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Abstract: Sjögren’s disease, an autoimmune inflammatory disease, currently lacks effective treatment options. The salivary gland, 
a crucial exocrine organ responsible for saliva production and local immune responses on mucous membranes, is frequently impaired 
in individuals with Sjögren’s disease. Restoring salivary gland function poses a significant challenge for researchers. Salivary epithelial 
cells, recognized as pivotal components of the salivary gland, have been increasingly implicated as key initiators of inflammation and 
exhibit innate immune cell-like properties. On the whole, SGEC plays a protective role in the physiological state, and can also 
participate in the persistence of inflammation as an initiating factor in the pathological state. In the review, we explore the interplay 
between Ca+, endoplasmic reticulum (ER), and mitochondrial homeostasis imbalance in salivary epithelial cells. Additionally, we 
provide an overview of current literature on research advancements related to Pattern Recognition Receptors (PRRs), programmed cell 
death, posttranslational modification (PTM), and oral microecology, etc. specifically focusing on their implications in salivary 
epithelial cells. Given the crucial role of salivary gland epithelial cells in the onset of Sjögren’s disease, a treatment based on salivary 
gland epithelial cells may have the potential to alleviate the condition by addressing the inflammatory response in the salivary glands. 
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Introduction
Sjögren’s disease (SjD) is a systemic autoimmune disease that mainly involves secretory glands, especially lacrimal and 
salivary glands, and can involve multiple organs.1 It is often accompanied by fatigue, musculoskeletal pain and other 
symptoms, which seriously affects the quality of life of patients. The existing epidemiological survey data in various 
regions show that the incidence and prevalence of SjD vary greatly worldwide.2,3 It is currently believed that among all 
chronic autoimmune rheumatism, SjD is still one of the diseases with high incidence.4 Current diagnosis and treatment 
strategies for Sjögren’s disease are not enough to address the current status of lymphocyte infiltration and salivary gland 
dysfunction.5 According to the complex role of salivary gland epithelial cells in the development of SjD, further research 
is needed to successfully rescue the salivary gland function of SjD.6 Most of therapy methods can effectively improve the 
subjective symptoms of patients, but there is less afford to the imbalance of immune system.

Both innate and adaptive immune cells are key pathogenic factors of Sjögren’s disease.7,8 However, Sjögren’s disease has 
a significant Interferon (IFN)-I characteristic, and the activation of innate immune signals is a key factor in inducing the IFN-I 
characteristic.9 At present, the role of various innate immune signaling pathways, including TLR, cGAS-STING and NLR, in 
the pathogenesis of Sjögren’s disease has been clarified.10–12 Given the current status that the etiology of Sjögren’s disease has 
not been elucidated, in-depth research is crucial to understand its potential pathogenesis and find new therapeutic targets.13 

The important role of SGEC in this disease was proposed about forty years ago, but it was ignored for more than 30 years. 
However, the role of SGEC in this disease are less well understood. As the most important cellular component of the salivary 
glands, SGEC plays a dual role in this disease.14 Firstly, salivary gland epithelial cells (SGEC) are the victim during the 
autoimmune injury in Sjögren’s disease.15 Then, as the main cell component of SG, SGEC also plays an important role in 
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secreting saliva, aquaporins and so on.16 In the past decade, the biological function of SGEC has been extensively studied.17 

SGEC injury or inappropriate activation can show similar functions to innate immune cells, which can activate innate immune 
signals, recruit inflammatory cells and aggravate local inflammatory responses.18 Therefore, it is imperative to explore 
strategies for mitigating pathological injury in SGEC and preserving cellular homeostasis, which warrants significant 
attention.

The immune system needs to be kept in balance, and the goal of treatment for autoimmune diseases such as SjD is to 
suppress excessive immune responses and restore stability.19 In general, in SjD, many pathways and processes in the 
salivary glands may be disrupted, including epithelial cell activation,20 innate immune signaling,21 and adaptive immune 
activation.22 These studies have been summarized in several excellent researches.23–25 However, most of the emphasis 
has been on how to protect SGEC from injury. As our understanding of the cellular biology of salivary gland epithelial 
cells (SGEC) continues to advance, researchers have increasingly focused on the role of SGEC in triggering inflamma-
tory signals and exploring therapeutic strategies aimed at regulating SGEC cell homeostasis.26 These efforts aim to 
enhance salivary gland (SG) injury recovery and restore immune balance in Sjögren’s disease, thus garnering attention 
within the scientific community. Recently conducted studies on locally specific gene over-expression in SGEC have 
provided further evidence supporting the role of SGEC as an inflammatory inducer.27 However, the mechanisms of 
regulating SGEC cell homeostasis to protect SG function are still unclear.

