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Abstract: Octopamine (OCT) belongs to a group of compounds known as biogenic amines. 

OCT, a monohydroxylic analog of norepinephrine, is found in both vertebrate and invertebrate 

nervous systems. OCT is present in relatively high concentrations in the neuronal and non-

neuronal tissues of most invertebrate species studied. However, OCT occurs as a trace amine in 

vertebrates where its physiological significance remains uncertain. OCT acts as a neurotransmit-

ter, neuromodulator, and neurohormone in insect nervous systems where it prominently influences 

multiple physiological events. In the peripheral nervous system, OCT modulates the activity of 

flight muscles, peripheral organs, and most sense organs. In the central nervous system, OCT is 

essential for the regulation of motivation, desensitization of sensory inputs, arousal, initiation, 

and maintenance of various rhythmic behaviors, hygiene behavior, and complex social behaviors, 

including establishment of labor, as well as learning and memory. As a neurotransmitter, OCT 

regulates endocrine gland activity and controls the emission of light in the firefly lantern. As 

a neurohormone, OCT is released into hemolymph, transported to target tissues, and induces 

mobilization of lipids and carbohydrates, preparing insects for a period of extended activity 

or assisting recovery from a period of increased energy demand. OCT modulates hemocytic 

nodulation in nonimmune larvae and enhances phagocytosis as a neurohormone. OCT exerts 

its effects by binding to specific receptors belonging to the superfamily of G protein-coupled 

receptors and shares the structural motif of seven transmembrane domains. Activation of octo-

paminergic receptor types is coupled with different second messenger pathways depending on 

the species, tissue source, receptor type, and cell line used for expression of the cloned receptor. 

OCT-mediated generation of second messengers is associated with changes in cellular response, 

affecting insect behaviors. This review describes the roles of OCT in insect nervous systems at 

the behavioral and molecular levels.

Keywords: octopamine, octopamine receptor, biogenic amine, sympathomimetic amine, 

nervous systems, insects

Introduction
Octopamine (OCT) was first discovered in the salivary glands of Octopus  vulgaris.1 

OCT is an invertebrate structural analog of vertebrate norepinephrine. It can be 

distinguished from norepinephrine by the absence of a hydroxyl group at position 3 

of the phenol ring (Figure 1). In invertebrates, OCT induces and modulates signal 

transduction pathways similar to that of norepinephrine in vertebrates. OCT is present 

in high concentrations in the central and peripheral nervous systems of most inverte-

brate species, including insects, where it plays a multifunctional role.2–5 In contrast, 

only trace amounts of OCT have been reported in the central and peripheral nervous 
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systems of vertebrates.3–7 OCT is a sympathomimetic amine 

and known as a false neurotransmitter because it can be stored 

in vesicles replacing endogenous classical amines such as 

norepinephrine, dopamine, and serotonin.7 OCT is coreleased 

with other catecholamines, so many of its effects may be 

indirect, and the existence of octopaminergic receptors has 

not yet been established in vertebrates. Therefore, OCT seems 

to play no true physiological role in vertebrates.

OCT is found in high concentrations in the central and 

peripheral nervous tissues of insects where it serves as a 

neurotransmitter and a neuromodulator; however, when 

released in the hemolymph of insects it plays a neurohor-

monal role.2,4,5 Circulating levels of OCT are increased during 

“stressful” conditions, such as mobilization of lipids and 

sugars, so OCT is involved in adjusting an insect’s body for 

a period of extended activity or assisting in recovery from a 

period of increased energy demand.8–15 OCT produces a rapid 

increase in the circulating hemocyte population in response 

to bacterial challenge in some insects, such as the American 

cockroach, Periplaneta americana, and the beet armyworm, 

Spodoptera exigua.16,17 It is suggested that OCT mediates cel-

lular immune responses such as hemocytic phagocytosis and 

nodule formation via eicosanoids during bacterial invasion 

in insects. As a neurotransmitter, OCT regulates emission in 

the light organ of the firefly and endocrine gland activity 

in other insects.18–21 As a peripheral neuromodulator, OCT 

modulates the activities of skeletal and visceral muscles, 

other peripheral target organs including fat body, oviduct, 

heart, and sensory organs, and gregarization in locusts.22–26 

As a centrally acting neuromodulator, OCT plays a major 

neuromodulatory role in regulating insect behaviors, such as 

rhythmic behaviors in locusts,3,27 locomotion and grooming in 

fruit flies,28 dance and sting behavior in honeybees,29,30 sensi-

tization and dishabituation of sensory input in locusts,31,32 dis-

crimination of nestmates from non-nestmates in honeybees 

and fire ants,33,34 feeding behaviors of blowflies, cockroaches 

and honeybees,35–37 division of labor and foraging prefer-

ence in honeybees,38,39 conditional courtship in fruit flies,40 

visual responses in locust and honeybees,31,41–44 learning and 

memory processes in honeybees, fruit flies, and crickets,45–49 

and many others (Table 1).

Collective studies support the view that OCT orchestrates 

multiple physiological and behavioral processes by function-

ing as a neuromodulator, neurotransmitter, or neurohormone 

in insect nervous systems, prompting the whole organism to 

“dynamic action”. OCT plays important roles in the insect 

nervous system, and the main objective of this review is 

to update knowledge on OCT metabolism, classification 

of octopaminergic neurons, octopaminergic receptors, and 

OCT-mediated signaling, in the hope that this review may 

shed light on the molecular mechanism(s) underlying com-

plex insect behaviors.
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Figure 1 Chemical structures of octopamine isomers, norepinephrine, and epinephrine.
Abbreviations: p-OCT, para-octopamine; m-OCT, meta-octopamine; o-OCT, ortho-octopamine; NOR, norepinephrine; EPI, epinephrine.
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Isomers
OCT exists in three different structural isomeric forms, ie, 

para- (p-), meta- (m-), and ortho- (o-), as shown in Figure 1. 

