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Background: COVID-19 exhibits complex pathophysiological manifestations, characterized by significant clinical and biological 
heterogeneity. Identifying phenotypes may enhance our understanding of the disease’s diverse trajectories, benefiting clinical practice 
and trials.
Methods: This study included adult patients with COVID-19 from Xinhua Hospital, affiliated with Shanghai Jiao Tong University 
School of Medicine, between December 15, 2022, and February 15, 2023. The k-prototypes clustering method was employed using 50 
clinical variables to identify phenotypes. Machine learning algorithms were then applied to select key classifier variables for phenotype 
recognition.
Results: A total of 1376 patients met the inclusion criteria. K-prototypes clustering revealed two distinct subphenotypes: Hypo- 
inflammatory subphenotype (824 [59.9%]) and Hyper-inflammatory subphenotype (552 [40.1%]). Patients in Hypo-inflammatory 
subphenotype were younger, predominantly female, with low mortality and shorter hospital stays. In contrast, Hyper-inflammatory 
subphenotype patients were older, predominantly male, exhibiting a hyperinflammatory state with higher mortality and rates of organ 
dysfunction. The AdaBoost model performed best for subphenotype prediction (Accuracy: 0.975, Precision: 0.968, Recall: 0.976, F1: 
0.972, AUROC: 0.975). “CRP”, “IL-2R”, “D-dimer”, “ST2”, “BUN”, “NT-proBNP”, “neutrophil percentage”, and “lymphocyte 
count” were identified as the top-ranked variables in the AdaBoost model.
Conclusion: This analysis identified two phenotypes based on COVID-19 symptoms and comorbidities. These phenotypes can be 
accurately recognized using machine learning models, with the AdaBoost model being optimal for predicting in-hospital mortality. The 
variables “CRP”, “IL-2R”, “D-dimer”, “ST2”, “BUN”, “NT-proBNP”, “neutrophil percentage”, and “lymphocyte count” play 
a significant role in the prediction of subphenotypes. Use the identified subphenotypes for risk stratification in clinical practice. Hyper- 
inflammatory subphenotypes can be closely monitored, and preventive measures such as early admission to the intensive care unit or 
prophylactic anticoagulation can be taken.
Keywords: COVID-19, subphenotypes, K-prototypes clustering, machine learning, mortality prediction

Introduction
Coronavirus disease 2019 (COVID-19), a global public health crisis, continues to pose challenges despite the imple-
mentation of preventive measures. This highly contagious viral infection has rapidly spread worldwide, raising sig-
nificant health concerns.1 As of March 12, 2024, there have been 704 million confirmed COVID-19 cases globally, 
resulting in 7 million reported deaths. On December 7, 2022, the Chinese government introduced the New 10 epidemic 
prevention policy, effectively ending the dynamic zero-COVID strategy.2 This change triggered a new wave of the 
omicron variant, leading to a sudden increase in disease burden that presents substantial challenges to clinical practice.
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Since the early stages of the global COVID-19 pandemic caused by the SARS-CoV-2 virus, a wide range of clinical 
outcomes has been observed, from asymptomatic cases and mild manifestations to critical instances and fatal respiratory 
failure.3,4 The mortality rate of COVID-19 varies, and treatment responses differ significantly.5 These disparities 
underscore the clinical and biological heterogeneity of COVID-19. Certain patient characteristics are associated with 
more severe disease and worse outcomes, including older age, male gender, diabetes mellitus (DM), cardiovascular 
disease, chronic obstructive pulmonary disease (COPD), and chronic kidney disease. Additionally, patients exhibiting 
a high inflammatory response may face an increased risk of death.

Phenotypes have been identified within heterogeneous diseases and are linked to significant prognostic and ther-
apeutic implications.6–9 Various studies have proposed different phenotypes of COVID-19.10–15 However, most research 
on COVID-19 has been conducted during the early stages of the epidemic. Throughout the pandemic, the virus has 
frequently mutated during widespread transmission, leading to gene recombination when different subtypes infect 
individuals.16,17 These genetic mutations or recombination can alter the biological characteristics of the virus and affect 
the entire pathophysiological process.

The primary objective of this study is to employ unsupervised clustering methods to identify distinct clinical 
phenotypes and to establish a supervised prediction model applicable to available admission datasets. The secondary 
objective is to evaluate factors independently associated with COVID-19 mortality. This research aims to enhance 
understanding of the clinical phenotypes of COVID-19 during a critical period, identify factors influencing prognosis, 
distinguish characteristics of the current viral infection process, and provide evidence-based guidance for subsequent 
treatment and early identification of key risk factors.

Clustering in medicine brings multiple benefits. In precision medicine, it refines disease sub-typing via multi-omics 
for personalized treatments. In public health, it exposes infectious disease trends for resource optimization. In clinics, it 
improves imaging diagnosis, mental health disorder classification and intervention evaluation, showing great potential in 
medical care.

K-prototypes clustering is an unsupervised machine learning method that effectively identifies clusters in hetero-
geneous data.18 This approach excels at integrating both continuous and categorical variables deemed clinically 
relevant.19 In this study, we employ consensus k-prototypes clustering to derive phenotypes and assess phenotype 
reproducibility using agglomerative hierarchical clustering.

Materials and Methods
Patients Screening
The study included clinical data from COVID-19 patients hospitalized at Xinhua Hospital, Shanghai Jiao Tong 
University, between December 15, 2022, and January 15, 2023. Inclusion criteria comprised a positive nucleic acid or 
antigen test, hospitalization requirement, and 51 clinical data. Exclusion criteria included hospitalization for non- 
respiratory issues, incomplete treatment or voluntary discharge, and age under 18.