In this review, we first review the physiological function and the innate immune defense role of SGEC. Second, we 
explore the immunogenicity of SGEC in pathological conditions. Finally, we summarize the evidence and regulatory 
mechanisms of proinflammatory signal activation induced by SGEC dyshomeostasis.

The Physiological Functions and Defensive Roles of SGEC
The function and composition of salivary glands provide valuable insights into the overall health status of the body, and 
numerous studies have been conducted to identify saliva biomarkers for disease diagnosis.28,29 Salivary glands primarily 
consist of epithelial cells and connective tissue,30 with epithelial cells being the main cell type responsible for saliva 
secretion within these glands.31 Specifically, salivary gland epithelial cells can be categorized as acini cells, duct cells, 
myoepithelial cells, among others.32 The function of salivary glands is predominantly manifested through saliva as a carrier. 
Acini cells produce and secrete mucus-rich saliva while the contraction of surrounding muscle epithelial cells facilitates its 
release into the oral cavity via ducts.33 Extracellular hormones or neurotransmitters (such as acetylcholine or cholecysto-
kinin) can bind to G protein-coupled receptors on the basal membrane,34,35 serving as initiating signals for various 
biological processes that trigger Ca2+ release from the endoplasmic reticulum36 and subsequently stimulate extensive 
primary saliva production. Saliva, serving as a cleansing fluid in the oral cavity, plays a pivotal role in maintaining oral 
hygiene and safeguarding teeth and oral mucosa against physical and chemical harm.37 Moreover, it harbors numerous 
proteins that are indispensable for the host’s defense mechanism against pathogens38 Being constantly exposed to foreign 
pathogens, saliva acts as the primary line of defense for both human and animal oral mucosa. It shields tooth surfaces from 
acid-induced damage caused by dietary intake and oral bacteria. Patients with insufficient saliva secretion face an elevated 
risk of tooth demineralization, dental caries, oral mucositis, and fungal infections.32 Additionally, saliva encompasses 
a plethora of signaling molecules including nerve growth factor (NGF),39 epidermal growth factor (EGF),40 fibroblast 
growth factor (FGF),41 and vascular endothelial growth factor (VEGF)42 which play crucial roles in promoting healing 
processes of both oral mucosal and esophageal wounds as well as facilitating skin wound repair. Furthermore, secretory 
immunoglobulin IgA assumes a vital function in orchestrating immune responses within the oral mucosa.43 The concised 
function of Salivary Gland Epithelial Cells under physiological conditions can be seen in Figure 1.

Immunogenicity in SGEC Pathological State
The function of SGEC in physiological state is as described above. In pathological state, SGEC can also act as a disease 
inducing factor and participate in the progression of the disease.17 Currently, the factors that have been found to cause 
damage to SGEC include calcium homeostasis imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, 
activation of the PRR signaling pathway, programmed cell death and so on.
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Calcium Homeostasis Imbalance
Saliva secretion is a two-stage process in which glandular cells produce an isotonic saliva initially, which is then modified by 
the duct system into a hypotonic fluid.44 Ca2+ is a key factor in controlling salivary gland function. Studies have found that in 
physiological conditions, salivary mucous cells enhance PKC activity by inducing the release of intracellular Ca2+ pools 
through VIP, thereby mediating the co-secretion of mucin proteins with muscarinic.45 In pathological conditions, defects in 
Ca2+ signaling have been observed in radiation-induced loss of salivary gland function46 and salivary gland dysfunction 
associated with Sjögren’s disease.47 Defects in epithelial cell calcium signaling in Sjögren’s disease are associated with 
a decline in salivary gland secretion.48 Recent studies have found that IL-17 causes salivary gland dysfunction in Sjögren’s 
disease by inhibiting TRPC1-mediated calcium transport.49 Inducing Ca2+ signaling can promote saliva secretion and prevent 
immune cells from infiltrating the salivary gland in a Sjögren’s disease mouse model.50 However, the cause of calcium 
homeostasis imbalance in the salivary gland of Sjögren’s disease patients still needs further research.

