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Abstract: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, accounting for 85% of all cases, with a poor
5-year survival rate of less than 20%. The majority of NSCLC patients are diagnosed at an advanced stage, contributing to the low
survival rate. Platinum-based chemotherapy, including cisplatin and carboplatin, remains the cornerstone of treatment for advanced
NSCLC. However, DNA repair mechanisms often hinder treatment efficacy, notably Base Excision Repair (BER), mediated by the
X-ray Repair Cross Complementing 1 (XRCC1) protein. This review aims to investigate the role of XRCC/ polymorphisms in
platinum resistance, focusing on their impact on DNA repair efficiency. XRCC1’s involvement in the BER pathway is critical for
repairing DNA damage caused by platinum agents, and polymorphisms in XRCCI have been linked to altered repair capacity,
influencing clinical outcomes and resistance to platinum-based chemotherapy in NSCLC patients.
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Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer worldwide, comprising approximately
85% of all reported cases.'? Globally, the 5-year survival rate for NSCLC is less than 20%.> Most NSCLC patients are
diagnosed at an advanced stage (70%), contributing to the low overall survival rate.*® Although local data from
Indonesia are limited, this pattern reflects universal challenges in managing NSCLC across populations. Platinum-
based chemotherapy, such as cisplatin and carboplatin, remains the mainstay of treatment for advanced NSCLC.””’
Platinum compounds enter cancer cells via passive transport mediated by Copper Transporter 1 (CTR1)'® and direct
passive diffusion across the cell membrane,'' then damage DNA. However, the efficacy of platinum agents is often
hampered by resistance caused by DNA repair mechanisms such as Base Excision Repair (BER).'?

The BER pathway, mediated by the XRCCI1 protein, plays a critical role in repairing DNA damage and ensuring the
survival of cancer cells.'> XRCC]1 coordinates repair by recruiting DNA glycosylase, AP-1 enzyme (APE-1), Poly (ADP-
ribose) polymerase 1 (PARP-1), DNA polymerase Beta (Pol-B), and DNA Ligase IIT (LIG-3) to the site of damage.'*"?
Genetic variations in XRCC1 can affect protein functionality and DNA repair capacity, thereby affecting the efficacy of
platinum chemotherapy. Polymorphisms on XRCC1, such as rs1799782 and rs25487, have been associated with different
therapeutic responses, making them candidate biomarkers for predicting treatment outcomes.'*'>

Based on data from PharmGKB, the level of evidence for the rs25487 variant is at level 2B (a combination of variant-
drug with moderate evidence supporting the association) in the efficacy of platinum compounds,'® while the 151799782
variant is at level 3.'” Global data shows that the frequency of the XRCCI variant allele is around 20%,'®'" so it is
anticipated that variant alleles with a similar frequency (>20%) are also present in the Indonesian population.”® This
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article aims to comprehensively examine the impact of XRCC1 gene polymorphism on the outcomes of platinum-based
therapy in influencing DNA repair capacity. Variants of XRCC1 such as rs25487, rs1799782, and rs25489 are associated
with diverse clinical outcomes, including chemotherapy response, toxicity profiles, and overall survival (OS) progres-
sion-free survival (PFS) rates. Consequently, the review further evaluates the clinical implications and future directions
of NSCLC treatment, investigating the potential of precision medicine in disease management. This article aims to
comprehensively review the role of XRCC1 polymorphisms in platinum resistance and their potential application in the
precision medicine of NSCLC.

Platinum Therapy in NSCLC

Platinum-based chemotherapy is the frontline treatment option for NSCLC patients, particularly those with Epidermal
Growth Factor Receptor (EGFR) and Anaplastic Lymphoma Kinase (4LK) negative tumor mutations.” ° Platinum
inhibits Deoxyribonucleic Acid (DNA) replication in the nucleus, providing a practical cytotoxic effect on cancer
cells.?’*? At the molecular level, platinum agents form DNA adducts, either mono-adducts or intra- or interstrand
adducts. These interactions involve covalent bonds that cause DNA lesions and cross-links between DNA strands,
inhibiting cancer cell replication. Accumulation of DNA damage occurs in the G2/M phase, which ultimately triggers
apoptosis of cancer cells.”® Platinum agents such as cisplatin and carboplatin show similar mechanisms of action.
Cisplatin, with two amine groups (-NH3) and two chloride atoms (Cl), and carboplatin, with a 1,l1-cyclobutane
dicarboxylate (CBDCA) ring, undergo hydrolysis reactions in the cell cytoplasm. This reaction replaces the Cl™ atom
or CBDCA ring with a water molecule (H,0O), making platinum agents highly reactive. Platinum binds to the nitrogen
atom (N) at position N7 in the DNA’s purine ring (adenine and guanine). This bond causes DNA damage, inhibits DNA
synthesis, and ultimately triggers apoptosis.”*?

