
O R I G I N A L  R E S E A R C H

Identifying Therapeutic Targets and Potential 
Drugs for Diabetic Retinopathy: Focus on 
Oxidative Stress and Immune Infiltration
Hongsong Peng 1,2,*, Qiang Hu1,2,*, Xue Zhang1,2,*, Jiayang Huang 1,2, Shan Luo1,2, Yiming Zhang1, 
Bo Jiang1, Dawei Sun 1

1Department of Ophthalmology, The second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China; 2Future 
Medical Laboratory, The second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Dawei Sun, Department of Ophthalmology, The second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 
Heilongjiang, 150086, People’s Republic of China, Email sundawei@hrbmu.edu.cn 

Background: Diabetic retinopathy (DR), a microvascular disorder linked to diabetes, is on the rise globally. Oxidative stress and 
immune cell infiltration are linked to illness initiation and progression, according to recent study. This study investigated biomarkers 
connected to DR and oxidative stress and their connection with immune cell infiltration using bioinformatics analysis and found 
possible therapeutic medications.
Methods: The Gene Expression Omnibus (GEO) database was used to obtain the gene expression data for DR. Differentially 
expressed genes (DEGs) and oxidative stress (OS)-related genes were intersected. The Enrichment analyses concentrate on OS-related 
differentially expressed genes (DEOSGs). Analysis of protein-protein interaction (PPI) networks and machine learning algorithms 
were used to identify hub genes. Single-gene Gene Set Enrichment Analysis (GSEA) identified biological functions, while nomograms 
and ROC curves assessed diagnostic potential. Immune infiltration analysis and regulatory networks were constructed. Drug prediction 
was validated through molecular docking, and hub gene expression was confirmed in dataset and animal models.
Results: Compared to the control group, 91 DEOSGs were found. Enrichment analyses showed that these DEOSGs were largely 
connected to oxidative stress response, PI3K/Akt pathway, inflammatory pathways, and immunological activation. Four hub genes 
were found via PPI networks and machine learning. These hub genes were diagnostically promising according to nomogram and ROC 
analysis. Analysis of immune cell infiltration highlighted the role of immune cells. Gene regulatory networks for transcription factor 
(TF) and miRNA were created. Using structural data, molecular docking shows potential drugs and hub genes have high binding 
affinity. Dataset analysis, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) and Western Blot (WB) confirmed the CCL4 
expression difference between DR and controls.
Conclusion: CCL4 was identified as potential oxidative stress-related biomarker in DR, providing new insights for DR diagnosis and 
treatment.
Keywords: diabetic retinopathy, oxidative stress, hub genes, immune infiltration, molecular docking

Introduction
Diabetic retinopathy (DR) represents a prevalent microvascular complication associated with diabetes and stands as 
a principal contributor to preventable vision impairment within the working-age population.1 DR affects 22.27% of 
diabetics worldwide, with 103 million individuals impacted in 2020 and 165 million by 2045.2 Diabetic retinopathy has 
emerged as a pressing global public health concern, imposing significant financial burdens on both society and the 
economy. Current treatments for DR, such as including intravitreal pharmacologic agents, laser photocoagulation and 
vitreous surgery. Anti-VEGF therapies, including intravitreal injections of bevacizumab or ranibizumab, reduce retinal 
edema and neovascularization by inhibiting vascular endothelial growth factor (VEGF). However, these therapies offer 
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limited improvement in vision for DR patients, and their efficacy tends to diminish over time, requiring frequent 
injections.3 Moreover, these treatment modalities fail to address the underlying causes of DR. Consequently, it is 
essential to clarify the mechanisms of diabetic retinopathy to discover novel diagnostic markers for early intervention 
and new targets for clinical pharmacotherapy.

Oxidative stress arises from a disparity between the production and elimination of free radicals.4 High blood glucose 
levels lead to an excess of oxygen free radicals in the body, causing damage to retinal tissues.5 Moreover, oxidative stress 
can induce inflammatory responses, vascular abnormalities, and cell apoptosis, further promoting the development of 
DR.6,7 The pathogenesis of DR is heavily influenced by oxidative stress, according to many studies.8–10 Thus, 
investigating the connections between oxidative stress and DR is crucial to developing new treatments and enhancing 
patients’ visual acuity and quality of life. The progression of DR is a complex process closely intertwined with the 
immune system, where immune cells, mediators, and the complement system, especially macrophages and microglial 
cells, play critical roles.11–14 Previous research has highlighted the significance of the immune response and oxidative 
stress in the progression and aggravation of DR.