Mitochondrial Dysfunction
Oxidative-Reduction Homeostasis Imbalance
In almost all subcellular organelles, including the cytoplasm, endoplasmic reticulum (ER), mitochondria, and peroxi-
somes, reactive oxygen species (ROS) can be generated as byproducts of their fundamental metabolic functions.51 

Physiological ROS plays a pivotal role in regulating cellular function disorders under normal conditions. However, it can 

Figure 1 The function of Salivary Gland Epithelial Cells under physiological conditions.
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also contribute to the pathogenesis of various diseases such as infectious diseases,52 autoimmune diseases,53 tumors,54 

and metabolic disorders.55 The functions of immune cells are intricately linked to diverse metabolic pathways, with 
immune cell metabolism being inseparable from redox reactions.56 Studies have revealed that patients with Sjögren’s 
disease exhibit downregulation of glutathione peroxidase 4 (GPX4) expression in salivary glands. This downregulation 
induces an increase in lipid ROS levels within SjD SGECs, subsequently promoting STAT4 phosphorylation and nuclear 
translocation. Consequently, STAT4 binds to the AQP5 promoter region leading to inhibition of AQP5 expression and 
saliva secretion.57 Experimental studies have further demonstrated significantly elevated ROS fluorescence levels 
accompanied by reduced mitochondrial membrane potential in NOD mice SGEC compared to the ICR group.58 

Collectively, these findings suggest that ROS accumulation is a critical factor contributing to mitochondrial damage 
and hypofunction in SGEC during Sjögren’s disease.

Mitochondrial Metabolic Dysfunction
Inflammatory epithelial diseases are caused by a co-disorder of immune cells and epithelial cells.59 Sjögren’s disease was 
previously known as autoimmune epithelitis, characterized by abnormal activation of epithelial cells and extensive 
infiltration of lymphocytes in the salivary gland. From an immune-metabolic perspective, it is evident that any metabolic 
alterations in target epithelial cells in Sjögren’s disease (SjD), regardless of the underlying cause, can induce an 
immunogenic phenotype.60 Thus, salivary gland epithelial cells (SGEC) have the potential to directly modulate the 
susceptibility and/or severity of autoimmune responses. In comparison to normal SGEC, SjD-SGEC exhibit reduced 
mitochondrial content, swollen and elongated mitochondria, as well as fewer and aberrant cristae.61 These metabolic 
changes primarily involve mitochondria and are accompanied by pronounced morphological alterations in situ. 
Transcriptome sequencing offers insights into the transformation process of SGEC from SjD patients into innate immune 
cells while uncovering translational modifications associated with metabolic remodeling.14 RNA sequencing-based 
investigations have revealed distinct distribution patterns of innate and adaptive immune cells within salivary gland 
tissue from primary Sjögren’s disease (SjD) patients, which are linked to diverse mitochondrial metabolic pathways 
thereby influencing disease progression.62,63 Further research is warranted to elucidate the role of mitochondrial 
metabolism in SGEC during Sjögren’s disease.

Maladaptive Mitochondrial Autophagy
Autophagy is a crucial regulatory pathway for cellular self-protection in various immune cells, including neutrophils, 
eosinophils, mast cells, and NK cells, enabling the maintenance of cellular homeostasis.64 Recently, researchers have also 
started to focus on autophagy in salivary gland epithelial cells. Current studies have demonstrated that modulating 
autophagy can exert a protective effect on the parotid gland pathology in Sjögren’s disease. Conversely, inhibiting 
autophagy can worsen the parotid gland pathology.58,65 Interestingly, some studies indicate a significant correlation 
between the level of autophagy in small salivary gland lymphocytes of Sjögren’s disease patients and the extent of 
lymphocyte infiltration within these glands.66 The m6A methylation process may participate in immune infiltration and 
autophagy regulation in primary Sjögren’s disease (SjD), thereby contributing to its pathogenesis.67 Furthermore, certain 
researchers propose that inflammation-induced autophagy and survival mechanisms promote activation of SGECs in 
primary SjD SGECs and reflect histopathological severity. They consider autophagy as a central factor underlying 
primary SjD pathogenesis and suggest it as a potential therapeutic target.68 However, further research is needed to 
confirm the role of autophagy in salivary gland epithelial cells of Sjögren’s disease patients.

Endoplasmic Reticulum Stress
The endoplasmic reticulum (ER) is the largest organelle in the cell and plays a crucial role in protein synthesis, lipid 
metabolism, and other essential cellular processes. When triggered by internal and external stimuli such as ischemia,69 

oxidative stress,70 infection,71 drug toxicity,72 and calcium homeostasis imbalance,73 disturbances in ER homeostasis 
lead to the unfolded protein response (UPR), resulting in the accumulation of misfolded proteins within the ER and 
initiating the endoplasmic reticulum stress (ERS) response to restore ER homeostasis. In pathological conditions, ERS 
can also modulate immune cell functions, contributing to immune system dysregulation.74 Chronic inflammation can 

https://doi.org/10.2147/JIR.S509220                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 3042