Clinical Variables for Clustering
The features correlated with the clinical course and outcomes of COVID-19 were carefully considered. Data collection 
encompassed 51 characteristics, including age, sex, comorbidities (such as congestive heart failure, chronic pulmonary 
disease, rheumatic disease, renal disease, liver disease, and diabetes), the Charlson Comorbidity Index (CCI), length of 
stay (LOS), and various inflammatory markers (eg C-reactive protein [CRP], neutrophil count [NE-num], neutrophil 
percentage [Ne-per], lymphocyte count [Ly-num], monocyte count [Mo-num], interleukin-8 [IL-8], interleukin-1β [IL- 
1β], interleukin-6 [IL-6], interleukin-10 [IL-10], tumor necrosis factor-alpha [TNF-α], interleukin-2 receptor [IL-2R], and 
growth stimulation expressed gene 2 [ST2]). Hepatic markers included total protein (TP), albumin (ALB), total bilirubin 
(tBil), alanine transaminase (ALT), and gamma-glutamyl transferase (GGT). Renal markers included blood urea nitrogen 
(BUN), creatinine (Crea), chloride (Cl), sodium (Na), and potassium (K). Cardiovascular markers comprised troponin 
I (TnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase-MB (CK-MB), and myoglobin (Myo). 
Hematologic markers included red blood cell (RBC) count, red blood cell distribution width (RDW), platelet count 
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(PLT), and platelet distribution width (PDW). Coagulation markers encompassed prothrombin time (PT), activated partial 
thromboplastin time (APTT), fibrinogen (Fib), thrombin time (TT), and D-dimer (DD). Lipid metabolism markers 
included apolipoprotein E (APOE), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), triglycerides 
(TG), and apolipoprotein A (Apo-a). Laboratory values, age, gender, and comorbidities were used to generate sub-
phenotypes. Both the median and interquartile range (IQR) of all laboratory values for each patient during admission 
were utilized as features. Features with more than 30% missing data were excluded from the analysis.

Data Pre-Processing and Subphenotype Generation
The k-prototypes algorithm enhances k-means clustering by accommodating both numerical and categorical variables. It 
calculates distances for each variable independently before summing them to obtain the overall sample distance, 
effectively integrating k-means into mixed-data analysis. We applied the k-prototypes method to identify the optimal 
number of clusters in our dataset. Initially, we assessed missingness and variable correlations, employing the k-nearest 
neighbor method (the R package: DMwR2, https://cran.r-project.org/web/packages/DMwR2/) to address and fill the 
missing data. Continuous variables were standardized, and the optimal number of phenotypes was determined using the 
k-prototypes method (the python package: KPrototypes, https://github.com/nicodv/kmodes), guided by the elbow method 
and Silhouette value. To validate the k-prototypes results, we conducted agglomerative hierarchical clustering (the 
R package: NbClust, https://cran.r-project.org/web/packages/NbClust/) based on continuous clinical variables, using 
the Ward linkage criterion for hierarchy construction.

Heatmaps and Chord Diagrams Represent the Distribution of Variables in 
Subphenotypes
We visualized the distribution patterns of variables across different subphenotypes using chord diagrams and heatmaps, 
organizing variables into comorbidities and system- or organ-related data. Chord diagrams were generated to illustrate 
chronic comorbidities by subphenotype (the R package: Circlize, https://cran.r-project.org/web/packages/circlize/). 
Heatmaps displayed the distribution differences of the variables relative to the complete derivation of subphenotypes, 
with red indicating higher values and blue indicating lower values.

Machine Learning Algorithms Predict Subphenotype Classification
We were constructing a predictive model for identifying phenotypes using various machine learning algorithms, 
including the extreme gradient boosting model (XGBoost), gradient boosting model (GBM), light gradient boosting 
model (LGBM), AdaBoost, decision tree model, logistic regression model, naive Bayes model, and support vector 
machine (SVM). SHAP values were employed to identify the most important classifier variables (the python package: 
xgboost, sklearn.ensemble.GradientBoostingClassifier, lightgbm.LGBMClassifier, sklearn.ensemble.AdaBoostClassifier, 
sklearn.tree, sklearn.linear_model.LogisticRegression, sklearn.naive_bayes.GaussianNB, sklearn.svm).

Statistical Analysis
The train_test_split function from the sklearn.model_selection module was used to proportionally divide the data into test and 
validation sets. The accuracy_score, precision_score, recall_score, roc_auc_score, and f1_score functions from the sklearn. 
metrics module were employed to calculate accuracy, precision, recall, AUC, and F1 score, respectively. Continuous variables 
are reported as medians with interquartile ranges (IQR), while categorical variables are expressed as counts and percentages. 
Categorical variables were compared using the Pearson χ²-test or Fisher’s exact test, whereas continuous variables were 
analyzed using the Mann–Whitney U-test (R version 4.2.1 “Funny-Looking Kid”, sklearn module with python version 3.9.7).

Results
Patient Screening, Data Preprocessing, and Baseline Information
A total of 1376 patients aged 18 years or older with confirmed COVID-19 infection, verified by nucleic acid testing 
during hospitalization at Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, were 
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included in the study from December 15, 2022, to January 15, 2023 (Figure 1). We excluded variables with a missing rate 
greater than 30% and those that were highly correlated (r > 0.8; see Supplementary Material for correlation matrix). 
Ultimately, we included 50 variables: 2 demographic markers, 39 relevant laboratory markers (comprising 12 inflam-
matory markers, 4 hepatic markers, 5 renal markers, 4 cardiovascular markers, 4 hematologic markers, 5 coagulation 
markers, and 5 lipid markers), 8 indicators of complications, length of hospitalization, and hospital mortality. The 
K-nearest neighbors (KNN) method was used to impute missing values in the variables.