Each isomeric form exists as D(-) and L(+) enantiomers.50–53 

However, the naturally occurring isomer of OCT is p-OCT 

in the octopus and other invertebrates, including insects, and 

is found in high concentration in the central nervous system, 

peripheral nervous system, and various other peripheral 

tissues.8,54,55 The (-)-enantiomer of p-OCT is the naturally 

occurring form in honeybees.56 These findings support the 

original findings of Harmar and Horn who showed that the 

(-)-enantiomer of p-OCT is over 200 times more potent 

than the (+)-enantiomer in stimulating adenylyl cyclase 

activity in the cockroach brain.57 The locust forewing stretch 

receptor has been reported to be more sensitive to D-OCT 

than to DL-OCT.58 The p-isomer of OCT has approximately 

500 times higher affinity for OCT than does the m-isomer, 

whereas tyramine exerts a nearly eight times lower affinity 

than p-OCT for the locust neuronal OCT receptor (OCT3), 

suggesting that p-isomers and m-isomers of OCT have 

different affinities for receptors.59 Collective evidence sup-

ports the presence of p-OCT in insects, and the p-, m-, and 

o-isomers in mammals.

Metabolism in insects
Biosynthesis
OCT biosynthesis from L-tyrosine is a two-step process in 

a de novo pathway (Figure 2A). In the first step, tyrosine 

is decarboxylated to tyramine by tyrosine  decarboxylase.60 

In the second step, tyramine is hydroxylated on the β-carbon 

of the side chain to OCT by tyramine β-hydroxylase, 

a rate-limiting enzyme in the biosynthetic pathway.61 

The enzymatic activities of tyrosine decarboxylase 

and tyramine β-hydroxylase depend on the availability 

and concentration of substrates and cofactors. Tyrosine 

decarboxylase requires tyrosine and pyridoxal phosphate, 

whereas tyramine β-hydroxylase requires tyramine, ascor-

bate, and copper to catalyze the reaction.62 The enzymatic 

activity and stability of these enzymes may also depend 

on transcriptional, translational, and post-translational 

modifications.62

Tyrosine decarboxylase genes (dTdc1 and dTdc2) and 

a tyramine β-hydroxylase gene (Tβh) have been cloned 

from Drosophila melanogaster.61,63 dTdc1 is expressed 

non-neurally, while dTdc2 is expressed neurally. Tyramine 

β-hydroxylase has been found in all neurons and cells that 

synthesize OCT.70 No detectable levels of tyramine and OCT 

are found in mutant (Tdc2RO54) brains of D. melanogaster, and 

affected females are sterile due to egg retention but are not 

deficient in ovulation.63 However, mutant flies (TβhnM18) lack-

ing neural OCT show a 10-fold increase in tyramine levels, 

but the females are deficient in ovulation.61,64 These findings 

suggest distinct and separable neural activities of OCT and 

tyramine. Reduction in OCT also decreases aggression in 

both males and females. In genetic rescue experiments, 

Tdc1-Gal4-driven tyramine β-hydroxylase expression has 

failed to rescue the aggression phenotype of mutant male 

flies (TβhnM18). However, the combination of Tdc1-Gal4 and 

UAS-Tβh drivers rescued the deficiency in aggression, sug-

gesting that the aggression phenotype in TβhnM18 mutants 

is the result of a tyramine β-hydroxylase deficiency in the 

central nervous system. The combination of Tdc2-Gal4 and 

Cha-Gal80 to drive tyramine β-hydroxylase expression in 

subesophageal ganglion neurons rescued the aggression 

phenotype in TβhnM18 mutants, indicating that OCT and a dis-

tinct subset of octopaminergic neurons in the subesophageal 

ganglion have functional importance in aggression.65 Further-

more, tyramine has been reported to regulate transepithelial 

Table 1 Octopaminergic modulation of insect behaviors

Behavior Insect Reference(s)

Olfactory learning  
and memory

Apis mellifera, Drosophila  
melanogaster, and Gryllus  
bimaculatus

45–49

Sensitization and  
dishabituation

Locusta migratoria 31,32

Feeding response Phormia regina,  
Apis mellifera,  
Rhyparobia madera

35–37

vision Locusts and  
Apis mellifera

31,41–44

Aggression Drosophila melanogaster 65
Motor control Locusta migratoria 11–13
Locomotion and grooming Drosophila melanogaster 28
Rhythmic behaviors Schistocerca gregaria  

and Manduca sexta
3,27

Division of labor Apis mellifera 38,39
Dance behavior Apis mellifera 29
Discrimination  
of nestmates from  
non-nestmates

Apis mellifera and  
Solenopsis invicta

33,34

Sting response Apis mellifera 30
Conditional courtship Drosophila melanogaster 40
Gregarization  
(behavioral switch)

Schistocerca gregaria 26

Activity and energy  
metabolism of flight  
muscles, visceral muscle,  
peripheral organs,  
and sense organs

Locusta migratoria  
and Acheta domesticus

3,8,10–15,24

Ovulation Drosophila melanogaster 61,64

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3

Octopamine in insects

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Insect Physiology 2012:4

Cl- conductance in Malpighian tubules of D. melanogaster.66 

The immunohistochemical staining of Malpighian tubules 

with an antibody against tyramine indicates that stellate cells 

are the sites of tyramine production, supporting the expression 

of dTdc1 in non-neuronal tissue.63,66

Salvage pathway
The salvage pathway may be an alternative pathway for OCT 

synthesis in insects (Figure 2B). This pathway was proposed 

35 years ago.67 Since then, it has been a subject of controversy on 

both logical and technical grounds.68–70 Later on, using improved 

histofluoresence technology, researchers have detected 

p-tyramine, p-OCT, and p-dopamine in the thoracic nervous 

system of the locust. Both octopaminergic and dopaminergic 

neurons have been reported to share common morphological 

features in the thoracic nervous system of the locust, as well 

as in the ventral nerve cord of the cricket.71,72 Theoretically, in 

the salvage pathway, the tyrosine decarboxylase reaction may 

be replaced by tyrosine hydroxylase that converts L-tyrosine 

to 3,4-dihydroxy-phenylalanine (L-dopa) via a hydroxylation 

reaction.73 L-dopa is then decarboxylated to dopamine by dop-

amine decarboxylase.74 Dopamine may then be subsequently 

converted to tyramine by dopamine dehydroxylase,75 followed 

by β-hydroxylation of tyramine to form OCT.