In recent years, bioinformatics approaches have become invaluable for identifying potential therapeutic targets and 
biomarkers by analyzing large-scale genomic and transcriptomic data. The OS-related genes were extracted from the 
GeneCards database, and RNA-sequencing datasets were obtained from the GEO database. We initially identified DEGs 
in the DR and control groups. This was followed by the extraction of DEOSGs from the intersection of DEGs and OS- 
related genes. For greater clarity of the DEOSGs, we ran functional and pathway enrichment analysis on them. We 
developed a PPI network to figure out candidate hub genes and subsequently utilized Least Absolute Shrinkage and 
Selection Operator (LASSO) regression, in conjunction with Support Vector Machine-Recursive Feature Elimination 
(SVM-RFE) algorithm analysis, to pinpoint hub genes associated with oxidative stress. These approaches enabled us to 
pinpoint hub genes that play critical roles in oxidative stress pathways, which are potential therapeutic targets. 
Nomogram creation and ROC curve evaluation assessed the diagnostic value of hub genes. This strategy is reliable 
for assessing these genes as biomarkers, improving DR diagnostic tools. A single-gene GSEA was conducted. 
Additionally, the ImmuCellAI website was used to examine the immune microenvironment in DR and determine hub 
gene-immune cell infiltration association. To better understand the regulatory features of hub genes, we constructed their 
regulatory networks in this study. Moreover, computational techniques like molecular docking are used to predict the 
binding affinity of drugs to identified targets, facilitating drug discovery. Consequently, drug prediction and molecular 
docking analyses were conducted to investigate the therapeutic potential of the identified targets, aiming to uncover novel 
drug candidates and understand their interactions at the molecular level. Finally, we validated the oxidative stress-related 
hub genes using both dataset analysis and in vivo animal models. Our research enhances comprehension of the molecular 
mechanisms behind oxidative stress in diabetic retinopathy pathogenesis, facilitates the discovery of novel diagnostic 
biomarkers, and reveals prospective therapy targets. Given the limited effectiveness of current therapeutic strategies for 
DR, the findings from this study may offer promising avenues for the development of more targeted and effective 
treatments. These biomarkers and drug candidates have the potential to be translated into clinical applications, improving 
early detection and therapeutic interventions, and ultimately preventing or delaying vision loss in DR patients.

Materials and Methods
Dataset Sources and Processing
This work utilized the GEO database to obtain the transcriptome dataset pertaining to diabetic retinopathy. Analysis was 
conducted utilizing the DR related dataset GSE160306. Considering that the most prevalent causes of vision loss in 
people with diabetes are diabetic macular oedema (DME) and proliferative diabetic retinopathy (PDR), the data from 
different groups’ gene expression profiles: healthy control (20 samples) and NPDR (Non-Proliferative Diabetic 
Retinopathy)/PDR + DME (20 samples) were analyzed.15,16 For the external validation dataset, we used GSE102485. 
From the GeneCards database, we extracted 1,398 genes associated with oxidative stress for further analysis.17 These 
genes had a relevance score of 7 or higher.
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In the GSE160306 dataset, we selected protein-coding genes for further analyses. Gene length was defined according 
to the longest transcript, and TPM (transcripts per million) data were obtained. The flowchart illustrating the methodol-
ogy of this study is presented in Figure 1.

Identification of DEGs and Oxidative Stress-Related DEGs
DEGs between 20 DR patients and 20 healthy control samples were identified using the DESeq2 R package. The 
screening criteria, adjusted p-value (adj. P) < 0.05 and |log2 Fold Change| > 0.58, were set to balance sensitivity and 
specificity, minimizing false positives and reliably identifying DEGs, following commonly accepted bioinformatics 
standards. For the |log2 Fold Change| > 0.58 threshold, this corresponds to a minimum 1.5-fold change in gene 

Figure 1 Research flowchart.
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expression. DEOSGs were derived by intersecting the discovered DEGs with 1,398 OS-related genes. The results were 
visualized by generating a volcano plot with the ggplot2 package utility. The VennDiagram and ComplexHeatmap 
packages were used to generate a Venn diagram and heatmap, displaying the expression of DEOSGs.

GO and KEGG Enrichment Analysis of DEOSGs
The R packages clusterProfiler and GOplot are utilized to conduct Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses to elucidate gene functions and probable pathways.18,19 Bubble and 
bar plots were employed to display the 15 most significant GO terms and 10 most significant KEGG terms, arranged 
according to GeneRatio. To show the top 10 KEGG pathways according to z-scores, a circular plot was made. Moreover, 
the criteria for screening significant functions and pathways were adjusted to adj. P <0.05. The outcomes are shown with 
the ggplot2 R package.

Hub Genes Identification Combining PPI Networks and Machine Learning
Proteins were integrated into PPI networks according to their interactions with other proteins. The DEOSGs were 
evaluated for PPI utilizing the STRING database (http://string-db.org; version 11.5). The subsequent interactions within 
the network were illustrated utilizing Cytoscape. To identify candidate hub DEOSGs, we employed two Cytoscape 
plugins: CytoHubba and MCODE. For the MCODE plugin, we utilized default parameters. The highest-scoring network 
was selected. Furthermore, we evaluated the top 10 genes with the highest scores using the MCC algorithm from the 
CytoHubba plugin. Following this, these genes had been combined with the highest-scoring network to identify candidate 
hub genes.

We utilized two different machine learning analytics approaches, namely LASSO logistic regression analysis and 
SVM-RFE analysis, in order to increase the accuracy of selecting target hub genes. These methods were implemented to 
screen hub genes. The outcomes of the two machine learning analyses were subsequently intersected, leading to the 
identification of overlapping genes as the primary OS-related hub genes associated with DR. The ggplot2 and Venn 
Diagram packages were used to display the results graphically.

Nomogram Construction and ROC Curve Evaluation
The rms package in R was used to produce the nomogram. The model’s accuracy was assessed by the analysis of 
calibration curves. The evaluation of the ROC curve was conducted on the GSE160306 dataset to validate the hub genes. 
These genes were considered to have diagnostic significance if their area under the ROC curve exceeded 0.7. ROC 
analysis with pROC and ggplot2 visualization.

Single-Gene GSEA for Hub Genes in DR
We used clusterProfiler and enrichplot to perform a single-gene GSEA analysis to elucidate significant pathway in DR. 
Based on expression levels, hub genes in the DR group were categorised as high- or low-expression. Significant gene 
enrichment was defined as p-value <0.05.