NSCLC cancer cells generally show sensitivity to platinum agents due to their tendency to have high proliferation
rates and often inefficient DNA repair mechanisms.”® This makes them susceptible to platinum-induced DNA damage.
However, the use of platinum agents faces several limitations. In addition to high levels of toxicity that can affect
patients’ quality of life, platinum’s effectiveness often decreases over time.>” One of the main resistance mechanisms is
the activation of DNA repair pathways, especially the BER pathway. The BER pathway allows cancer cells to repair
DNA damage caused by platinum agents, thereby reducing the cytotoxic effects of these agents.

Base Excision Repair (BER) Pathway
The BER pathway is a type of DNA repair activated in response to minor problems such as base damage due to
oxidation, deamination, or alkylation.”® DNA repair is essential for repairing errors during DNA replication or damage
caused by radiation, chemicals, or metabolic byproducts. In normal cells, this DNA repair helps protect and maintain the
integrity of the genetic material.>>** However, in cancer cells, this pathway may provide a selective advantage by helping
cancer cells repair DNA damage induced by platinum-based therapies, thereby increasing resistance to chemotherapy.
The BER process begins with the identification of DNA lesions by DNA glycosylases, such as Human 8-oxo guanine
DNA glycosylase 1 (hOGG1), which removes the damaged nucleotide base, leaving behind an apurinic/apyrimidine site
(AP site). Next, the APE-1 cleaves the DNA strand near the AP site, creating a gap with a free phosphate group at the 5’
end and a hydroxyl group at the 3’ end.*' Next, DNA POL-B fills the DNA gap created by APE-1. POL-p exhibits dual
enzymatic activities: deoxyribose phosphodiesterase (dRPase) activity removes the residual sugar-phosphate group at the
5’ end of the DNA gap, and DNA polymerase activity adds a new nucleotide at the 3* end, elongating the DNA strand
and repairing the missing gap. After filling the gap, LIG-3 closes the DNA gap by forming a phosphodiester bond
between the 3’-OH and 5’-phosphate ends. LIG-3 works in a complex with XRCCI1. Throughout the BER process,
XRCCI acts as a scaffolding protein that regulates enzyme interactions and ensures that repair occurs quickly and
accurately.’’

XRCCI Protein: Role, Mechanisms, and Interaction
XRCC1 is a protein encoded by the XRCCI gene, functioning as a key organizer in the BER pathway.*>** Deficiency or
absence of this protein can result in inefficient DNA repair, accumulation of DNA damage, and increased risk of various
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diseases.***> XRCC1 works with PARP-1 to coordinate subsequent steps in the repair process, including the activities of
POL-B and LIG-3. PARP-1 is an essential enzyme for detecting DNA damage, especially single-strand breaks (SSBs).*
Upon recognizing damage, PARP-1 initiates ADP-ribosylation, marking the site of damage with the PARP-1 chain. This
serves as a recruitment signal for DNA repair proteins, including XRCCI1. PARP-1 activation facilitates chromatin
relaxation around the damage site, allowing XRCC1 and other enzymes to access the damaged DNA.**~7

In addition to aiding recruitment, XRCC1 prevents excessive PARP-1 activity, which can lead to DNA structural
entrapment during repair and trigger additional damage.?” The interaction between XRCC1 and PARP-1 is critical for
XRCCI1 function during BER. Loss of PARP-1 function can impair XRCC1 recruitment, while XRCC1 deficiency can
result in excessive PARP-1 activity, leading to an imbalance in the BER pathway.?’ Early in the repair process, XRCC1
interacts with hOGG1 and APE-1 at unstructured junctional regions.’® This interaction ensures the transfer of DNA
substrates from hOGG1 (which generates AP sites) to APE1 (which cleaves AP sites to continue the repair process). This
coordination is critical for efficiency and avoids the formation of toxic intermediates that can cause additional DNA
damage.** XRCC1 also interacts with DNA by binding to its ends at SSB sites, stabilizing POL-B during the gap-filling
step, and supporting LIG-3 in rejoining DNA strands. Its ability to physically interact with the enzymes involved (such as
hOGG1, APEI1, POL-B, and LIG-3) makes it a key component in regulating DNA repair (Figure 1).>** XRCC1
dysfunction or genetic mutations affecting this protein have been associated with resistance to platinum-based therapy in
NSCLC.