Hydroxylation of L-tyrosine to L-dopa followed by 

its decarboxylation to dopamine has been reported in the 

cerebral ganglion of the cockroach, P. americana L.73 The 

presence of additional L-dopa results in increased OCT 

synthesis.76,77 These studies suggest that OCT and dopamine 

synthesis share a common first step in the hydroxylation of 

L-tyrosine to L-dopa in the salvage pathway (Figure 2B). The 

physiological relevance of this salvage pathway in insects 

is still not fully understood. However, it may promote the 

availability of tyramine during diminished levels of tyrosine 

decarboxylase at certain sites or stages of development in the 

central and/or peripheral nervous systems of insects.

Release, reuptake, and enzymatic 
inactivation
In insects, OCT is released into the extracellular space 

through exocytosis to modulate various metabolic activities. 

Using labeled OCT, it has been shown that OCT is released 

by depolarization through high potassium concentration or 

electrical stimulation.78–82 Once OCT is released into the 
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extracellular space, it binds to its postsynaptic receptors to 

elicit a physiological response. However, OCT release in 

the cytosol and reuptake is regulated by the presence of two 

types of transporters, ie, the transporter that carries OCT 

into secretory vesicles for storage by endocytosis and the 

transporter that mediates the reuptake of OCT following 

exocytosis. Both types of transporters play important roles, 

not only in the regulation of OCT homeostasis, but also in 

octopaminergic neurotransmission.

OCT is cleared rapidly from the extracellular space via 

a reuptake system involving membrane-bound transport-

ers.83–86 Reverse-transcription polymerase chain reaction 

studies indicate that the OCT-type monoamine transporter 

is widely expressed in all insects, except in representatives 

of either Diptera (eg, D. melanogaster) or Hymenoptera 

(eg, Apis mellifera).86 D. melanogaster utilizes less selective 

transporters for cationic amino acids or organic cations as 

an alternative mechanism for OCT transport.87,88 The OCT 

reuptake system in cockroaches and other insects is strongly 

inhibited by cocaine, an alkaloid isolated from coca plant 

(Erythroxylum coca) leaves. Cocaine exerts its insecticidal 

effect at naturally occurring concentrations in coca leaves 

by blocking OCT reuptake at octopaminergic end terminals 

in the insect brain, which results in increased OCT concen-

tration in the synaptic cleft, leading to the potentiation of 

OCT-mediated responses.89 The common occurrence of a 

phenolamine transporter amongst insects but lack of such 

a transporter in D. melanogaster and A. mellifera suggests 

species-specific existence of OCT reuptake systems, implying 

that OCT may be recycled at the synaptic cleft by alterna-

tive pathways. Further genetic and protein-based studies are 

required to understand the underlying role of transporters in 

the regulation of OCT release and reuptake systems in insects, 

because reuptake systems are considered to be an important 

target for synthesizing specific uptake inhibitors, which can 

act as novel insecticides.

Enzymatic inactivation of OCT in insects occurs due to 

amino terminal tagging of selective groups in its structure, 

and is catalyzed by specific enzymes (Figure 3). The main 

pathway of OCT inactivation in the central nervous system 

of the insect is via N-acetylation. This reaction is catalyzed 

by a cytoplasmic N-acetyltransferase, which acetylates the 

amino moiety of OCT, thereby converting it into N-acetyl-

OCT, downplaying the mechanism of inactivation of oxi-

dative deamination.3,67,90–94 Measurable N-acetyltransferase 

activity has been reported in the ventral nerve cord of the 

cockroach, the central nervous system of the tobacco horn-

worm and fruit fly, the firefly light organ, and the larvae of the 

cattle tick.95–97 Some insects also utilize phenylethanolamine 

N-methyl transferase to convert OCT into synephrine via an 

N-methylation reaction.3,98

Other possible pathways for enzymatic inactivation of OCT 

may be conjugation reactions, such as β-alanine conjugation, 

γ-glutamylation, and sulfate conjugation (Figure 3).3,94,96 The 

β-alanine conjugation reaction is catalyzed by ebony protein 

in D. melanogaster.99 The presence of N-β-alanyl tyramine 

has been reported in the central nervous system of Manduca 

sexta, and N-β-alanyl-OCT as well as sulfated conjugates 

of OCT, dopamine, and serotonin in lobster neurons.99 

The ebony gene cloned from the P. americana brain shows 

homology with ebony sequences from Anopheles gambiae, A. 

mellifera, and D. melanogaster.100 These studies support the 

occurrence of alanine conjugation as an alternative pathway 

for biogenic amine inactivation in the central nervous sys-

tem of invertebrates, including insects. The γ-glutamylation 

is catalyzed by γ-glutamyltransferase.3,94,100 This pathway 

has been observed in the horseshoe crab Limulus brain and 

eyes where γ-glutamyl OCT plays a role as an intracellular 

transmitter in the Limulus visual system.101 OCT inactiva-

tion via sulfation catalyzed by O-sulfotransferase has been 

reported in lobsters.102 O-sulfo-N-glutamyl OCT may either 

be synthesized directly via sulfation of N-glutamyl-OCT, a 

reaction catalyzed by an aryl sulfotransferase; or through a 

reaction catalyzed by γ-glutamyltransferase using OCT-O-

sulfate as a substrate, a reaction previously suggested for 

serotonin catabolism in the mollusc, Aplysia californica.103,104 

Based on these findings, it is suggested that β-alanine, 

glutamate, and sulfate conjugation reactions may be other 

major pathways for inactivation of biogenic amines in the 

insect nervous system (Figure 3). Lastly, monoamine oxidase 

(the key enzyme in the monoamine inactivation pathway in 

vertebrates) plays a minor role in inactivating OCT in the 

insect nervous system.93

Octopaminergic neurons  
in the insect nervous system
The number of octopaminergic neurons in the insect nervous 