Correlation Analysis Between Hub Genes and Immune Cell Infiltration
The normalized gene expression matrix derived from the GSE160306 dataset was employed for subsequent analysis of 
immune infiltration. To facilitate a study on immune infiltration, the normalized gene expression matrix was sent to 
ImmuCellAI (https://guolab.wchscu.cn/ImmuCellAI)20 In order to compare the groups, the Wilcoxon rank sum test was 
employed. Using R’s ggplot2 package, Spearman correlation analysis was performed on infiltrating immune cells and 
hub genes. Grouped violin graphs showed DR and control immune cell abundance disparities.

Regulatory Networks Construction and Potential Drugs Prediction
Transcription factors and miRNAs were predicted using the JASPAR and TarBase databases via NetworkAnalyst (https:// 
www.networkanalyst.ca/)21,22 Uploading the identified hub genes to the DSigDB using the Enrichr platform (https://amp. 
pharm.mssm.edu/Enrichr/) for potential drug prediction analysis.23
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Molecular Docking
We used the OPENBABEL software to convert the 3D structures of the anticipated medicinal candidates from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) to PDB format. The RCSB PDB (https://www.rcsb.org/) was 
used for acquiring the crystal structures of the hub genes proteins. These protein structures were processed through the 
open-source version of PyMOL and AutoDockTools 1.5.7.24 Subsequently, AutoDockTools 1.5.7 was utilized to generate 
a sufficiently large docking box for each target, covering the entire macromolecular protein to guarantee that all potential 
functional pockets were incorporated, facilitating the molecular docking of the candidate drugs.

To conduct the molecular docking, QuickVina-W was utilized.25 The conformations with the lowest binding energies 
were chosen after the binding energies of the molecules had been evaluated. The complexes of the target proteins and 
drugs were then outputted in PDB format using PyMOL. Finally, all complexes were uploaded to the PLIP web tool for 
the analysis of additional non-covalent interactions between the target proteins and drugs.26 Molecular docking results 
were visualized with PyMOL.

Dataset Validation of Hub Genes
We normalized gene expression data from the GSE102485 dataset using the DESeq2 R package. An unpaired t-test 
compared gene expression levels between diabetes and normal groups. The ggpubr package was used for visualization.

Establishment of Animal Models
From Jiangsu Huachuang Sino Pharma Technology (Jiangsu, China), 8-week-old male C57BL/6J mice were obtained. 
Standard rodent feed for mice. To create the Streptozotocin (STZ) solution, the drug was dissolved in a sodium citrate 
buffer with a concentration of 0.1 mol/L and a pH of 4.2. Five days of 50 mg/kg STZ intraperitoneal injections were 
given to mice. Blood glucose levels were assessed via tail vein sampling seven days after the final injection. A diabetic 
mouse model was deemed successfully established if blood glucose exceeded 16.7 mmol/L. Untreated age-matched 
normal control mice were utilized.

Real-Time Quantitative Polymerase Chain Reaction
TRIzol was utilized in order to successfully isolate whole cellular RNA at the desired concentration. Total RNA was 
reverse-transcribed into complementary DNA using Roche Premix for quantitative PCR (qPCR) from Roche and 
Accurate Biology. Subsequently, RT-qPCR was performed using the TB Green Fast qPCR Mix (Takara). The forward 
and reverse primers can be located in Supplementary Table 1. The 2-ΔΔCT method, normalized to β-actin levels, was 
employed to assess the expression levels of target mRNA.

Western Blot
Retinal tissue protein was extracted according to manufacturer directions (Beyotime Biotechnology, China). The protein 
samples underwent denaturation and were then separated via SDS-PAGE. Standard procedures were then used to put 
them onto PVDF membranes (G2154-1L, Servicebio, China). Primary antibodies targeting CCL4 (1:1000, Bioss, bs- 
2475R, China), FCGR2B (1:1000, Abclonal, A12553, China) and β-actin (1:1000, ZSGB-BIO, TA-09, China) overnight 
at 4°C. ImageJ software was used to evaluate band intensity, with β-actin acting as an internal reference.

Statistical Analysis
Each bioinformatics analysis was executed with R software. The data was analyzed using GraphPad Prism 9.5 and is 
shown as the mean ± SEM from three separate experiments. The degrees of significance are stated as *** P<0.001, ** 
P<0.01, * P<0.05.
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Results
Identification of DEOSGs
Among the 772 DEGs that were found in the GSE160306 dataset, 588 were revealed to be upregulated and 184 were 
discovered to have decreased expression in the DR group. A representation of the distribution of DEGs may be seen on 
the volcanic map (Figure 2A). To further identify DEOSGs, we intersected 1398 oxidative stress-related genes with the 
DEGs. This study found 91 DEOSGs in total, with 75 of them being upregulated and 16 of them being downregulated in 
DR. We defined oxidative stress-related DEGs as DEOSGs (Figure 2B). The heatmap illustrates that the relative gene 
expression of DEOSGs varies between the DR and control groups (Figure 2C).