XRCCI Variants

As previously explained, the presence of the XRCC1 protein is the key to the success of the BER pathway DNA repair
process. Deficiency or absence of this protein will disrupt the DNA repair process. The XRCCI1 protein is encoded by the
XRCCI gene, which is located on chromosome 19q13.2. This gene consists of 17 exons that encode a protein consisting
of 633 amino acids*' and has three main domains: the N-terminal domain (NTD) that interacts with Pol-B,** the BRCT1
domain involved in interactions with PARP-1 and DNA,31’40 and the BRCT2 domain that interacts with LIG-3.** In
addition, the linker region facilitates interactions with proteins such as hOGG1 and APE-1.*
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Figure | Mechanism of Platinum-Induced DNA Damage and BER Pathways in Cancer Cells. (A) Platinum (Pt) enters cells through passive diffusion and CTR|-mediated
transport, causing DNA damage. Repair mechanisms, including base excision repair (BER) and nucleotide excision repair (NER), address single-strand breaks (SSBs) and
double-strand breaks (DSBs). Persistent DNA damage leads to apoptosis. (B) BER Pathway Mechanism: DNA glycosylase removes damaged bases in BER, creating an AP site
cleaved by APE-1. XRCCI orchestrates repair by recruiting Polf, LIG-3, and PARP-1, restoring DNA integrity after SSBs.
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Studies on XRCC! polymorphisms indicate that this genetic variation can affect DNA repair capacity. Previous
studies have mainly focused on three SNP variants: rs25487, rs1799782, and rs25489. In the rs25487 variant, the
polymorphism occurs in exon 10 at codon 399, which is located in the BRCT1 domain region, the binding site for PARP-
1.*1%* The presence of polymorphism in this region produces a missense variant characterized by a base change from
guanine (G) to adenine (A), leading to the substitution of the amino acid arginine (Arg) for glutamine (GIn).***® These
changes may affect the interaction between XRCCI1 and the PARP-1 enzyme. This interaction begins with transferring
a covalent bond from the nicotinamide adenine dinucleotide (NAD+) molecule to the ADP-ribose polymer chain by the
PARP enzyme. The bond formation involves the amine group (-NHs) of arginine and the polymer chain of ADP-ribose.*’
Furthermore, this interaction induces PARP-1 activation at the DNA strand break site, facilitates damage recognition, and
participates in the repair process.*® The rs25487 variant, which replaces arginine with glutamine, reduces the reactivity of
the amine group (-NH;3) on the glutamine residue to ADP-ribose. As a result, covalent bond formation is disrupted,
dimming the interaction between XRCC1 and PARP-1. This reduced interaction hurts DNA repair capacity.®’ Studies
have reported similar findings confirming that decreased XRCC1-PAPR-1 interaction correlates with reduced DNA repair
efficiency.”’

Another polymorphism, namely the rs1799782 variant, occurs in exon six at codon 194,*' and also has a missense
variation due to a base change from cytosine (C) to thymine (T); this leads to the replacement of arginine (Arg) with
tryptophan (Trp) within the unstructured linker region. This substitution disrupts the interaction of XRCC1 with hOGG1,
which is important for recruiting XRCC1 to sites of oxidative DNA damage (such as 8-0x0G).*® In addition, this variant
has been reported to fail to recruit LIG-3 to the BER site, potentially interfering with subsequent steps of DNA repair.*®
Besides rs1799782, another variation in the unstructured linker region is rs25489, located in exon nine at codon 280.4
This variant involves a base substitution from guanine (G) to adenine (A), resulting in arginine (Arg) being substituted
for histidine (His).*' This region serves as the interaction site between XRCC1 and the APE-1 enzyme. Since
XRCCI1 has no enzymatic or catalytic activity, its interaction with other proteins, such as APE-1, relies entirely on
direct physical interactions. This polymorphism affects the affinity of XRCC1 for APE-1, with amino acid changes,
resulting in decreased XRCC1 binding affinity and the ability to interact with the APE-1 protein.*® Overall, all three
polymorphism variations lead to a decrease or reduction in the interaction of XRCC1 with enzymes involved in DNA
repair, which ultimately reduces the capacity of the BER pathway DNA repair and is associated with resistance and
increased toxicity of platinum-based chemotherapy in NSCLC patients (Figure 2). In addition to the above variants, there
is a variant of rs3213239 insertion/deletion type whose data is still very limited (Table 1).%

