic aortas of mice. These findings suggest their potential roles in the development of atherosclerosis, wherein 
monocyte infiltration is a critical mechanism.

Compared to PTGER1, NUPR1, and ADM, PYDC2 exhibited the strongest positive correlation with Tregs, which were 
significantly increased in the peripheral blood of patients with CAD, indicating their important role in the etiology of CAD. 
Evidence indicates that PYDC2 inhibits inflammasome assembly by binding to ASC, thereby preventing caspase-1 activation 
and cytokine release.39 Tregs play a crucial role in modulating and suppressing inflammatory responses, maintaining immune 
system equilibrium, and curbing excessive immune reactions. Treg cells hinder the aggregation of pro-inflammatory cells and 
the subsequent release of associated inflammatory cytokines, both of which are pivotal processes in cardiovascular diseases.40 

Treg cells hinder the aggregation of pro-inflammatory cells and subsequent release of associated inflammatory cytokines, 
which are pivotal processes in cardiovascular diseases.41 Given the protective role of PYDC2 and Treg cells, the increase in 
PYDC2 in CAD patients might reflect feedback regulation of the pro-inflammatory states in these patients. Further investiga-
tions are required to explore PYDC2- and Treg-regulated immune responses in CAD.

Additionally, we observed a highly significant negative correlation between four biomarkers (ADM, NUPR1, PTGER1, 
and PYDC2) and resting NK cells. The rate of spontaneous NK cell apoptosis was elevated in CAD patients.42,43 Our miRNA- 
TF-mRNA network analyses predicted that the cell cycle- and apoptosis-regulated TFs may be involved in the modulation of 
selected biomarkers, indicating the potential role of these biomarkers in mediating immune cell apoptosis.

Overall, our study provides comprehensive insights into the molecular mechanisms and potential biomarkers 
associated with CAD, offering valuable information for further research and clinical translation. However, further 
experimental validation is warranted to confirm the functional roles of the identified biomarkers and their potential as 

Figure 6 Validation of biomarkers in PBMCs and mouse atherosclerotic aorta. (A) mRNA levels of ADM, NUPR1, PTGER1 and PYDC2 in PBMCs from CAD and normal 
subjects. (B) mRNA levels of ADM, NUPR1, PTGER1 in aorta from ApoE−/− mice fed with high fat diet or normal chow. (C) Representative of aorta from ApoE−/− mice fed 
with high fat diet or normal chow. (* represented P < 0.05 between the two group).
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therapeutic targets in CAD management. Additionally, larger longitudinal studies are needed to assess the prognostic 
value of the identified biomarkers in larger patient cohorts.

Conclusion
In conclusion, we identified the inflammatory gene signature of CAD through bioinformatic approaches and selected ADM, 
NUPR1, PTGER1, and PYDC2 as potential CAD biomarkers using machine learning algorithms. Further validations 
confirmed the elevated levels of the selected biomarkers in PBMCs from CAD patients and in the atherosclerotic aorta 
from ApoE−/− mice. Our study provides novel inflammatory biomarkers with potential diagnostic value for CAD.
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