system varies considerably. The approximate number of 

neurons present in all ganglia of large insects is 108, and in 

small insects approximately 40–50 neurons. The distribution 

of octopaminergic neurons is well documented in insects 

including honeybees, fruit flies, blowflies, cockroaches, 

hawkmoths, and locusts.105–112 The best characterized group 

of neuromodulatory neurons in insects constitutes a unique 

group of unpaired efferent median neurons, the somata 

of which are located at the dorsal/ventral midline of the 
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subesophageal ganglion, thoracic, and abdominal ganglia; 

these neurons are known as dorsal unpaired median or ventral 

unpaired median neurons.113–116 The classification of OCT-

like immunoreactive neurons as clusters of cell bodies and 

perikarya within the cell body in the brain and the subesopha-

geal ganglion has been reviewed elsewhere.106,107,111,117 

Most unpaired dorsal/ventral efferent median neurons are 

octopaminergic.24,108,109 A subpopulation of the subesophageal 

ganglion dorsal/ventral unpaired median cells innervates 

most parts of the brain neuropils and is involved with specific 

activities and complex behaviors.105,118 The dorsal unpaired 

median and ventral unpaired median neurons also innervate 

sets of peripheral muscles, glands, and certain types of 

 proprioceptors.119 The peripherally released OCT from dorsal/

ventral unpaired median neurons modulates neuromuscular 

transmission, muscle contraction kinetics, muscle metabo-

lism, and sensory sensitivity, and influences other properties 

of target organs. However, when released into the circulation, 

hemolymph OCT acts as a lipid mobilizing neurohormone 

during flight and long-lasting motor behaviors.8,119–121

Recent immunocytochemical studies clearly demonstrate 

a fine and comparable distribution of octopaminergic neurons 

using antibody raised against OCT.106–108,111 Several well 

distinguished clusters of lateral cell bodies in the brain and 

many midline perikarya provide OCT-like immunoreactive 

processes to circumscribed regions of the subesophageal 

ganglion, antennal lobes, optic lobes, and protocerebrum 

neuropils in different insect species. The locations and projec-

tion patterns of OCT-immunoreactive neurons in the brain 

neuropils and subesophageal ganglion of different insects 

tested suggest some overlap with distinct differences in the 

distribution of OCT-immunoreactive processes, implicat-

ing common as well as highly specific targets among insect 

species.107 Further evaluation will be helpful in recognizing 

additional neuromodulatory elements because some mid-

line neurons show no OCT-like immunoreactivity on their 

dendritic processes but possess immunoreactive cell bodies. 

A previously reported overlap between the distribution of 

OCT-immunoreactive processes and expression of octo-

paminergic receptors in insect brain neuropils and in the 
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Figure 3 Enzymatic inactivation of octopamine in insects. 
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subesophageal ganglion111 needs further confirmation by 

evaluating this overlap among various other insect species.

The modulatory roles of OCT-like neurons do not depend 

solely on their origin but also on the arborization patterns in 

the target organs where they release OCT. Several groups 

have investigated the sites of OCT release in the central and 

peripheral nervous systems and the origin, arborization, and 

modulatory roles of OCT neurons.94,105–124 It is timely to deter-

mine OCT levels, octopaminergic receptor subtype/density, 

and neural activity/connectivity in specific brain neuropils to 

show the correlation with complex behaviors in insects.

Receptor classification
The original octopaminergic receptor classification was based 

on the pharmacological profiles of a range of physiological 

responses to OCT in an extensor tibiae muscle preparation 

of the locust.125 According to this classification (Figure 4A), 

octopaminergic receptors in the insect were functionally 

OCT-1 OCT-2
↑ Ca2+ ↑ cAMP

OCT-2A

(α-adrenergic-like) (β-adrenergic-like)
OCTα-R OCTβ-R OCT/TYR or TYR -R  

↑ Ca2+

{↑} cAMP
OCT > TYR

↑ cAMP
OCT > TYR

A

B

OCT-2B OCT-2C

OCTβ1-R OCTβ2-R OCTβ3-R
↑ cAMP ↑ cAMP ↑ cAMP

↓ cAMP when TYR > OCT 
↑ Ca2+when OCT ≥ TYR             

Original receptor classification

New receptor classification

↑ cAMP ↑ cAMP ↑ cAMP

C

(α-adrenergic-like) (β-adrenergic-like)
OCTα-R OCTβ-R

Revised new receptor classification

↑ Ca2+

{↑} cAMP
OCT > TYR

OCTβ1-R OCTβ2-R OCTβ3-R

TYR1-R

↓ cAMP  (TYR > OCT)
↑ Ca2+(OCT ≥ TYR)

↑ Ca2+

TYR↑ cAMP
OCT > TYR

↑ cAMP ↑ cAMP ↑ cAMP

TYR2-R

Figure 4 Classification schemes of octopaminergic receptors. (A) Original scheme receptor classification based on whole tissue responses, (B) new receptor classification 
based on the structural and signaling similarities of fruit fly cloned Drosophila melanogaster octopaminergic receptors with vertebrate adrenergic receptors, and (C) revised 
new receptor classification based on cloning and functional studies of second class of tyraminergic receptors. Information is adapted from previous references.117,125,149–151

Abbreviations: Ca2+, calcium; cAMP, cyclic adenosine monophosphate; ↑, increase; ↓, decrease. OCT, octopamine; TYR, tyramine.
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classified into two main classes, ie, OCT-1 and OCT-2.125 

The OCT-1 class of receptors is associated with an increase 

in intracellular calcium Ca2+ levels, whereas the OCT-2 class 

of receptors is associated with an increase in intracellular 

cAMP levels.117,125–127 Based on this pharmacological differ-

ence, the OCT-2 class of receptors was initially divided into 

two subclasses (A and B). OCT-2A receptors are located 

on the presynaptic terminals of the slow motor neuron and 

modulate transmitter release, whereas OCT-2B receptors 

are located postsynaptically on the muscle and modulate 

the relaxation rate of twitch tension.125 Subsequently, a 

third class, OCT-3, was pharmacologically characterized 

in the locust brain. OCT-3 is different from the peripheral 

octopaminergic receptors (1, 2A, and 2B) in terms of its rank 

order of affinities for selected antagonists and distribution in 

the insect brain.94,129,130 OCT-3 is referred to as OCT-2C due 

to similarities with OCT-2A and OCT-2B in coupling, with 

increased intracellular cAMP levels. This classification is 

based on second messenger changes induced in a variety of 

intact tissue preparations, so is considered to be problematic, 

particularly given the existence of more than one receptor 

subtype in the same tissue preparation.