XRCCI Polymorphism to The Clinical Outcomes of Platinum-Based Chemotherapy in
NSCLC

XRCCI1 protein plays an essential role in enhancing DNA repair capacity in the BER pathway, which is responsible for
repairing DNA damage caused by oxidative stress and alkylating agents, including platinum-based drugs such as
cisplatin and carboplatin. Genetic variations in XRCCI, such as at positions Argl94Trp, Arg280His, or Arg399Gin,
can alter the efficiency of the DNA repair process, affecting the accumulation of DNA damage in cells. This accumula-
tion determines the effectiveness of therapy in inducing cancer cell death and can also affect toxicity to normal tissues.?®
Therefore, understanding the impact of XRCC/ polymorphisms is essential for predicting clinical outcomes, including
response rate to treatment, toxicity, overall survival, and progression-free survival in lung cancer patients (Table 2).

Responses

XRCCI gene polymorphisms have been extensively studied to determine their effect on platinum-based chemotherapy
response in NSCLC patients across populations. For example, a study in Bangladesh showed that patients with the Arg/Gln
(G/A) variant or GIn/Gln (A/A) variant had a better therapeutic response to platinum-based chemotherapy (OR =2.40; 95%
CI = 1.21-4.76; p = 0.012).”" Similar results were found in studies of South Korean and Chinese populations, where the
Gln/Gln (A/A) variant was associated with a higher response rate.'>> 3%’ However, these results are not uniform across
populations. Studies in Greek and Spanish populations did not find a significant association between the rs25487 variant and
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Figure 2 XRCCI coding region. XRCC| interacts with several proteins participating in DNA repair processes, such as DNA polymerase beta (Polf), Human 8-oxoguanine DNA
glycosylase | (hOGGI), and AP endonuclease | (APEI). NTD: N-Terminal Domain; NLS: Nuclear Localization Signal; BRCT1/2: BRCA| Carboxy-terminal domain. (A) Polymorphism
of XRCC! Arg399GIn. The amino acid change from Arg to Gln can disrupt DNA repair capacity. (B) Polymorphism of XRCCI Argl94Trp and Arg280His in Linker | region.

response to platinum-based chemotherapy.’®>® In contrast, other studies reported that the GIn/Gln variant decreased the
response to platinum therapy in NSCLC patients.'*>” These differences in results are likely due to different genetic
frequency distributions in each population and other factors such as sample size and genetic background.?*~>>®

Table | Polymorphism on XRCCI Genes

Genes | dbSNP Alleles Types Reference

XRCCI | rs25487 G- A Missense [14,29,51-64]
rsl799782 | C—>T Missense [15,50,54,55,58,59,61,65,66]
rs25489 G—-A Missense [50,55,59,61]
Rs3213239 | GGCCGGCCG — GGCCG | Insertion/Deletion | [50]
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Table 2 The Study of XRCCI Polymorphisms on Clinical Response to Platinum-Based Chemotherapy in NSCLC Patients

No significant association.

No significant association.