Functional Enrichment Analyses of DEOSGs
Enrichment analysis of the differentially expressed DEOSGs was conducted to better understand their molecular 
functions and signaling pathways. GO enrichment study indicated that in the biological processes (BPs), DEOSGs 
were predominantly enriched in response to oxidative stress, oxygen levels and decreased oxygen levels (Figure 3A). In 
the cellular components (CCs), DEOSGs are primarily enriched in the endoplasmic reticulum lumen, neuronal cell body, 
and early endosome (Figure 3A). In molecular functions (MFs), activity as a signaling receptor activator, receptor ligand, 
enzyme inhibitor and peptidase regulator are most abundant in DEOSGs (Figure 3A). According to the findings of 
KEGG enrichment analysis, DEOSGs were shown to be significantly enriched in the PI3K-Akt signaling pathway as well 
as Cytokine-cytokine receptor interaction (Figure 3B). Analysis using z-scores indicated that DEOSGs exhibited 
significant enrichment in the PI3K-Akt signaling pathway, Staphylococcus aureus infection, Hepatocellular carcinoma, 
and Complement and coagulation cascades (Table 1 and Figure 3C).

Figure 2 Identification of DEOSGs. (A) Volcano plot of DEGs in GSE160306. (B) Venn diagram of oxidative stress-related genes and DEGs in GSE160306. (C) Heat map of 
DEOSGs. 
Abbreviations: DEGs, differentially expressed genes; OS, oxidative stress.
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Hub Genes Identified Combining PPI and Machine Learning
Applying the STRING database, we conducted a study of the PPI for the 91 DEOSGs. Cytoscape was used to show the 
results as a network (Figure 4A). Identifying significant gene clusters was accomplished with the usage of the MCODE 
plug-in. One particular module, comprising 12 nodes and 43 edges, was categorized as significant and includes genes 
such as ALOX5, CD4, CR2, CSF3, FCGR2B, FOXP3, ITGAL, ITGAM, SELL, TFRC, TIMP1, TLR3 (Figure 4B). By 
utilizing the MCC algorithm within the CytoHubba plug-in, the 10 highest-scoring genes were determined, including 
CCL4, CD4, CSF1, CSF3, CXCR4, FOXP3, ITGAM, SPP1, TP53, and VCAM1 (Figure 4C). Combining the results, 18 
candidates of oxidative-stress-related hub genes were identified, including CCL4, CSF1, CXCR4, SPP1, TP53, VCAM1, 
ALOX5, CD4, CR2, CSF3, FCGR2B, FOXP3, ITGAL, ITGAM, SELL, TFRC, TIMP1, TLR3 were eventually obtained.

Figure 3 The functional enrichment analyses of the DEOSGs. (A) represents the GO enrichment analysis plot of DEOSGs. (B) represents the KEGG enrichment analysis 
plot of DEOSGs. (C) KEGG analysis of the DEOSGs. The inner ring is a bar plot where height displays the significance of the term, and the outer ring displays scatter plots 
which indicate the expression levels (log FC) for the genes in each term. 
Abbreviations: BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Initially, 6 candidate hub genes were discovered via LASSO regression (Figure 5A), while the SVM-RFE algorithm 
selected 13 candidate hub genes (Figure 5B). Intersecting these results with a Venn diagram revealed four hub genes: 
CCL4, CR2, FCGR2B, and FOXP3 (Figure 5C).

Table 1 The Top 10 KEGG Pathways According 
to z-Scores

ID Description

hsa04151 PI3K-Akt signaling pathway

hsa05150 Staphylococcus aureus infection

hsa05225 Hepatocellular carcinoma
hsa04610 Complement and coagulation cascades

hsa04060 Cytokine-cytokine receptor interaction

hsa05218 Melanoma
hsa05418 Fluid shear stress and atherosclerosis

hsa05205 Proteoglycans in cancer
hsa00982 Drug metabolism - cytochrome P450

hsa05223 Non-small cell lung cancer

Notes: z-scores, standardized scores that indicate the deviation 
of a data point from the mean of a distribution. 
Abbreviations: KEGG, Kyoto Encyclopedia of Genes and 
Genomes; hsa, Homo sapiens.

Figure 4 Screening candidate hub genes by Protein-Protein Interaction (PPI) Network. (A) PPI of DEOSG. (B) A key cluster with 12 genes was further chosen as candidate 
hub genes by MCODE. (C) Top 10 candidate hub genes explored by CytoHubba.
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Figure 5 Screening hub genes by machine learning. (A) LASSO regression algorithm. (B) SVM-RFE algorithm. (C) Venn diagrams for two algorithms. 
Abbreviations: Lasso, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination.
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Diagnostic Value Assessment
To improve the accuracy of predicting DR progression, a nomogram with four hub genes was developed (Figure 6A). 
The calibration curve results confirmed the nomogram’s high predictive reliability for DR patient outcomes (Figure 6B). 
The diagnostic efficacy of the 4 hub genes was assessed using ROC curve analysis; promising diagnostic markers were 
hub genes with an AUC value higher than 0.7. Results revealed that within the GSE160306 dataset the AUC values for 
FOXP3, FCGR2B, CR2, and CCL4 in relation to DR were 0.887, 0.855, 0.840, and 0.780 correspondingly (Figure 6C). 
The findings suggest that the 4 hub genes possess significant diagnostic potential for DR.