The baseline profiles of the patients are presented in Table 1. Significant differences were observed in demographic 
indicators and comorbidities, including chronic heart failure, chronic lung disease, renal disease, diabetes mellitus, tumor 
presence, and CCI, between the survival and non-survival groups. All inflammatory markers, except for the monocyte 
count, differed between the groups. Significant differences were also found in hepatic, cardiovascular, and renal markers, 
particularly in urea nitrogen, creatinine, and blood potassium levels. Hematologic markers, such as red blood cells, 
platelets, and platelet distribution width, showed significant differences. Most coagulation markers, except for APTT, and 
lipid markers, except for triglycerides, also varied significantly between the groups. Moreover, a significant difference in 
the length of hospitalization was observed between the survival and non-survival groups.The non-survival group 
exhibited significantly higher levels of inflammatory factors (IL-8, IL-1β, IL-6, IL-10, TNF-α, IL-2R, ST2) and lower 
lymphocyte counts. This group also showed worse nutritional status (Alb) and more severe nutrient depletion, as 

Figure 1 Flowchart showing the exclusion and enrolment of COVID- 19 patients, subphenotype derivation and model development and performance by machine learning 
method. Xinhua hospital: Xinhua Hospital Affiliated to Shanghai Jiao Tong University. 
Abbreviation: AUROC, Area Under the Receiver Operating Characteristic curve.
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Table 1 Baseline Characteristics of All Individuals

Overall 
(N=1376)

Survival 
(N=1224)

Non-Survival 
(N=152)

p.value

Demographics
Age(years) 72.00 [64.00, 81.00] 70.00 [62.00, 79.00] 81.00 [75.00, 89.00] <0.0001

Gender (%) 837 (60.83) 726 (59.31) 111 (73.03) 0.0015

Comorbidities, n (%)
Congestive heart failure 307 (22.31) 216 (17.65) 91 (59.87) <0.0001

Chronic pulmonary disease 164 (11.92) 143 (11.68) 21 (13.82) 0.5269

Rheumatic disease 19 (1.38) 17 (1.39) 2 (1.32) 1
Renal disease 221 (16.06) 169 (13.81) 52 (34.21) <0.0001

Liver disease 303 (22.02) 278 (22.71) 25 (16.45) 0.0981

Diabetes 436 (31.69) 373 (30.47) 63 (41.45) 0.008
Tumor 199 (14.46) 188 (15.36) 11 (7.24) 0.0104

Charlson comorbidity index 5.00 [4.00, 7.00] 5.00 [4.00, 7.00] 6.00 [5.00, 8.00] <0.0001

Inflammatory markers
C-reactive protein(mg/L) 15.00 [2.00, 56.00] 10.00 [2.00, 43.00] 75.50 [33.75, 130.25] <0.0001

Neutrophil percent(%) 75.00 [65.47, 83.73] 73.65 [64.47, 81.53] 88.90 [79.77, 92.82] <0.0001

Neutrophil number (× 109/L) 4.76 [3.26, 7.10] 4.57 [3.18, 6.63] 7.64 [4.75, 12.08] <0.0001
Lymphocyte number (× 109/L) 0.98 [0.60, 1.44] 1.05 [0.67, 1.50] 0.53 [0.34, 0.87] <0.0001

Monocyte number (× 109/L) 0.46 [0.33, 0.63] 0.46 [0.34, 0.63] 0.44 [0.30, 0.67] 0.2466
Interleukin 8 (pg/mL) 23.60 [14.90, 42.55] 21.80 [14.10, 36.18] 51.72 [35.18, 103.00] <0.0001

Interleukin 1β (pg/mL) 5.00 [5.00, 10.40] 5.00 [5.00, 9.36] 11.72 [5.12, 21.60] <0.0001

Interleukin 6 (pg/mL) 7.09 [2.90, 18.30] 6.06 [2.65, 14.53] 27.30 [12.45, 71.30] <0.0001
Interleukin 10 (pg/mL) 5.00 [5.00, 5.88] 5.00 [5.00, 5.00] 8.64 [5.00, 15.18] <0.0001

TNF-α (pg/mL) 13.00 [9.30, 19.22] 12.50 [9.01, 18.00] 20.30 [14.50, 31.10] <0.0001

Interleukin 2R (U/mL) 734.0 [489.75, 1094.25] 678.5 [467.00, 1012.12] 1328.5 [919.00, 1919.25] <0.0001
ST2 (ng/mL) 48.60 [26.03, 86.72] 42.88 [24.01, 72.48] 118.82 [82.83, 165.95] <0.0001

Hepatic markers
Albumin (g/L) 34.70 [31.10, 38.00] 35.10 [31.70, 38.30] 31.25 [28.20, 34.23] <0.0001
Total bilirubin (U/L) 9.50 [6.90, 13.20] 9.50 [6.80, 12.90] 10.85 [6.90, 17.30] 0.0193

Alanine transaminase (U/L) 21.00 [15.00, 33.00] 21.00 [15.00, 31.21] 25.00 [18.00, 40.00] 0.0004

GGT(U/L) 29.00 [20.00, 49.00] 29.00 [20.00, 49.00] 35.00 [22.00, 53.25] 0.0293
Renal markers

Urea nitrogen (mmol/L) 6.70 [5.00, 9.78] 6.24 [5.00, 8.76] 12.00 [8.00, 19.00] <0.0001

Creatinine (μmol/L) 69.60 [55.00, 95.00] 68.00 [54.00, 89.00] 96.00 [68.45, 174.20] <0.0001
Sodium (mmol/L) 137 [134, 140] 137.00 [134, 140] 136.3 [131.93, 140.05] 0.1344

Potassium (mmol/L) 3.80 [3.50, 4.10] 3.80 [3.50, 4.10] 3.90 [3.60, 4.30] 0.0034

Chloride (mmol/L) 103.00 [99.00, 107.00] 103.00 [99.47, 106.80] 103.00 [98.75, 108.00] 0.7862
Cardiovascular markers

Creatine kinase MB (ng/mL) 2.69 [1.40, 5.00] 2.50 [1.30, 4.82] 5.15 [2.30, 8.12] <0.0001