No. | Study Year | Country | Sample Polymorphism Result and Conclusion
Size
Genotyping SNPs Mutation Outcomes Statistic Value
Method
| Tiwari et al®® 2022 India 52 PCR-RFLP rs25487 G>A Variants AA and GA+AA have been associated | OR= 16.33; 95% Cl= 2.66—100.26; p= 0.003
with significant hematological toxicity. and OR: 5.20; 95% Cl= 1.15-23.83; p= 0.031
2 Bushra et al®' 2020 | Bangladesh 285 PCR-RFLP rs25487 G>A Variants AA and GA+AA have been associated OR= 2.40; 95% Cl= 1.21-4.76; p= 0.012
with significantly better response. p= 0.008; p= 0.010; p= 0.025; and p= 0.002
Variants AA and GA+AA have been associated
with significant hematological toxicity.
3 Dong et al*’ 2018 China 152 PCR MALDI- rs25487 G>A No significant association was found with p= 0.180
TOF response.
4 Bu et al** 2016 China 141 PCR-RFLP rs25487 G>A Variant AA has been associated with OR= 2.71; 95% Cl= 1.13-10.08; p= 0.0l
rs1799782 C>T significantly better response. p=0.34
No significant association.
5 Liu et al*® 2015 China 322 PCR-RFLP rs25487 G>A Variant AA has been associated with OR= 3.37; 95% Cl= 1.44-8.53; p= 0.002
rs1799782 C>T significantly better response. HR= 0.53; 95% Cl= 0.31-0.91; p= 0.0l and
Variants AA and GA have been associated with HR= 0.39; 95% Cl= 0.18-0.83; p= 0.006
a significantly decreased risk of death. p= 0.09
No significant association.
6 Powro‘zek 2015 Polandia 55 PCR rs25487 A>G A-allele has been associated with significantly OR= 0.22; 95% Cl= 0.06-0.82; p= 0.018
et al®’ lower hematological toxicity after 4th cycle.
7 Zhao et al*® 2015 China 206 PCR-RFLP rs25487 G>A No significant association. OR= 3.23; 95% CI= 1.20-9.30; p= 0.01 and
rs1799782 C>T Variant TT has been associated with HR= 0.05; 95% Cl= 0.01-0.18; p= <0.001
rs25489 G>A significantly better response and lower risk of
death.
No significant association.
8 Jin et al®® 2014 China 378 PCR-RFLP rs25487 G>A Variant AA has been significant association OR= 2.27; 95% CI= 1.64-6.97; p= <0.05; and
rs1799782 C>T with a better response and longer Disease- HR= 0.47; 95% CI= 0.22-0.82; p= <0.05; and
rs25489 G>A Free Survival (DFS) and Overall Survival (OS). HR= 0.52; 95% Cl= 0.31-0.96; p= <0.05
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9 Peng et al®® 2014 China 235 PCR-CTTP rs25487 G>A Variant GA or AA has been a significantly OR= 1.852; 95% Cl= 1.019-3.363, p=0.029
higher of grade 3—4 hematologic toxicity and and adjusted OR= 2.135; 95% Cl=
increased risk of hematology toxicity. 1.207-3.777; p=0.009
10 Sullivan et al®® | 2014 Spain 161 RT-PCR rs25487 G>A No significant association. p= 0.482
rs1799782 C>T No significant association. p= 0.467
rs25489 G>A No significant association. p=0.125
I Zhang et al'® 2014 China 375 PCR rs25487 G>A Variant AA has been a significant association OR=1.97; 95% Cl= 1.05-3.84; p= <0.05 and
rs1799782 C>T with a better response and lower risk of HR= 0.55; 95% Cl= 0.23-0.94
death. p=0.78
No significant association.
12 Lee et al*’ 2013 South 382 PCR-RFLP rs25487 G>A Variant AA has been a significant association OR= 3.92; 95% Cl= 1.37-11.21; p= 0.0l
Korea with a worse response.
13 Tiseo et al®® 2013 Italy 110 RT-PCR rs25487 G>A Variant AA has been a significant association HR= 0.47; ClI 95%= 0.23-0.95; p=0.036
with an increased OS.
14 Zhao et al*? 2013 China 147 RT-PCR rs25487 G>A Variant AA+AG has been a significant OR= 2.35; 95% CI= 1.11-5.00
association with a better response.
15 Ke et al®® 2012 China 460 PCR-CTTP rs25487 G>A Variant AA has been a significant longer HR= 0.42; 95% CI=0.21-0.82
rs1799782 C>T survival time and lowered the risk of death. HR= 0.45; 95% Cl= 0.23-0.87
Variant TT has a significantly decreased risk of
death.
16 Li et al' 2012 China 89 PCR rs25487 G>A Variant GG has a higher response rate than OR= 4.81; 95% Cl= 1.778-13.013; p= 0.002
A allele.
17 Dong et al”® 2011 China 568 TagMan rs25487 G>A Variant AA has been significantly associated HR= 1.66; 95% Cl= 1.08-2.55
with death.
18 Liu et al®® 2011 China 199 PCR-RFLP rs3213245 T>C No significant association (OS and PFS). p= 0.399 and p= 0.763
19 Zhou et al*’ 2011 China 116 PCR rs25487 G>A Variant GG has a higher response rate than p= 0.005
GA+AA.
20 Yuan et al®' 2010 China 199 PCR-RFLP rs25487 G>A No significant association.
rs1799782 C>T No significant association.
rs25489 G>A No significant association.