Single Gene GSEA of Hub Genes
We performed a single-gene GSEA-KEGG analysis to clarify the potential pathways related to the hub genes. The top 6 
pathways that are significantly enriched are displayed based on the p-value. CCL4 was found to be positively correlated 
with pathways related to Alpha-linolenic acid metabolism, Leishmania infection and T cell receptor signaling pathway. 
Conversely, it showed a negative correlation with pathways related to Oocyte meiosis and Progesterone-mediated oocyte 

Figure 6 Nomogram construction and the diagnostic value evaluation. (A) The visible nomogram for diagnosing DR. (B) Calibration curves of nomogram for predicting DR 
the GSE160306 dataset. (C) ROC curves of the hub genes in the GSE160306 dataset. 
Abbreviation: AUC, area under the curve.

https://doi.org/10.2147/JIR.S500214                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 2214

Peng et al                                                                                                                                                                            

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



maturation (Figure 7A). CR2 exhibited positive correlations with T cell receptor signaling, Allograft rejection, Gap 
junction, Glutathione metabolism, and Pathogenic Escherichia coli infection, but negatively correlated with Oxidative 
phosphorylation (Figure 7B). FCGR2B showed positive associations with Hematopoietic cell lineage and Natural killer 
cell-mediated cytotoxicity. FCGR2B showed positive associations with immune pathways, indicating its potential role in 
immune regulation (Figure 7C). FOXP3 demonstrated negative correlations with Tyrosine and Tryptophan metabolism, 
Allograft rejection, Melanoma, Oxidative phosphorylation, and Glyoxylate and dicarboxylate metabolism, suggesting its 
role in immunomodulation (Figure 7D).

Immune Cell Infiltration and Correlation of Hub Genes With Immune Cells
Enrichment analysis revealed that DEOSGs were mostly associated with signaling pathways that pertain to the immune 
system. Consequently, the immune infiltration in DR was investigated using the ImmuCellAI algorithm. Comparing the 
DR and control groups, the results revealed that 12 distinct types of immune cells were significantly different (Figure 8A 
and B). It was noted that DC cells, Macrophage, NK cells, CD4 T cells, Tr1 cells, nTreg cells, iTreg cells, Th1 cells and 
Th17 cells were mainly enriched in DR. However, in the control group, B cell, Neutrophil and Mucosal-Associated 
Invariant T cells (MAIT) were enriched. To discover the association between hub genes and immune cell infiltration, we 
employed Spearman correlation analysis (Figure 8C). Analyses of correlations showed that CCL4 correlated positively 
with NK cells and Macrophage cells and negatively with CD8(+) T cells and Mucosal-Associated Invariant T cells. CR2 
correlated most positively with B cells and negatively with Effector Memory Cells. FCGR2B showed the most positive 

Figure 7 Single-gene GSEA of hub genes. (A-D) represents the signaling pathway associated with the hub genes. 
Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 8 Immune cell infiltration and correlation analysis of Hub genes with immune cells. (A) represents the expression of 24 types of immune cells in the training set 
GSE160306 of the DR and control group. (B) represents a stacked plot of the expression of 24 types of immune cells in each sample. (C) represents the correlation analysis 
plot between hub genes and 24 types of immune cells.
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correlation with Macrophage cells and the most negative correlation with B cells. Although FOXP3 was negatively 
correlated with B cells, it was positively correlated with Natural Regulatory T cells.

Construction of Regulatory Networks and Drug Prediction
Through the JASPAR database, 24 TFs were identified, among which 9 exhibited a degree ≥ 2, including PPARG, 
NR3C1, STAT3, HNF4A, TFAP2C, YY1, GATA2, USF2, FOXC1 (Figure 9A). Possible miRNAs were identified 
through the TarBase database, revealing 13 miRNAs with a degree of ≥2 (Figure 9B). In this study, potential therapeutic 
compounds targeting the hub genes were predicted using the DSigDB database. On the basis of the adjusted p-values, the 
top five possible chemical compounds were determined to be shown in Table 2. The results revealed that (+)-chelidonine 
(PubChem CID 197810), oxazolone (PubChem CID 1712094), and eugenol (PubChem CID 3314) were the three most 
significant compounds associated with CCL4 and FCGR2B. Additionally, AGN-PC-0JHFVD (PubChem CID 71581418) 
was linked to FCGR2B and FOXP3, while simvastatin (PubChem CID 54454) was associated with CCL4 and FOXP3. 
The compound AGN-PC-0JHFVD, a compound identifier from Angene Chemical (https://www.angenechemical.com/), 
is identified by PubChem CID 71581418 and has a molecular formula of C26H24Cl2N4O5S2.

Molecular Docking Analysis
Molecular docking scores between the candidate drugs and target proteins are presented in Table 3. A stronger and more 
desirable binding relationship is suggested by a lower negative binding energy. Requiring less than −7 kcal/mol for 
binding energy suggests a stable connection.27,28 The binding energies of (+)-chelidonine with both CCL4 and FCGR2B 
were less than −7 kcal/mol. Additionally, AGN-PC-0JHFVD exhibited binding energies less than −7 kcal/mol with 
FCGR2B and FOXP3, indicating extremely stable binding. After analyzing noncovalent interactions, details including 
hydrogen bonds, hydrophobic interactions, π-stacking, and relative amino acid residues are exhibited in Figure 10.

Dataset Validation
The validation of the dataset revealed that the levels of CCL4 and FCGR2B expression were greater in DR samples 
compared to control samples (Figure 11A-D). This conclusion is in line with the findings that were obtained from the 
GSE160306 dataset.

Verification of Relative Expression of Hub DEOSGs by RT-qPCR and WB
To validate the bioinformatic analysis findings, we analyzed the expression of CCL4 and FCGR2B in STZ-induced 
8-week diabetic mice retina samples. RT-qPCR and WB were performed on retinal samples from these diabetic mice. RT- 
qPCR determined that CCL4 expression was substantially higher in DR samples than in control samples; nonetheless, 
FCGR2B expression was not different between the groups (Figure 12A). Consistently, WB analysis showed a marked 
elevation of CCL4 protein levels in DR samples, while FCGR2B protein expression was similar between DR and control 
groups (Figure 12B).