Troponin I (ng/mL) 0.01 [0.01, 0.05] 0.01 [0.01, 0.05] 0.05 [0.02, 0.16] <0.0001
Myoglobin (ng/mL) 49.00 [28.02, 102.75] 43.76 [26.37, 84.53] 182.35 [69.33, 475.75] <0.0001

NT-probnp (pg/mL) 362.77 [99.40, 1283.69] 280.26 [88.99, 994.31] 1951.36 [704.47, 5118.17] <0.0001

Hematologic markers
RBC (× 109/L) 3.99 [3.56, 4.40] 4.00 [3.58, 4.40] 3.80 [3.31, 4.40] 0.0406

RDW (%) 13.30 [12.80, 14.20] 13.30 [12.70, 14.20] 13.40 [12.90, 14.50] 0.1068

Platelet count (× 109/L) 195.00 [148.00, 248.25] 199.00 [152.00, 252.00] 161.50 [120.50, 217.50] <0.0001
PDW (%) 16.40 [16.00, 16.80] 16.30 [16.00, 16.78] 16.54 [16.20, 17.00] 0.0021

(Continued)
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indicated by elevated urea nitrogen and creatinine levels. Additionally, there was a more pronounced elevation of 
D-dimers and a higher prevalence of cardiovascular, renal, and diabetic comorbidities. The overall baseline character-
istics of all individuals were displayed in Table 1.

The Study Population Can Be Divided Into Two Subphenotypes
The results of the previous section indicate that patients who succumbed to COVID-19 infection exhibited a more 
pronounced inflammatory response and higher consumption compared to surviving patients. Based on this observa-
tion and informed by data distribution and clinical experience, we hypothesized the presence of distinct subpheno-
types among COVID-19 patients with markedly different characteristics. To further explore the presence of 
clinically heterogeneous subphenotypes within the COVID-19-infected population included in this study and to 
determine the optimal number of subphenotypes, we employed the K-prototype method, an adaptation of K-means, 
for subgrouping.

All variables, except for the length of hospitalization and survival outcomes, were included in the classification 
reference category. Continuous variables were normalized using the Python scale function, while factor variables were 
converted to boolean types and then incorporated into the model for classification. The number of clusters k was varied 
from 2 to 9, during which cost values and silhouette scores were computed. A line graph was plotted (Figure 2) to 
identify the optimal number of subphenotypes (k).

The inflection point in the elbow diagram (Figure 2a) appears at k=3, indicating that clustering tends to form in either 
2 or 3 clusters. Additionally, the Silhouette diagram (Figure 2b) shows the highest Silhouette score occurring with 2 
clusters. Considering these factors, the optimal number of subphenotypes for this study population is 2.

Hyperinflammatory Phenotype Vs Hypoinflammatory Phenotype
Based on the previous validation using the elbow method and Silhouette diagram, clustering into two phenotypes was 
identified as the optimal solution. The overall characteristics of the patients after clustering were displayed in Table 2, 

Table 1 (Continued). 

Overall 
(N=1376)

Survival 
(N=1224)

Non-Survival 
(N=152)

p.value

Coagulation markers
Prothrombin time (s) 11.50 [10.90, 12.50] 11.50 [10.80, 12.40] 12.50 [11.40, 13.45] <0.0001
APTT (s) 30.10 [27.70, 32.70] 30.00 [27.70, 32.60] 30.70 [27.73, 33.73] 0.0915

Fibrinogen (g/L) 3.80 [3.14, 4.55] 3.75 [3.11, 4.43] 4.25 [3.42, 5.03] <0.0001

Thrombin time (s) 14.10 [13.20, 15.20] 14.00 [13.20, 15.10] 14.60 [13.57, 16.12] <0.0001
D-dimer (mg/L) 0.93 [0.48, 1.76] 0.85 [0.44, 1.56] 1.80 [1.07, 6.24] <0.0001

Lipid metabolism
Apolipoprotein E (mg/dL) 3.30 [2.50, 4.20] 3.20 [2.49, 4.10] 4.10 [3.13, 5.20] <0.0001
LDLC (mmol/L) 2.28 [1.76, 2.84] 2.34 [1.82, 2.87] 1.93 [1.46, 2.41] <0.0001

HDLC (mmol/L) 0.96 [0.79, 1.15] 0.96 [0.80, 1.15] 0.93 [0.74, 1.11] 0.0361

Triglyceride (mmol/L) 1.16 [0.88, 1.54] 1.16 [0.88, 1.55] 1.16 [0.96, 1.47] 0.7243
Apo-a (mg/dL) 1.30 [1.10, 1.49] 1.31 [1.12, 1.52] 1.18 [0.99, 1.38] <0.0001

LOS (days) 10.00 [6.00, 17.00] 10.00 [6.00, 16.00] 12.00 [6.75, 21.00] 0.0085

Notes: Baseline characteristics of all individuals. All continuous variables are non-normally distributed, expressed as median[quartiles]. Factor variables 
were expressed as percentages. Continuous variables were analyzed using the Wilcoxon rank sum test, while factor variables were assessed with 
Pearson’s Chi-squared test. 
Abbreviations: TNF-α, tumor necrosis factor-α; ST2, growth stimulation expressed gene2; GGT, gamma-glutamyltransferase; RBC, red blood cell; 
RDW, red blood cell distribution width; PDW, platelet distribution width; APTT, activated partial thromboplastin time; LDL-C low-density lipoprotein 
cholesterol; HDL-C, high-density lipoprotein cholesterol; Apo-a, apolipoprotein A; LOS, length of stay.
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while differences in continuous variables were illustrated in the heat map (Figure 3). Variations in comorbidity factor 
variables were depicted in the chord diagram (Figure 4). Differences in 60-day survival between subphenotypes were 
presented in the survival curves (Figure 5).

Figure 2 Elbow diagram and Silhouette plot of k-prototype model. (a). The inflection point of the elbow diagram is at the 2 categorizations, indicating that the 2 
categorization is the best classification. (b). The Silhouette plot shows that the Silhouette value is maximum at 2 categorizations, indicating that 2 categorization is the best 
categorization.