(Continued)
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Table 2 (Continued).

No. | Study Year | Country | Sample Polymorphism Result and Conclusion
Size
Genotyping SNPs Mutation Outcomes Statistic Value
Method
21 Kalikaki et al®® | 2009 Yunani 119 PCR-RFLP rs25487 G>A Variant AA has been a significantly associated HR= 3.1; 95% Cl= 1.4-6.8; p= 0.005
with OS. p=0.66
No significant association found with a better
response.
22 | Sunetal*® 2009 China 82 RT-PCR rs25487 G>A No significant association. p= 0.997
rs1799782 C>T Variant CC has been a significantly associated p=0.035
with better response.
23 Yao et al”' 2009 China 108 PCR-RFLP rs25487 G>A No significant association. p= 0.50
24 Wang et al” 2008 China 116 PCR-RFLP rs25487 G>A Variant GA+AA have been significantly OR= 2.05; 95% CI= 1.02—4.10; p= 0.04 and
rs1799782 C>T associated with overall grade toxicity and OR= 2.53; 95% Cl= 1.06—6.03; p= 0.03
increased risk of grade 3 or 4 gastrointestinal p= 0.64
toxicity.
No significant association.
25 Gianchio 2007 Italy 203 PCR-RFLP rs25487 G>A Variant A/A had a significant association with HR= 0.46; ClI 95%= 0.22-0.98
et al®?

better survival in patients with grade toxicity
(3 or 4).
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Meta-analysis and bioinformatics provide additional insights. A meta-analysis concluded that the rs25487 variant had
no significant association with response to platinum-based chemotherapy.”* Bioinformatics analysis also showed that the
rs25487 variant was predicted to be “benign” and did not significantly interfere with protein function. In contrast, the
rs1799782 variant showed a low sorting intolerant from tolerant (SIFT) score (0.01-0.04), indicating a detrimental
impact on XRCC1 protein function.”

In the rs1799782 variant, patients with the Trp/Trp (T/T) variant were significantly associated with a better response
(OR = 3.23; 95% CI = 1.20-9.30; p = 0.01).>” A meta-analysis reported polymorphisms in the rs1799782 variant
identified from 1145 among 2926 lung cancer patients, stating that patients with the Arg/Trp (C/T) and Trp/Trp (T/T)
variants tended to have a good response (OR, 2.54; 95% CI, 1.95-3.31; p = 0.590).”* This was confirmed by seven
studies including 1208 patients in the Asian population, where the Arg/Arg (C/C) genotype was associated with a worse
response in those receiving platinum-based chemotherapy (OR = 0.55; 95% CI: 0.36-0.84; p = 0.013).”* Furthermore, the
results of an analysis comparing 2228 NSCLC patients from nine studies reported a preference for the T allele variant in
achieving a complete or partial response (OR = 1.38; 95% CI: 1.16-1.65; p < 0.001; 12 = 25.5%).”” A possible
mechanism to explain how the rs1799782 variant can protect platinum resistance is the disruption of the interaction
between XRCC1 and enzymes involved in repair.*®