Discussion
DR is triggered by a confluence of circumstances.29,30 Nonetheless, the precise processes have yet to be comprehensively 
elucidated. Limited therapeutic options are currently available for DR, highlighting the urgent need to discover new 
molecular pathways to help treat and diagnose this disease. Inflammation, vascular dysfunction, and oxidative stress have 
all been shown to have a major effect on the course of DR.6,31,32 The onset of diabetes-associated retinal diseases is 
significantly influenced by immune cell infiltration. The pathophysiological process of DR involves immune reactions 
such as leukocyte aggregation, neutrophil and macrophage infiltration, as well as complement and microglia activation in 
the retina.11,33,34 Oxidative stress is considered to be a crucial component of the pathophysiological processes of DR, 
potentially interacting with pathological processes such as inflammation.7,9,35 The molecular mechanism of oxidative 
stress in DR, however, continues to be ambiguous and requires additional investigation.

In this study, for the first time, a transcriptome dataset was retrieved from the GEO database using bioinformatics 
methods, identifying 772 DEGs under the specified threshold, with 588 exhibiting upregulation and 184 demonstrating 
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downregulation. To focus on oxidative stress, we intersected these DEGs with oxidative stress-related genes, identifying 
91 overlapping genes, which we designated as DEOSGs. Further GO and KEGG enrichment analyses of DEOSGs have 
shown their participation in significant biological processes and pathways, particularly those associated with oxidative 
stress and the PI3K-Akt signaling pathway. At various stages in the DR process, the PI3K-Akt signaling pathway 

Figure 9 Regulatory networks. (A) Interaction network of TFs and genes for the hub genes. (B) Interaction network of miRNAs and genes for the hub genes.
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displays distinct activation levels.36 Research indicates that in early stages DR, the PI3K/Akt/mTOR signaling pathway 
can decrease reactive oxygen formation and augment antioxidant capacity, thus diminishing the apoptosis of retinal 
pericytes.37 In the later stages, there is a significant contribution made by the VEGFA/PI3K/Akt pathway to the process 
of compensatory angiogenesis in DR.38,39 To further narrow down the key players, we employed PPI network analysis in 
combination with machine learning techniques, which allowed us to identify hub genes with potential significance in DR. 
PPI networks were constructed and combined with machine learning algorithms to determine a set of four hub genes 
related to oxidative stress, namely CCL4, CR2, FCGR2B, and FOXP3. CCL4 (MIP-1β) is a C-C motif chemokine ligand 
synthesized by many cells, especially distinct immune cell types.40 CCL4 plays a crucial role in recruiting inflammatory 
cells to migrate towards inflamed tissues during inflammatory responses.41 Research indicates that stimulation by CCL4 
significantly increases the production of reactive oxygen species. Additionally, CCL4 activates the PI3K-Rac1 cascade, 
which in turn promotes cell adhesion reactions between endothelial cells and monocytes.42 Furthermore, Dai et al 
demonstrated that that PDR patients had higher vitreous CCL levels.43 Chang et al found that inhibiting CCL4 boosts the 
function of endothelial progenitor cells and facilitates angiogenesis triggered by ischemia in diabetic models.44 

According to research, CCL4 recruits monocyte lineage cells produced from bone marrow, which may be important 
for the physiological revascularization of hypoxic avascular retinas.45 These studies suggest a significant correlation 
between CCL4 and both inflammation and DR. CR2, a membrane glycoprotein that bind activation and processing 
fragments of the complement system, has been suggested to be involved in immune dysregulation and inflammatory 
processes.46,47 The complement system is intricately linked to the onset and advancement of DR.48,49 Although there are 
limited studies directly linking CR2 to DR, CR2 regulates immune response and inflammatory pathways that affect 
vascular damage and neuroinflammation.50–52 Furthermore, studies indicate that targeting complement inhibitors to sites 
of complement activation and C3d deposition can be achieved using CR2 fragments is effective in treating choroidal 
neovascularization (CNV) in age-related macular degeneration (AMD).53–55 FCGR2B, Fc gamma receptor IIb, is a low- 

Table 2 Candidate Drug Predicted Using DSigDB

Drug Names P-value Adjusted P-value Genes

(+)-chelidonine HL60 DOWN 3.66E-05 0.007802722 CCL4; FCGR2B
Oxazolone CTD 00006449 2.49E-04 0.026562437 CCL4; FCGR2B

Eugenol CTD 00005949 3.82E-04 0.027144975 CCL4; FCGR2B

AGN-PC-0JHFVD BOSS 5.38E-04 0.028623305 FCGR2B; FOXP3
Simvastatin CTD 00007319 0.001354055 0.033729606 CCL4; FOXP3

Abbreviations: DSigDB, Drug SIGnatures DataBase is a new gene set resource that relates drugs/ 
compounds and their target genes, for gene set enrichment analysis.