Table 2 Identified Subphenotype Characteristics

Subphenotype I 
N = 824

Subphenotype II 
N = 552

p-value

Demographics
Age 68 [59, 75] 78 [71, 86] <0.001
Gender (%) 451 (55) 386 (70) <0.001

Inflammatory markers
C-reactive protein(mg/L) 4 [1, 17] 57 [25, 104] <0.001
Neutrophil percent(%) 69 [61, 77] 83 [76, 90] <0.001

Neutrophil number (× 109/L) 4.2 [3.0, 5.8] 6.4 [4.0, 9.9] <0.001

Lymphocyte number (× 109/L) 1.24 [0.86, 1.68] 0.63 [0.42, 0.96] <0.001
Monocyte number (× 109/L) 0.46 [0.34, 0.61] 0.47 [0.32, 0.71] 0.4

Interleukin 8 (pg/mL) 19 [12, 29] 35 [22, 63] <0.001

Interleukin 1β (pg/mL) 5 [5, 7] 8 [5, 16] <0.001
Interleukin 6 (pg/mL) 4 [2, 10] 15 [7, 41] <0.001

Interleukin 10 (pg/mL) 5.0 [5.0, 5.0] 5.6 [5.0, 10.4] <0.001

TNF-α (pg/mL) 10 [8, 14] 19 [14, 26] <0.001
Interleukin 2R (U/mL) 545 [392, 752] 1134 870,1,601 <0.001

ST2 (ng/mL) 32 [19, 54] 80 [55, 125] <0.001

Cardiovascular markers
Creatine kinase MB (ng/mL) 2.2 [1.2, 4.7] 3.1 [1.8, 6.0] <0.001

Troponin I (ng/mL) 0.01 [0.00, 0.05] 0.03 [0.01, 0.07] <0.001

Myoglobin (ng/mL) 34 [22, 56] 103 [55, 239] <0.001
NT-probnp (pg/mL) 160 [62, 429] 1265 [476, 3,782] <0.001

Hepatic markers
Albumin (g/L) 36.6 [33.6, 39.3] 31.6 [28.6, 34.3] <0.001
Total bilirubin (U/L) 9 [7, 12] 11 [7, 16] <0.001

Alanine transaminase (U/L) 21 [15, 30] 23 [15, 37] <0.001

GGT(U/L) 28 [19, 44] 34 [22, 58] <0.001

(Continued)

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S504028                                                                                                                                                                                                                                                                                                                                                                                                   3015

Ji et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Subphenotype I (Hypoinflammatory)
This subphenotype comprised 824 patients (59.9%). Compared to the other subphenotype, it included a younger 
population (median age 68 years, IQR [59, 75]) and a higher proportion of female patients. These patients had 
a lower Charlson Comorbidity Index (median 5.0, IQR [3.0, 6.0]) and exhibited better clinical outcomes, including 
a lower mortality rate (N = 13, 1.6%) and a shorter hospital stay (median 8.0 days, IQR [5.0, 14.0]).

Subphenotype II (Hyperinflammatory)
This subphenotype comprised 552 patients (40.1%). Compared to Subphenotype I, it included a higher proportion of 
older patients (median age 78 years, IQR [71, 86]) and male patients (N = 386, 70%). Patients in Subphenotype II 
showed more abnormal clinical values across most variables, including elevated inflammatory markers (eg, 

Table 2 (Continued). 

Subphenotype I 
N = 824

Subphenotype II 
N = 552

p-value

Renal markers
Urea nitrogen (mmol/L) 6 [4, 7] 11 [7, 16] <0.001

Creatinine (μmol/L) 63 [51, 76] 95 [68, 158] <0.001

Sodium (mmol/L) 138.0 [135.0, 140.4] 136.0 [132.0, 139.0] <0.001
Potassium (mmol/L) 3.78 [3.50, 4.03] 3.87 [3.50, 4.30] <0.001

Chloride (mmol/L) 103.6 [100.0, 106.8] 103.0 [98.0, 107.0] 0.056

Hematologic markers
RBC (× 109/L) 4.12 [3.74, 4.49] 3.77 [3.27, 4.26] <0.001

RDW (%) 13.20 [12.70, 14.10] 13.40 [12.90, 14.50] <0.001

Platelet count (× 109/L) 204 [165, 253] 174 [127, 239] <0.001
PDW (%) 16.30 [15.90, 16.69] 16.50 [16.10, 17.00] <0.001

Coagulation markers
Prothrombin time (s) 11.30 [10.70, 12.00] 12.20 [11.30, 13.20] <0.001
APTT (s) 30.0 [27.7, 32.6] 30.2 [27.8, 33.2] 0.3

Fibrinogen (g/L) 3.53 [2.99, 4.16] 4.24 [3.50, 4.95] <0.001

Thrombin time (s) 13.80 [13.00, 14.80] 14.60 [13.50, 15.70] <0.001
D-dimer (mg/L) 0.65 [0.36, 1.09] 1.56 [0.94, 4.09] <0.001

Lipid metabolism
Apolipoprotein E (mg/dL) 3.26 [2.50, 4.13] 3.30 [2.60, 4.40] 0.1
LDLC (mmol/L) 2.51 [2.03, 3.05] 2.00 [1.53, 2.45] <0.001

HDLC (mmol/L) 1.02 [0.87, 1.21] 0.87 [0.70, 1.03] <0.001
Triglyceride (mmol/L) 1.19 [0.89, 1.58] 1.12 [0.87, 1.44] 0.009