Later on, progress in molecular cloning studies eased the 

identification of genes coding for octopaminergic and tyramin-

ergic receptors in insects.26,131–148 Based on the structural and 

signaling similarities between cloned D. melanogaster 

octopaminergic receptors and vertebrate adrenergic recep-

tors, Evans and Maqueira proposed a new  classification.149 

According to this new classification (Figure 4B), octo-

paminergic receptors were grouped into three classes, ie, 

α-adrenergic-like (OCTα-R), β-adrenergic-like (OCTβ-R), 

and octopaminergic/tyraminergic (OCT/TYR-R) or tyramin-

ergic (TYR-R).149 The OCTα-R class shows sequence homol-

ogy with vertebrate α1-adrenergic receptors. These receptors 

exert a higher affinity for OCT than tyramine and are coupled 

with an increase in intracellular Ca2+ concentration as well 

as a small increase in intracellular cAMP levels.137,138,141,143,145 

The OCTβ-R class shows sequence similarities with verte-

brate β-adrenergic receptors, and activation of receptors in 

response to OCT specifically results in increased intracellular 

cAMP levels.144,149 The OCTβ-R class is subdivided into 

several subclasses, which are pharmacologically different 

from each other.144

The OCT/TYR-R or TYR-R class of receptors has 

structural and pharmacological similarities with vertebrate 

α2-adrenergic receptors.149 Depending on the preference 

of the agonist, these receptors can be stimulated by both 

tyramine and OCT. The activation of OCT/TYR-R or TYR-R 

in response to tyramine is coupled with inhibitory G protein 

that inhibits adenylyl cyclase, reducing intracellular cAMP 

levels.132,133,139,140,148 However, receptor activation in response 

to OCT is coupled with an increase in intracellular Ca2+ 

release.135,136 Later on, Cazzamali et al cloned a gene (CG7431) 

from D. melanogaster and expressed it in  Chinese hamster 

ovary cells or Xenopus oocytes.150 This group reported that 

the expressed receptor encodes a protein that is specifically 

activated by tyramine, implying that it may belong to a new 

family of tyraminergic receptors.150 In addition to CG7431, 

this group identified three more homologous genes (one from 

D. melanogaster (CG16766), and two tyramine-like recep-

tor genes in the genomic databases (from the mosquito A. 

gambiae and the honeybee A. mellifera), and reported that 

all four tyramine-like receptors are phylogenetically distinct 

from the previously identified insect OCT/TYR-R or TYR-R 

class of receptors.150

Huang et al cloned a cDNA from the nerve tissue of the 

Bombyx mori silk worm and expressed it in HEK-293 cells.151 

This gene encodes a receptor protein (BmTAR2), which has 

considerably higher affinity for tyramine than other biogenic 

amines. BmTAR2 shows a tyramine-induced dose-dependent 

increase in intracellular Ca2+ levels (EC
50

 11.6 nM), whereas 

OCT and dopamine increase intracellular Ca2+ levels only at 

high concentrations (.100 mM). The selective coupling to 

intracellular Ca2+ mobilization but no effect on intracellular 

cAMP concentration suggests that BmTAR2 may also belong 

to a new family of tyraminergic receptors.151 These findings 

favor a revision in the new receptor classification of Evans and 

Maqueira (Figure 4B),149 by adding another subclass in the 

tyraminergic class of receptors as shown in Figure 4C.150,151

Furthermore, the author has created a phylogenetic tree 

based on the comparison of 25 complete nucleotide sequences 

of insect octopaminergic and tyraminergic receptor genes by 

using the “Muscle” sequence alignment program.153–155 Based 

on nucleotide sequence homology in the phylogenetic tree, 

insect octopaminergic receptor sequences from the moth M. 

sexta (MsOA),146 D. melanogaster (OAMB)137 and splice vari-

ants (DmOA1A, and DmOA1B),143 A. mellifera (AmOA1),138 

P. americana (PaOA1),142 B. mori (BmOAR1),145 and 

locust Schistocerca gregaria (SgOctαR)26 cluster together 

in the Octα-R class, whereas S. gregaria (SgOctβR),26 B. 

mori (BmOAR2),152 and D. melanogaster (DmOctβ1-R, 

DmOctβ2-R, DmOctβ3-R)144 fall into the Octβ-R class 

 (Figure 5). Tyraminergic receptor sequences from A. mellifera 

(Amtyr1),148 B. mori (BmTAR1),140  Heliothis virescens 
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(HvTA),134 Agrotis ipsilon (Aityr/OCT),141 Locusta migra-

toria (Lmtyr1),139 and the cattle tick Boophilus microplus 

(BmiTA)147 fall into the Tyr1-R subclass. However, B. mori 

(BmTAR2),151 D. melanogaster (DmTA1 or Tyr-Dro),132 D. 

melanogaster (DmTA2, DmCG7431, DmCG16766),150 A. 

mellifera (Amtyr-ike),150 and A. gambiae genome sequences 

(GPRNNA4)150 cluster together in the TYR2-R subclass 

(Figure 5). This phylogenetic tree further supports applica-

bility of the new Evans and Maqueira classification scheme, 

except that there are two subclasses in the tyraminergic 

receptor class.

Collectively, based on information obtained from phar-

macological and functional studies of expressed receptor pro-

teins and phylogenetic tree analysis of nucleotide sequences, 

it is logical to accept revision of the new receptor classifica-

tion by including an additional subclass in the tyraminergic 

class of insect receptors.