Table 3 Docking Results of Available Proteins With Candidate Drugs

Target PDB ID Drug Names PubChem CID Binding  
energy (kcal/mol)

CCL4 2X6L-A (+)-chelidonine 197810 −7.3

CCL4 2X6L-A Oxazolone 1712094 −5.6
CCL4 2X6L-A eugenol 3314 −4.7

CCL4 2X6L-A simvastatin 54454 −6.2

FCGR2B 2FCB-A (+)-chelidonine 197810 −7.6
FCGR2B 2FCB-A Oxazolone 1712094 −5.9

FCGR2B 2FCB-A eugenol 3314 −5.3
FCGR2B 2FCB-A AGN-PC-0JHFVD 71581418 −7.7

FOXP3 3QRF-F AGN-PC-0JHFVD 71581418 −8.1

FOXP3 3QRF-F simvastatin 54454 −6.6

Notes: Binding energy, the energy associated with the binding of a drug/ligand to its target protein, typically 
measured in kcal/mol. A more negative value indicates stronger binding affinity. 
Abbreviations: PDB ID, Protein Data Bank Identifier; PubChem CID, PubChem Compound Identifier.
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affinity immunoglobulin γ receptor in the Fc region and belongs to the fragment crystallizable receptor (FcR) family. 
FCGR2B, as a key regulator of the immune response, might play a role in the development of DR through its 
involvement in the activation of immune cells and inflammatory mechanisms.56–58 Although there is limited evidence 
linking FCGR2B dysregulation directly to DR, studies have shown that it may be involved in autoimmune diseases and 
inflammatory disorders, which have been shown to be contributing factors to retinal damage and vascular dysfunction in 
DR.59,60 FCGR2B has been implicated in modulating immune cell activation and may affect the immune response in 

Figure 10 Molecular docking simulation diagram. (A) (+)-chelidonine binds to CCL4. (B) oxazolone binds to CCL4. (C) eugenol binds to CCL4. (D) simvastatin binds to 
CCL4. (E) (+)-chelidonine binds to FCGR2B. (F) oxazolone binds to FCGR2B. (G) eugenol binds to FCGR2B. (H) AGN-PC-0JHFVD binds to FCGR2B. (I) AGN-PC 
-0JHFVD binds to FOXP3. (J) simvastatin binds to FOXP3. CCL4 is marked in red, FCGR2B in wheat, FOXP3 in green, and candidate drugs in cyan. Blue solid lines represent 
hydrogen bonds, grey dotted lines represent hydrophobic interactions, and green dotted lines represent π-stacking interactions.
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diabetic retinopathy, thereby influencing disease progression.61,62 CD4+ regulatory T cells (Tregs) are the main cells that 
express FOXP3 (Forkhead Box P3). Coordinated regulation of Treg formation, function, and homeostasis is accom-
plished by FOXP3 via its action on target genes.63,64 Tregs are crucial for maintaining immune balance, including the 
maintenance of tolerance to self-antigens, minimizing excessive immune responses and maintaining tissue homeostasis.65 

The X-linked syndrome (IPEX), which stands for X-linked Immune Dysregulation, Polyendocrinopathy, and 
Enteropathy, is a rare and severe autoimmune disease. It results from mutations in the FOXP3 gene, disrupting the 
internal balance and functionality of Tregs.66 FOXP3 exhibits conditional expression in macrophages within stroke 
lesions. FOXP3+ macrophages demonstrate enhanced clearance capabilities in the context of stroke lesions.67 An 
increasing consensus suggests that Foxp3 plays a significant role in controlling internal balance, inflammation, and 
oxidative stress.68–70

Subsequently, the hub genes were employed in the construction of a nomogram, accompanied by ROC curve analysis, 
for the purpose of assessing their diagnostic utility. The findings were further validated through this approach, thereby 
affirming the value of the hub genes as diagnostic indicators. The robust performance of these genes in diagnostic models 
underscores their potential as reliable biomarkers for the detection and risk stratification of DR.

Figure 11 Dataset validation of the Hub genes. (A-D) Expression differences of the hub genes in GSE102485 dataset. *** represents P<0.001, ** represents P<0.01 and ns, 
no significance.
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Expanding upon these discoveries, we conducted single-gene GSEA to delve deeper into the functional functions of 
these hub genes. Additionally, we also investigated the relationships between the hub genes and different immune cells 
and performed immune infiltration study to better understand how oxidative stress interacts with immune response in DR. 
We employed the ImmuCellAI online tool for a comprehensive assessment of immune infiltration in DR. From an overall 
distribution perspective, compared to the control group, the DR group exhibits an increased proportion of DC cells, 
Macrophages, NK cells, CD4 T cells, Tr1 cells, nTreg cells, iTreg cells, Th1 cells, Th2 cells, and Th17 cells. Conversely, 
the proportion of B cells, Neutrophils, and MAIT cells decreases. Meanwhile, we performed Spearman correlation 
analysis to evaluate the relationship between hub genes and the various immune cell infiltrations. Studies have shown 
that there is a significant interaction between immune cells and DR.71,72 T cells were the main infiltrating cells in DR 
Samples. Some studies have found that, Th1/Th2 imbalance seems to influence DR development, since Th1 cytokine 
release is elevated and Th2 secretion is decreased during DR.73 Th1 and Th2 cytokines also play an important role in 
regulating angiogenesis.74 Additionally, research found that Th17 cells infiltrate the retina of the mouse model of DR.75 

Possible correlation between DR and interleukin (IL)-17A) level disorders.76 The transient increase of regulatory T cells 
in retinopathy can reduce neovascular retinopathy in mice.77 There is a link between MAIT cells and metabolic 
disorders.78 The quantity of MAIT cells in circulation is dramatically decreased in type 2 diabetic patients.79

Recognizing the regulatory complexity of these hub genes, we established regulatory networks that included TFs and 
miRNAs, which offered deeper insights into the molecular mechanisms underlying DR. Drug prediction analysis 