Apo-a (mg/dL) 1.39 [1.23, 1.58] 1.14 [0.98, 1.30] <0.001

Comorbidities
Congestive Heart Failure (%) 93 (11) 214 (39) <0.001

Chronic Pulmonary Disease (%) 92 (11) 72 (13) 0.3

Rheumatic Disease (%) 7 (0.8) 12 (2.2) 0.039
Tumor (%) 163 (20) 36 (6.5) <0.001

Charlson Comorbidity Index 5.00 [3.00, 6.00] 6.00 [5.00, 8.00] <0.001

Clinical outcomes
LOS 8 [5, 14] 15 [9, 22] <0.001

Mortality (%) 13 (1.6) 139 (25) <0.001

Notes: Identified subphenotype characteristics. All continuous variables are non-normally distributed, 
expressed as median[quartiles]. Factor variables were expressed as percentages. Continuous variables were 
analyzed using the Wilcoxon rank sum test, while factor variables were assessed with Pearson’s Chi-squared 
test. 
Abbreviations: TNF-α, tumor necrosis factor-α; ST2, growth stimulation expressed gene2; GGT, gamma- 
glutamyltransferase; RBC, red blood cell; RDW, red blood cell distribution width; PDW, platelet distribution 
width; APTT, activated partial thromboplastin time; LDL-C low-density lipoprotein cholesterol; HDL-C, high- 
density lipoprotein cholesterol; Apo-a, apolipoprotein A; LOS, length of stay.

https://doi.org/10.2147/JIR.S504028                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 3016

Ji et al                                                                                                                                                                                 

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



C-reactive protein, neutrophil percentage, interleukin-6, interleukin-1β, tumor necrosis factor-α, interleukin-2 recep-
tor, growth stimulation expressed gene 2), the lowest lymphocyte counts, and abnormal cardiovascular markers (TnI, 
NT-proBNP, creatine kinase-MB, myoglobin).Markers for renal dysfunction (blood urea nitrogen, creatinine), 
hepatic function (total bilirubin, alanine transaminase, gamma-glutamyl transferase, albumin), hematologic para-
meters (red blood cell count, red blood cell distribution width, platelet count, platelet distribution width), and 
coagulation (D-dimer, fibrinogen) were significantly abnormal.The chronic comorbidity burden, as measured by the 
Charlson Comorbidity Index (median 15, IQR9,20), was higher than in Subphenotype I, with a greater incidence of 
congestive heart failure (N = 214, 39%), renal disease (N = 188, 34%), and diabetes (N = 234, 42%), but a lower 
incidence of chronic pulmonary disease (N = 72, 13%).In line with these characteristics, patients in Subphenotype II 
had worse clinical outcomes, including higher mortality (N = 139, 25%) and a longer hospital stay (median 15 days, 
IQR).9,20

The hyperinflammatory phenotype exhibits a significantly more intense inflammatory response, more pronounced 
cardiovascular damage, greater nutrient depletion, a higher risk of thrombosis, a greater burden of chronic comorbidities, 
higher mortality, and worse 60-day survival compared to the hypoinflammatory phenotype.

Hierarchical Clustering to Re-Validate the Clustering
To verify the validity and generalizability of the clustering results, the COVID-19 population in this study was re- 
clustered using the Hierarchical Clustering method. Agglomerative hierarchical clustering confirmed the statistical 
adequacy of the two-subphenotype model. This model categorized 785 patients (57.05%) into subphenotype I and 591 

Figure 3 Heatmap illustrating the distribution of continuous variables across subphenotypes.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S504028                                                                                                                                                                                                                                                                                                                                                                                                   3017

Ji et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Figure 4 Chord diagrams in the comorbidity burden among subphenotypes. 
Abbreviations: CHF, congestive heart failure; CPD, chronic pulmonary disease; RHD, rheumatic disease; RD, renal disease; LD, liver disease; DM, diabetes.

Figure 5 Kaplan–Meier (KM) plots depicting 60-day mortality across different subphenotypes.The survival probabilities were presented with a 95% confidence interval. The 
X-axis represents the number of days since COVID-19 confirmation, while the Y-axis indicates the survival probability.
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patients (42.95%) into subphenotype II. The rank plot of this new classification is presented in Figure 6. The clinical 
characteristics of the phenotypes derived from this method were comparable to those obtained from the k-prototypes. 
This consistency demonstrates the internal reliability of our data.

Machine Learning Approach to Predict Two Subphenotypes of COVID-19 Patients
A heterogeneous two-phenotype classification of COVID-19 patients was identified. To improve the clinical applic-
ability of this finding and identify the most influential metrics for the two-phenotyping, we employed eight machine 
learning methods: Adaboost, LightGBM, XGBoost, Gradient Boosting, Support Vector Machine (SVM), Logistic 
Regression, Decision Tree, and Naive Bayes. These models were employed not only to predict the two subphenotypes 
but also to rigorously identify and prioritize the variables that are most critical for distinguishing between the 
phenotypes.

A total of 48 non-outcome variables were included in the machine learning models, while in-hospital mortality was 
treated as a separate outcome variable. Table 3 presents the model performance evaluations, highlighting the Adaboost 
model as the top performer. The model achieved a precision of 0.975, an accuracy of 0.967, a recall of 0.976, and an F1 
score of 0.972. The variable importance and SHAP value rankings are illustrated in Figure 7.

Figure 6 The Dendrogram of agglomerative hierarchical cluster. Euclidean distance was calculated using continuous type variables for hierarchical cluster. The obtained 
clustering results and the clinical characteristics of the clusters are similar to those obtained by Kprototype.
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In the Adaboost model, the most significant contributors to prognosis were CRP (6.4%), DD (5.6%), IL-2R (5.2%), 
BUN (4.9%), ST2 (4.7%), NT-proBNP (4.6%), ly-num (4.5%), ne_per (4.2%), HDL-C (4.1%), Myo (3.9%), Crea 
(3.8%), IL-6 (3.5%), Apo-a (3.3%), and Alb (3.3%).

In summary, based on the machine learning results, CRP, D-dimer, and IL-2R ap-pear to be key predictors of the high 
inflammation phenotype, warranting closer attention in clinical practice.