Structural and function  
of octopaminergic and  
tyraminergic receptors
Similar to adrenergic receptors in mammals, insect octo-

paminergic and tyraminergic receptors belong to the 

superfamily of G protein-coupled receptors, which share a 

structural motif of seven transmembrane domains (TM 1-7) 

to mediate signal transduction in response to an agonist.156–160 

The N-terminus (NH
2
) of biogenic amine receptors is located 
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Figure 5 Phylogenetic tree comparison of insect octopaminergic and tyraminergic receptors with respect to the new classification proposed by Evans and Maqueira.149 
Notes: Nucleotide sequences were aligned with Muscle (v3.7). After alignment, ambiguous regions containing gaps and/or poorly aligned were removed. The phylogenetic 
tree was constructed using the maximum likelihood method implemented in the PhyML program. The model (HKY85, statistical test aLRT) was used assuming an estimated 
proportion of invariant sites (of 0.057) and four gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape parameter was 
estimated directly from the data (gamma 0.789), and the reliability for the internal branch was assessed using the aLRT test.153–155 NCBI Databank accession number of genes 
sequences: AmOA1, AJ547798; DmOAMB, AF065443; DmOA1A, AJ007618; DmOA1B, AJ007617; PaOA1, AY333178; BmOAR1, AB255163; MsOA, DQ840514; SgOctα, 
GU237482; SgOctβ, GU237483; BmOAR2, AB470228; DmOctβ1, AJ880687; DmOctβ2, AJ880689; DmOctβ3, NM_001038954; Amtyr1, AJ245824; Aityr/Oct, FJ640850; 
BmiTA, AJ010743; HvTA, X95606; Lmtyr (gcr1), X69520; BmTAR1, NM_001044039; DmTA1 (Tyr-Dro), X54794; DmTA2, AY03417; BmTAR2, AB462481; Dm(CG7431), 
NM_142395; Dm(CG16766), NM_142394; Amtyr-like, NM_001037318; and the genome of the malaria mosquito Ag(GPRNNA4), XM_309588).
Abbreviations: Am, Apis mellifera; Dm, Drosophila melanogaster; Pa, Periplaneta americana; Ms, Manduca sexta; Sg, Schistocerca gregaria; Bm, Bombyx mori; Hv, Heliothis virescens; Ai, 
Agrotis ipsilon; Bm, Bophilus microplus; Lm, Locusta migratoria; Ag, Anopheles gambiae; NCBI, National Center for Biotechnology Information; OCT, octopamine; TYR, tyramine.
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extracellularly and the C-terminus (COOH) intracellularly. 

The N-terminal domain often contains several consensus 

sites for N-linked glycosylation.156,161 The TM 1-7 in G 

protein-coupled receptors is linked by three extracellular 

loops (EL-1 to EL-3) and three intracellular (IL-1 to IL-3) 

loops. The signature residues, such as an aspartate (D) 

residue in TM3, serine (S) residues in TM5, and a pheny-

lalanine (F) residue in TM6, are conserved in all biogenic 

amine receptors and contribute to ligand binding.156–160 The 

α-adrenergic-like OCTα-R class of receptors is coupled to 

both G
s
 and G

q
 proteins, inducing release of the intracellular 

second messengers, cAMP and Ca2+. A point mutation study 

performed in BmOAR1, the α-adrenergic-like OCT receptor, 

has reported that residues such as D103 in TM3, S198 in 

TM5, and tyrosine (Y) in TM6 are involved in OCT bind-

ing and activation of this receptor through electrostatic or 

hydrogen bond interactions, but S202 does not participate in 

this process.162 The wild-type BmOAR1 exhibits significant 

stereoselectivity for OCT enantiomers in cAMP production 

and binding affinity, but not in the Ca2+ signaling response.163 

However, Y to F mutation (Y412F) in BmOAR1 abolishes 

discrimination between OCT enantiomers in binding affinity 

and does not evoke any cAMP signaling response, suggesting 

that Y412 may act as a molecular switch to regulate distinct 

G protein or multiple G protein couplings.163

Other amino acids that maintain the structure and function 

of G protein-coupled receptors include: a chain of aspartate, 

arginine, and tyrosine at the cytoplasmic interface of TM3, 

which is involved in receptor coupling to G protein; two 

cysteines, one in EL-1 and the other in EL-2, which are 

involved in forming the disulfide bridge that stabilizes the 

receptor; and 1–3 cysteine (C) residues in the cytoplasmic 

tail which may be involved in post-translational modification 

of receptors with long-chain fatty acids.158,160,164 The insertion 

of palmitic acid (a 16C saturated fatty acid) occurs at one or 

more cysteine residues on the intracellular side of G protein-

coupled receptors in the plasma membrane through a thioester 

linkage, and this post-translational modification is known 

as protein palmitoylation.165 The thioester bond formed 

between the palmitate and the cysteine is cleavable, so the 

palmitoylation state of a receptor can be used to regulate its 

activity.166 It has been reported that, in rare cases, other lipids 

can also be attached to G protein-coupled receptors, allowing 

palmitoylation to occur on residues other than cysteine.167 It 

is likely that, similar to many G protein-coupled receptors, 

most insect octopaminergic and tyraminergic receptors 

may undergo palmitoylation, but the enzymatic mechanism 

involved in palmitoylation remains elusive.

The conserved serine residues in TM5 of adrenergic 

receptors are believed to interact with the hydroxyl groups 

of the catecholamine ring to produce hydrogen bonding.168,169 

These residues are separated by intervening amino acid 

residues.170 A multiple sequence alignment of insect octo-

paminergic and tyraminergic receptor sequences produced by 

ClustalW (2.0.12)171 shows that the conserved serine residues 

in TM5 are separated by a chain of alanine, leucine, and gly-

cine in the Octα-R class. Similar to the OCTα-R class, sepa-

ration is achieved by three intervening amino acid residues 

in the TYR2-R class but the leucine residue in the alanine-

leucine-glycine chain is replaced with methionine (Figure 6). 