Figure 12 External validation of CCL4 and FCGR2B. (A) The mRNA levels of CCL4 and FCGR2B were evaluated in animal models by RT-qPCR. (B) The protein levels of 
CCL4 and FCGR2B were evaluated animal models by WB. ** represents P<0.01, * represents P<0.05 and ns, no significance. 
Abbreviation: STZ 8w, Streptozotocin 8 weeks.
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identified potential therapeutic agents targeting these hub genes, further validated by molecular docking studies. In our 
study, drug screening and molecular docking analyses revealed potential interactions between (+)-chelidonine and CCL4 
and FCGR2B, as well as between AGN-PC-0JHFVD and FCGR2B and FOXP3. The pharmacological actions of (+)- 
chelidonine, an alkaloid produced from the Chelidonium majus, include anti-inflammatory, antibacterial, and anticancer 
characteristics.80–82 Previous research has shown that the efficacy of (+)-chelidonine in modulating related NF-κB 
pathways, making it a promising candidate for further investigation.83,84 AGN-PC-0JHFVD is a compound with specific 
pharmacological properties yet to be fully characterized in the literature. Initial studies suggest that it may have 
significant therapeutic potential due to its strong binding affinity with key target proteins. The binding of AGN-PC 
-0JHFVD to FCGR2B and FOXP3 suggests a potential therapeutic application. Drug predictions are crucial for providing 
new treatments for DR. Docking scores and binding affinity demonstrated strong interactions, indicating that these drugs 
might effectively modulate the activity of key proteins. Targeting these proteins might be a promising therapy option for 
DR, according to this discovery.

The expression levels of hub genes were confirmed in the dataset relevant to diabetic retinopathy, demonstrating 
that only the findings for CCL4 and FCGR2B agreed with the analytical results from GSE160306. To confirm the 
outcomes of bioinformatics analysis, the CCL4 and FCGR2B were validated using RT-qPCR and Western blot. The 
results from RNA-seq did not match up with the results from RT-qPCR and Western blot for FCGR2B in this study. 
Potential reasons for these inconsistencies include variations in sample preparation, where RNA-seq utilizes whole 
transcriptome sequencing covering the entire transcriptome, while RT-qPCR selectively targets specific genes. This 
divergence may arise from differences in sample handling and preparation steps. Additionally, RT-qPCR’s selective 
amplification of specific gene fragments could introduce bias due to primer selectivity, contrasting with RNA-seq, 
which sequences the entire transcriptome, offering a more comprehensive view. Moreover, RNA-seq’s capacity to 
detect low-expression genes across the entire genome contrasts with RT-qPCR’s potentially higher sensitivity, which 
may, however, be compromised by technical noise, particularly at lower expression levels. It is important to note that 
the consistency between the Western Blot (WB) and RT-qPCR results suggests that FCGR2B does not exhibit 
differential expression in the diabetic mouse model. We ultimately identified CCL4 as oxidative stress-related 
biological markers. Chemokine-based therapies have shown promise in treating inflammatory diseases by targeting 
immune cell recruitment. For example, studies have demonstrated that treatment with mNOX-E36–3’PEG, an anti- 
CCL2 L-enantiomeric RNA aptamer, can improve renal function and reduce kidney damage in the db/db mouse model 
of type 2 diabetic nephropathy.85 The CCL4/CCR5 axis is pivotal in immune cell recruitment to inflamed tissues.86 In 
DR, targeting this pathway could potentially reduce retinal inflammation by limiting both oxidative stress and the 
infiltration of immune cells.

Our study has successfully identified oxidative stress-related biomarkers in DR for the first time. Nevertheless, it is 
imperative to recognize the inherent limitations that accompany this investigation. While it offers valuable preliminary 
insights into underlying mechanisms, it falls short of providing definitive evidence. Primarily, our methodology relied 
on database mining, lacking adequate experimental validation. Furthermore, our validation process was confined to 
mouse models, with a constrained sample size. It’s essential to note the significant genomic and biological differences 
between mice and humans. To bridge the gap toward clinical application, it is crucial to validate these findings using 
human clinical samples, such as vitreous humor or retinal tissues from DR patients. This will help establish a direct 
connection between the identified biomarkers and their role in disease pathophysiology. Moreover, incorporating these 
biomarkers into diagnostic panels or predictive models for DR progression may enhance their clinical utility. 
Developing therapeutic strategies that target the oxidative stress pathways linked to these biomarkers could pave the 
way for novel interventions. Further studies are warranted to explore how the identified transcription factors, miRNAs, 
and therapeutic agents could be integrated into clinical practice. These efforts would significantly enhance the 
translational impact of our study, providing a clear path from biomarker discovery to clinical intervention. 
Moreover, we did not proceed with validation following the successful prediction of transcription factors, miRNAs, 
and therapeutic agents. Lastly, there remains a necessity for further verification concerning the co-expression relation-
ship between DEOSGs and immune cells.
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Conclusion
This study conducted comprehensive bioinformatic analysis of gene activity in patients with DR, identifying 4 hub genes 
closely associated with oxidative stress in DR. Additionally, it revealed the relationship between CCL4, CR2, FCGR2B, 
and FOXP3 genes and immune cell infiltration. Experimental validation confirmed the importance of CCL4 as 
a biomarker for oxidative stress in DR, demonstrating its considerable clinical translational potential as both 
a diagnostic marker and a therapeutic target. Targeting CCL4 could represent a promising novel strategy for the treatment 
of DR. Overall, these findings improve our understanding of DR’s molecular processes in connection to oxidative stress 
and provide potential biomarkers for diagnosis and treatment.
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