Toxicities

Platinum-based chemotherapy, such as cisplatin and carboplatin, is known to have high toxicity.”® Cisplatin often causes
emesis, nephrotoxicity, and neurotoxicity. Meanwhile, carboplatin is more likely to cause hematological toxicity due to
its myelosuppressive effects.””’® A study of the XRCC rs25487 polymorphism reported that this variant could be used
as a predictive factor for platinum-based chemotherapy toxicity, such as grade 3 and 4 anemia (p = 0.008), neutropenia (p
= 0.010), thrombocytopenia (p = 0.025), along with gastrointestinal toxicity (p = 0.002).>" Another study reported that
the GIn/Gln (A/A) variant carries a 16-fold higher risk (OR: 16.33, 95% CI: 2.66—-100.26, P = 0.003).°® Adjusted logistic
regression analysis gender, age, smoking status, disease stage, histopathology, Eastern Cooperative Oncology Group
(ECOQG) stage, and chemotherapy regimen showed a significantly higher incidence of grade 3—4 hematologic toxicity in
those with Arg/Gln (G/A) or GIn/Gln (A/A) variants.®® Decreased DNA repair activity in XRCC/ variants is believed to
be the primary cause of this increased toxicity. Platinum-based chemotherapy damages DNA, both in cancer and healthy
cells. The inability to repair DNA damage in normal cells can exacerbate the side effects experienced by patients.”®

Overall Survival (OS) and Progression-Free Survival (PFS)
DNA repair capacity in the BER pathway is critical in maintaining genome stability. Under normal conditions, low BER
capacity increases the risk of cancer development due to the inability to repair DNA damage, resulting in cellular
mutations that can drive tumor growth. Conversely, high BER capacity makes tumor cells more resistant to DNA-based
therapies like platinum-based chemotherapy.®

Several studies have linked XRCC! polymorphisms to survival in NSCLC patients.'>*>3%>% For example, the
rs25487 polymorphism was reported to prolong OS and decrease the risk of death in patients with the Gln/Gln (A/A) or
Arg/Gln (G/A) genotypes.” These results are consistent with previous studies showing that the rs25487 polymorphism
prolongs OS and reduces the risk of death in NSCLC patients.'>> Similar results were found in the rs1799782
polymorphism, where patients with the Trp/Trp (T/T) variant showed a lower risk of death and longer OS.*®

The difference in outcomes based on ethnicity is also highlighted. In the Asian population, Gln/Gln (A/A) variant in
rs25487 was associated with better OS and PFS (Hazard Ratio (HR) = 0.65; 95% CI 0.43-0.98 and HR = 0.67; 95% CI
0.40-0.94), whereas in the Caucasian population, the same variant was associated with worse outcome (HR = 2.29; 95%
CI 1.25-3.33).”* Furthermore, the Trp/Trp (T/T) variant in rs1799782 polymorphism contributed to longer OS in NSCLC
patients (HR = 0.63, p = 0.013).”> Yuan et al (2010) conducted a haplotype study for the rs1799782, rs25487, and
rs25489 variants in the Chinese population, the results of which showed that the Trp/Arg/Arg (T/G/G) haplotype has the
potential to protect against death (OS) compared to the reference (Arg/Arg/Arg).®!
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Challenges and Limitations
Clinical implementation of XRCC! polymorphism research results faces several challenges. Genetic testing and interpretation
complexity is a significant obstacle, especially in diverse populations. Variability in the reporting of genetic data can lead to
differences in interpretation, thus affecting treatment decisions.”*’” Further investigation in the broader population is needed to
reduce bias and develop universally accepted clinical guidelines. In addition, integrating XRCC1 genotyping into clinical practice
requires training for healthcare workers, especially in oncology, to ensure accurate and meaningful genetic interpretation.
Logistical factors, such as the availability of sophisticated genetic testing facilities, also pose challenges to widespread adoption.®’
Regarding the cost perspective, the expenses associated with genetic testing pose a significant barrier. Therefore, it is
essential to consider the financial implications for healthcare institutions and patients, as genetic testing may not always
be covered by insurance or accessible to individuals with limited reports. Addressing the cost-effectiveness of XRCCl1
genotyping is crucial to ensuring equitable access to this precision method. Furthermore, ethical considerations are
necessary because patient consent, privacy, and the responsible use of genetic information are essential. Clear protocols
for obtaining informed consent and safeguarding patient data must be established to uphold ethical standards.

Conclusion

In conclusion, this review shows the significance of XRCC/ polymorphism in influencing treatment outcomes among NSCLC
patients receiving platinum-based chemotherapy. Understanding genetic variations in XRCC! offers potential for precision
treatment methods. However, challenges related to genetic testing complexity, interpretation, cost, and ethical considerations
must be addressed to maximize the clinical utility of XRCC1 genotyping. The potential of targeted therapies designed explicitly
for XRCC1 variants presents an exciting avenue for improving treatment efficacy and outcomes in NSCLC patients.
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