In contrast, two serine residues are separated by either one 

or two intervening amino acids in the OCTβ-R and TYR1-R 

classes (Figure 6). Such differences in the amino acid chain 

and in the number of intervening residues may depend on the 

variation in agonist binding affinity with different receptor 

subtypes due to coupling capacities with second messenger 

systems via different G proteins (G
s,
 G

i
, and G

q
) involving 

different signaling enzymes such as adenylyl cyclase, protein 

kinase C, and phospholipase C.160,170

Octopamine and tyramine-
mediated signaling
Similar to other biogenic amines, octopamine and tyramine 

signaling is mediated through binding to distinct receptors that 

belong to a family of metabotropic G protein-coupled recep-

tors (Figure 7). The second messengers include Ca2+, cAMP, 

inositol-1,4,5-trisphosphate, and diacylglycerol, depending 

on species, tissue source, receptor type, and cell line used 

for the expression of cloned receptor.117,160 The interaction 

of octopamine with OCTα class of receptors (OCTα-R) 

is coupled with an increase in intracellular Ca2+ levels as 

well as a relatively small increase in levels of intracellular 

cAMP in response to octopamine (Figure 7).117,137,138,142,143 

The ligand binding to Octα-R class is coupled with activa-

tion of phospholipase C via the G
q
 family of G proteins.117,137 

Phospholipase C enzyme hydrolyzes phosphatidylinositol 

4,5-bisphosphate into inositol 1,4,5-trisphosphate and 

diacylglycerol. Inositol 1,4,5-trisphosphate binding to its 

receptor in the endoplasmic reticulum results in the opening 

of Ca2+ channels, allowing Ca2+ release into the cytoplasm. 

 Diacylglycerol and Ca2+ activate protein kinase C which 

regulates the physiological response by phosphorylating 

various signaling proteins and ion channels. However, the 

activation of Octα-R by octopamine stimulates adenylyl 

cyclase via the stimulatory G proteins (G
s
), inducing the 

production of intracellular cAMP levels, in turn stimulating 
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protein kinase A.117,137,138,142,143 The activation of Octβ-R class 

in response to octopamine (Figure 7) increases levels of intra-

cellular cAMP levels but not intracellular Ca2+ levels even 

at concentrations up to 100 µM.147,149 Furthermore, tyramine 

and dopamine exert marginal effects on cAMP production. 

Both protein kinase C and protein kinase A influence cellular 

response by phosphorylating different signaling proteins, ion 

channels, and transcription factors.

The activation of TYR1-R class in response to tyramine, 

with preference to tyramine . octopamine, inhibits 

adenylyl cyclase activity via coupling to inhibitory G pro-

teins, inducing a decrease in intracellular cAMP levels 

(Figure 7).134,139,141,145,148 However, in other preparations, 

octopamine is more or equally as effective as tyramine in 

increasing intracellular Ca2+ release.135,136 These findings sug-

gest that cloned receptors when expressed in different cell lines 

may be coupled with multiple effector pathways  involving 

different G proteins.117 The TYR2-R class is specifically 

activated by tyramine, but not by other biogenic amines.150,151 

The TYR2-R class is selectively coupled with activation of 

phospholipase C via the G
q
 family of G proteins and induces 

intracellular Ca2+ mobilization (Figure 7), but shows no effect 

on intracellular cAMP concentration.150,151 Expression of the 

TYR2-R class predominantly in the nervous tissue of insects 

suggests that tyramine may act as a neurotransmitter and 

neuromodulator, and that these effects may be mediated by 

binding to the TYR2 class of receptors.151

Collectively, octopamine and tyramine exert differential 

effects on insect behavior through the release of second mes-

sengers (Ca2+, cAMP, and diacylglycerol).95,172–174 In addition 

to being a precursor of octopamine, tyramine is an indepen-

dent transmitter. This suggestion is not only based on the 

labeling of tyraminergic neurons in the insect central nervous 

system, but also on the presence and release of tyramine from 

PaOA1 WICELTNDAGYVVYSALGSFYLPMLVMLFFYWRIYRAAVQTTRAINQGFRTTKGS----- 253

SgOctα WTCELTNDTGYVLYSALGSFYLPMLVMLFFYWRIYRAAVRTTHAINQGFRTTRG------ 240

MsOA WTCELTNDAGYVVYSALGSFYIPMFVMLFFYWRIYKAAVRTTKAINQGFRTTKG------ 234

AmOA1 WICELTNDAGYVVYSALGSFYIPMLVMLFFYWRIYNAAVSTTKAINQGFRTTKSS----- 291

DmOA1A/OAMB  WKCELTNDRGYVLYSALGSFYIPMFVMLFFYWRIYRAAVRTTRAINQGFKTTKGSP---- 340

DmOA1B WKCELTNDRGYVLYSALGSFYIPMFVMLFFYWRIYRAAVRTTRAINQGFKTTKGS----- 339

BmOAR1 WTCELTNDAGYVVYSALGSFYIPMFVMLFFYWRIYKAAVRTTKAINQGFRTTKGR--G-L 240
DmTA2 -ECRYNQNEGYVIFSAMGSFFIPMAVMIYVYARISCVIASRHDNMTDISVHNKKFKRYT- 323