Discussion
This study utilized comprehensive clinical data, including blood biomarkers and comorbidities at hospital admission, to derive 
the phenotypes of COVID-19 patients at Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, 

Table 3 Predictive Performance of Machine Learning Models

Model Accuracy Precision Recall F1 AUROC

Adaboost 0.975 0.968 0.976 0.972 0.975
Light gradient boost 0.960 0.952 0.959 0.955 0.960

XGboost 0.96 0.959 0.951 0.955 0.959

Gradient boost 0.957 0.944 0.959 0.952 0.957
SVM 0.928 0.964 0.87 0.915 0.922

Logistic Regression 0.917 0.955 0.854 0.901 0.91

Decision tree 0.862 0.897 0.78 0.835 0.854
Naive Bayes 0.837 0.882 0.732 0.800 0.827

Abbreviations: SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting.

Figure 7 Machine learning importance ranking and SHAP plot: (a) Prognostic importance ranking of COVID-19 patients in the Adaboost model; (b) SHAP values for each 
feature across all samples in the Adaboost model. 
Abbreviatoins: SHAP,SHapley Additive exPlanations; CRP, c-reactive protein; ne_num, neutrophil number; ly_num, lymphocyte number; IL-8, interleukin-8; IL-1β 
(interleukin-1β); IL-6 (interleukin-6); TNF-α, tumor necrosis factor; IL-2R, interleukin-2 receptor; ST2, growth stimulation expressed gene 2; DD, D-dimer; TnI, troponin 
(I); NT-proBNP N-terminal pro-brain natriuretic peptide; CK-MB creatine kinase-MB; Myo myoglobin; RDW, red blood cell distribution width; Apo-a, apolipoprotein (A); 
LDL-C low-density lipoprotein; HDL-C, high-density lipoprotein.
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using k-prototypes clustering, and validating with hierarchical clustering methods. Machine learning methods were employed 
to predict the contribution of variables to the formation of subphenotypes. Ultimately, COVID-19 patients are categorized into 
a hyperinflammatory phenotype, characterized by more severe conditions, higher mortality, and a poorer survival prognosis, 
and a hypoinflammatory phenotype, which exhibits relatively milder conditions, lower mortality, and a better prognosis. CRP, 
D-dimer, and IL-2R are crucial predictors in distinguishing between the two subgroups. The techniques employed in this study 
effectively captured the complex clinical and biological heterogeneity among COVID-19 patients. Notably, this study was the 
first to encompass a large cohort during the major COVID-19 outbreak in Shanghai. The clinical symptoms exhibited by 
COVID-19 patients vary widely, ranging from asymptomatic or mild cases to critically severe conditions, including deadly 
respiratory failure.20–22 This vast disparity in symptoms clearly suggests the presence of distinct population groups that 
respond in markedly different ways. For patients with severe COVID-19 pneumonia, progression to acute respiratory distress 
syndrome (ARDS) poses a significant challenge, as reversing the condition at this stage is extremely difficult. Therefore, early 
identification of cases at risk of progressing to severe illness is crucial.

In response to this clinical need, our study analyzes subgroups within the COVID-19 population and seeks to predict their 
classification using machine learning methods. Subphenotype II can aptly be termed the “Hyperinflammatory phenotype” due 
to its association with the most unfavorable clinical outcomes. Subphenotype II is defined by factors such as C-reactive protein 
(CRP), IL-2R, D-dimer, ST2, BUN, NT-proBNP, neutrophil percentage, lymphocyte count, myoglobin, TNF-α, Apo-A, 
albumin (ALB), and IL-6. It has been well documented that significantly higher neutrophil counts and formation of NETs are 
significantly correlated with COVID-19 critically ill patients.23 And patients’ lymphocyte counts were significantly negatively 
correlated with patients’ prognosis, implying the destructive effect of COVID-19 on the immune system.24 This finding aligns 
with previous reports, further enhancing the credibility of our research. Consistent with these findings, our study observes that 
in Subphenotype II, the neutrophil count is significantly elevated, while the lymphocyte count is markedly reduced.Gender 
influences COVID-19 clinical severity, with females typically exhibiting milder symptoms.25 Patients in Subphenotype II 
exhibit elevated D-dimer (DD) and fibrinogen (Fib), along with a prothrombotic state.26 Thrombotic events and neurological 
symptoms, both life-threatening, are common in COVID-19 cases.27 Interestingly, we discovered that these patients also 
presented with hypoalbuminemia at an early stage, accompanied by low apolipoprotein A (Apo-A). Due to their low 
nutritional status, their ability to resist infection is weakened. Unfortunately, COVID-19 infection may further deplete albumin 
levels, leading to a higher early mortality rate.For patients with the “Hyperinflammatory phenotype” (Subphenotype II), 
aggressive treatment strategies may be necessary to control the excessive inflammatory response. This could include 
administering anti-inflammatory drugs, cytokine inhibitors, or other therapies targeting the specific biomarkers associated 
with this phenotype. In addition, due to the heavier and more complex comorbidities in the hyperinflammatory phenotype, 
close monitoring of organ function and early intervention to prevent organ damage are essential for improving patient 
prognosis. Conversely, Subphenotype I can be accurately described as the “Hypoinflammatory phenotype.” This subpheno-
type is distinguished by significantly younger patients and a lower proportion of males. In comparison to Subphenotype II, 
Subphenotype I is associated with lower disease severity and higher survival rates.

This research partially aligns with previous retrospective studies in Spain, the USA, and France, which identified 
three to five phenotypes, compared to the two identified in our study. Gutiérrez et al10 (Spain) analyzed 4035 patients 
across 127 hospitals, identifying three phenotypes: Phenotype A (19%) with younger individuals, mild symptoms, normal 
inflammatory patterns, and higher lymphocyte counts; Phenotype B (73%) with more symptoms, no pulmonary infiltra-
tions but interstitial changes, obesity, and moderately elevated inflammatory markers; and Phenotype C (7%) with 
patients having more obesity, comorbidities, and higher inflammatory biomarkers.

In the USA, Su et al.11 An analysis of 14,418 patients from five hospitals identified four subphenotypes: 
Subphenotype I (33%) characterized by younger patients, more females, and fewer comorbidities; Subphenotype II 
(37%) with a higher proportion of males and abnormal inflammation markers; Subphenotype III (18%) involving older 
patients, Black ethnicity, renal dysfunction, and hematologic changes; and Subphenotype IV (12%) comprising older 
patients, more males, higher comorbidity burden, and abnormal biomarkers.

In France, Elie Azoulay et al.12 The study of 85 ICU patients identified three phenotypes: Cluster 1 (43.5%, low mortality) 
characterized by females, low ferritin, D-dimers, and CRP but intermediate IL-6; Cluster 2 (20%, intermediate mortality) 
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consisting of younger patients, 88% males, no fever, acute kidney injury, and intermediate ferritin, D-dimers, and CRP; and 
Cluster 3 (36.5%, high mortality) with predominantly older men, severe hypoxemia, fever, and intense inflammatory syndrome.

Our Subphenotype II closely aligns with Phenotype C from the Spain study, Subphenotype IV from the USA study, and 
Cluster 3 from the France study, all characterized by older patients with more comorbidities and the highest mortality rates. 
Identifying this phenotype is critical. In this study, we established a supervised prediction model for the identified subphenotypes.

After comprehensive evaluation and comparison of predictive performance, the Adaboost model emerged as the 
optimal selection. The Boosting method is a highly renowned and robust algorithm that combines multiple weak learners 
linearly to achieve a strong learner. It can also be regularized through early stopping techniques. Boosting is regarded as 
one of the most effective machine learning methods for both classification and regression tasks.28

AdaBoost, a classic representative of the Boosting method, is among the most successful Boosting algorithms. It is 
derived from the integration of results from weighted voting problems and online allocation problems, removing the 
requirement for prior knowledge of weak learners. By recalculating weights in each iteration, AdaBoost enables the 
subsequent classifiers to focus on samples that are difficult to distinguish while assigning greater weight to the classifiers 
that performed well in the previous iteration.29

Our prediction model achieved the desired predictive results in the study population, offering a feasible and highly 
accurate method for applying the identified subgroups in clinical practice. The SHAP plot reveals that IL-2R,30 TNF-α, 
and IL-631,32 constitute the majority of inflammatory factors, differing from earlier studies that emphasized IL-6, IL-10, 
and IL-8. This finding may provide new insights and guidance for the future treatment of COVID-19.

Soluble suppression of tumorigenesis-2 (sST2), a member of the interleukin-1 (IL-1) superfamily and the 
soluble isoform of ST2, has emerged as a promising prognostic biomarker for sepsis. sST2 is released not only due 
to vascular congestion but also in response to inflammatory and pro-fibrotic stimuli. The IL-33/sST2 complex 
inhibits anti-inflammatory cytokine release and promotes the activation and release of inflammatory cytokines like 
IL-6 and TNF-α, triggering inflammation.33,34 Previous research indicates that sST2 levels correlate with COVID- 
19 severity and prognosis. sST2 correlates with ICU admission, ventilator use, thrombosis, and mortality in 
COVID-19 patients.ST2 ranks highly in our prediction model’s importance, supporting its role as a COVID-19 
biomarker for classification and prognosis.35–37

Cardiac injury associated with COVID-19 is highly prevalent in clinical settings, primarily evidenced by increases in 
troponin I (TnI), myoglobin (Myo), and NT-proBNP.38,39 Within the classification model, Myo and NT-proBNP rank 
prominently, indicating that cardiac dysfunction significantly influences patient classification and prognosis. Patients with 
a history of cardiac dysfunction tend to have poorer outcomes. B-type natriuretic peptides (BNPs) are predominantly 
produced in the heart and released into circulation in response to heightened wall tension in both the atria and ventricles. 
However, elevated NT-proBNP levels can arise from non-cardiac causes as well, including impaired renal function, advanced 
age, malnutrition (indicated by low albumin levels), and increased C-reactive protein levels. Additionally, hypoxia and 
various hormones, such as catecholamines, angiotensin II, and endothelin, can stimulate NT-proBNP secretion.

This research not only deepens our understanding of the disease but also provides practical tools for healthcare 
professionals to manage and treat COVID-19 patients more effectively. By tailoring treatment strategies according 
to these phenotypes, we aim to enhance patient outcomes and contribute to the global response against COVID-19.

This study has notable limitations. Firstly, as a retrospective analysis, it lacks external validation of the 
identified phenotypes, significantly restricting the generalizability and reliability of our findings.Secondly, the 
analysis focuses solely on hospitalized patients, limiting the applicability of the results to those with mild COVID- 
19 requiring outpatient care, whose characteristics and potential phenotypes are not included. This limitation 
underscores the need for future research to encompass a broader patient spectrum for a more comprehensive 
understanding of COVID-19 manifestations. No significant difference in the proportion of chronic pulmonary 
disease among subgroups was observed, likely due to insufficient information on disease severity or type within 
this cohort. This limitation introduces bias, emphasizing the need for further investigation in subsequent studies.
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Conclusions
Two phenotypes of COVID-19 were identified based on symptoms, complications, inflammatory markers, infection 
markers, end-organ dysfunction, and comorbidities. The machine learning model accurately predicted COVID-19 patient 
survival and severity based on identified phenotypes. After comprehensive evaluation and comparison, the Adaboost 
model emerged as the optimal selection. This model effectively pinpointed ‘CRP’, ‘IL - 2R’, ‘D - dimer’, ‘ST2’, ‘BUN’, 
‘NT- proBNP’, ‘Neutrophil percent’, and ‘Lymphocyte number’ as crucial predictors for in-hospital mortality in COVID- 
19 patients, highlighting their significant role in assessing the prognosis of these patients.
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