Dm(CG7431) -ECRYNQNEGYVIFSAMGSFFIPMAVMIYVYARISCVIASRHDNMTDISVHNKKFKRYT- 323

BmTAR2 -VCRYNQNPGYVVFSAMGSFFLPMAVMVYVYARISCVVARRHHQLASSTKCSKKDK---- 269

Ag(GPRNNA4) YECHYNQNKGYVVFSAMGSFFIPMTVMLYVYSKICCVLTSRQNRMTKTEATEKNCDIEV- 275

Amtyr-like -KCSYNMDSSYVIFSAMGSFFLPMLVMLYVYGRISCVIASRHRNLEATESENVRPR---- 243

Dm(CG16766) VDCRYNQNKGYVVFSAMGSFFIPLTVMLYVYVKIGYVLTSRRQRIVRDAYSERTADYDVD 284
BmTAR1 -PCRLTSQPGFVIFSSSGSFYIPLVIMTVVYFEIYLATKKRLRDRAKATKISTIS---SG 260
Aityr/oct -PCRLTSQPGFVIFSSSGSFYIPLVIMTVVYFEIYLATKKRLRDRAKATKISTIS---SG 258
HvTA -PCRLTSQPGFVIFSSSGSFYIPLVIMTVVYFEIYLATKKRLRDRAKATKISTIS---SG 258
Amtyr1 -PCQLTRRQGYVIYSSLGSFFIPLLLMSLVYLEIYLATRRRLRERARQSRIN-------A 238
Lmtyr -PCQLTEEQGYVIYSSLGSFFIPLFIMTIVYVEIFIATKRRLRERAKASKLNSAMKQQMA 260
DmTA1 -PCELTSQRGYVIYSSLGSFFIPLAIMTIVYIEIFVATRRRLRERARANKLNTIALKSTE 318
BmiTA -PCRLTQETGYVLYSASGSFFIPLLIMSIVYLKIFLATRRRLRERANAAAKVPSS----- 261

SgOctβ DLCEFKVNKWYVVVSSLISFWIPCTIMIFTYLAIFREANRQEKQLHSRIGNAMLMN---- 221

DmOctβ2 TQCSFVVNKYYAVISSSISFWIPCTIMIFTYLAIFREANRQEKQLMMRHGNAMLM----- 362

BmOAR2 DQCEFKVNKPYAVISSSISFWIPCTIMIFTYLAIFKEANRQEKALHARAGNAMLM----- 242

DmOctβ1 HICEFKVNKAYAIVSSSMSFWIPGIVMLSMYYRIYQEADRQERLVYRSKVAALLL----- 316

DmOctβ3 DQCSFVVNKAYALISSSVSFWIPGIVMLVMYWRIFKEAIRQ------------------- 335

*       :.: *:  **::*  :*   *  *                          
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Figure 6 Amino acid sequence alignment of homologous domains present in insect octopaminergic and tyraminergic receptors.
Notes: Multiple sequence alignment of 25 insect amino acid sequences was produced by Clustalw (2.0.12).169 NCBI Databank accession number of translated gene product: 
AmOA1, AJ547798; DmOAMB, AF065443; splice variant 1A DmOA1A, AJ007618; splice variant 1B DmOA1B, AJ007617; PaOA1, AY333178; MsOA, ABI33825; SgOctα, 
ADD91574; BmOAR1, AB255163; SgOctβ, ADD91575); BmOAR2, AB470228; DmOctβ1R, Q9vCZ3; DmOctβ2R, Q4 LBB9; DmOctβ3R, Q4 LLBB6; DmTA1, CAA38565; 
TAR1, AB162828; HvTA, CAA64864; DmTA1, X54794; Amtyr1, AJ245824; Aityr/OCT, FJ640850; BmiTA, AJ010743; Lmtyr, X69520; DmTA2, AY034617; Dm(CG16766), 
NM_142394; Dm(CG7431), NM_142395; BmTAR2, AB462481; Amtyr-like, NM_001037318; and Ag(GPRNNA4), XM_309588. Amino acid residues with an asterisk (*) 
correspond to fully conserved region. Amino acid residues with a symbol (:) correspond to amino acid residues in similar groups. Amino acid residues with a symbol (.) 
correspond to semiconserved substitution (similar shapes). Amino acid numbers are shown at the right. The intervening amino acids in TM5 domain between two conserved 
serine residues are shown in color. Two serine residues are separated by ALG in OCTα-R; AMG in TYR2-R; G, or LG in TYR1-R; and I, M, v, or LI in OCTβ-R class. Amino 
acid residues: serine (S), alanine (A), leucine (L), glycine (G), methionine (M), isoleucine (I), and valine (v).
Abbreviations: Am, Apis mellifera; Dm, Drosophila melanogaster; Pa, Periplaneta americana; Ms, Manduca sexta; Sg, Schistocerca gregaria; Bm, Bombyx mori; Hv, Heliothis virescens; Ai, 
Agrotis ipsilon; Bm, Bophilus microplus; Lm, Locusta migratoria; Ag, Anopheles gambiae; NCBI, National Center for Biotechnology Information; OCT, octopamine; TYR, tyramine.
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neurons, removal of tyramine from the synaptic cleft by the 

uptake system, and the action of tyramine on specific post-

synaptic receptors in the nervous tissue. Release and uptake 

of tyramine in insects may modulate many physiological and 

behavioral changes related to insect behaviors.151,175,176

Conclusion
Octopamine is widely distributed in the insect nervous 

system. It affects several aspects of insect physiology and 

behavior by acting as a neurotransmitter, a neuromodulator, 

and a neurohormone. The octopaminergic system of insects 

(invertebrates) and noradrenergic system of vertebrates are 

homologous. However, octopaminergic and noradrenergic 

systems seem to be restricted to invertebrate and verte-

brate physiology, respectively. Octopamine is released by 

octopaminergic neurons. The binding of octopamine to 

octopaminergic receptors is coupled with the activation 

of specific G proteins, which leads to transient changes in 

concentrations of intracellular second messengers. Further 

advances in molecular dissection and detailed analysis of 

octopaminergic signaling in insect nervous systems by using 

reverse molecular genetic techniques (RNA interference), 

DNA microarrays, and comparison of genome sequencing in 

more insects may aid in elucidating the molecular mechanism 

underlying octopamine-mediated physiological processes 

and behavioral changes in insects. The existence of distinct 
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tyraminergic neurons and receptors in the insect nervous 

system indicate that tyramine can also act as an independent 

transmitter, at least in insects. It will be interesting to inves-

tigate the TYR2 receptor class further as soon as genome 

sequences become available for other insects. Greater phar-

macological and functional screening of octopaminergic and 

tyraminergic receptors may also aid in developing specific, 

potent, and efficacious agonists and antagonists, which may 

be important when developing specific insecticides.
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