Zhu et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



disrupt MUC1 secretion and induce ER stress, impacting saliva quality in Sjögren’s disease patients.75 Furthermore, it 
has been demonstrated that the GRP78-ATF6-CHOP signaling pathway associated with ER stress is overactivated in 
primary Sjögren’s disease.76 Sjögren’s disease is characterized by the excessive expression of type I interferon,77 

which can induce ERS in SGECs, leading to the massive production of Ro52/SSA antigen and downregulation of 
autophagy, thereby increasing cell apoptosis.78 Interestingly, studies have also found that merc in SGEC mediates the 
transfer of calcium from the endoplasmic reticulum to the mitochondria, promoting ATP production and playing 
a crucial role in calcium homeostasis.79 In contrast, the inflammatory cascade signal triggered by endoplasmic 
reticulum stress in pathological conditions is an important factor causing dysfunction of salivary gland epithelial 
cells in Sjögren’s disease. Calcium homeostasis imbalance and mitochondrial damage in salivary gland epithelial cells 
can be seen in Figure 2.

Activation of the PRR Signaling Pathway
Innate immunity distinguishes various pathogen-associated molecular patterns (PAMPs) as the first line of defense 
against pathogen infection.80 Common PRRs include Toll-like receptors (TLRs), C-type lectin receptors (CLRs), nod-like 
receptors (NLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs).81 Recently, salivary gland epithelial 
cells have been considered a special innate immune cell,14,60 and they also express a variety of PRRs on their surfaces. 
The specific summary is as follows.

Activation of Inflammasome
Several types of inflammasomes, such as NLRP1 inflammasome, NLRP3 inflammasome, NLRC4 inflammasome, IPAF 
inflammasome, and AIM2 inflammasome,82 have been identified. Among these, the NLRP3 inflammasomes have been 
extensively studied in the context of Sjögren’s disease. The NLRP3 inflammasome is known to play a pivotal role in the 

Figure 2 Diagram illustrating the pathogenic mechanism of SGEC involving dysregulation of mitochondrial and endoplasmic reticulum homeostasis.
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pathogenesis and progression of various autoimmune diseases.83 Recent research has demonstrated activation of the 
NLRP3 inflammasome in the salivary glands of Sjögren’s disease patients,84 with a potential mechanism involving SGEC 
pyroptosis induced by type I IFN in SjD patients.85 Although there have been studies investigating the involvement of the 
AIM2 inflammasome in Sjogren’s syndrome pathogenesis, most of them have primarily focused on peripheral blood 
mononuclear cells and lacrimal epithelial cells. Therefore, further investigations are warranted to elucidate the role of 
AIM2 and other inflammasomes in salivary epithelial cell dysfunction.

Activation of TLR Signaling Pathway
Toll-like receptors (TLRs) are a distinct subset of PRRs, playing a pivotal role in pathogen recognition and inflammation 
induction.86 Currently, 11 TLR family members have been identified, with TLR1, TLR2, TLR4, TLR5, TLR6, and 
TLR11 located on the cell surface and TLR3, TLR7, TLR8, and TLR9 situated in the endosome/lysosome 
compartment.87 In the context of Sjögren syndrome (SjD), particular attention has been given to the study of TLR2, 
TLR3, TLR4, and TLR7. Interleukin-15 (IL-15), an inflammatory cytokine implicated in SjD pathogenesis, is induced by 
SGEC through activation of TLR2, resulting in NF-kB-mediated inflammatory responses.88 Additionally, TLR3 is 
involved in apoptosis mediation and phosphorylated Akt activation within salivary gland epithelial cells from SjD 
patients.89 TLR-7 is predominantly expressed in monocytes and ducts of minor salivary glands in patients with Sjögren’s 
disease, and is associated with downstream signaling pathways related to type I interferon, suggesting that TLR- 
7-mediated innate immunity plays a role in the development of glandular inflammation in SjD.90 Additionally, TLR7 
activation of SGEC cells in SjD patients promotes the presentation of the TRIM21/Ro52-SS-A antigen via the MHC 
class I pathway.91 Conversely, lysosomal-associated membrane protein 3 induces ectopic TLR7 expression on salivary 
gland epithelial cells, amplifying the type I interferon response in Sjögren’s disease.92 A notable characteristic of SjD 
patients is the presence of mucin proteins outside their normal location within the extracellular matrix of salivary glands. 
These ectopic salivary mucin proteins can be recognized by TLR4 expressed on epithelial cells, initiating an inflamma-
tory response and attracting inflammatory cells to proliferate and prolonging inflammation, thereby promoting the 
chronic features of SjD.93

Activation of the cGAS-STING Signaling Pathway
cGAS plays a crucial role as a sensing protein in the innate immune response, in recognizing microbial DNA and 
endogenous DNA (including mitochondrial DNA (mtDNA) and genomic DNA).94 Recent findings suggest that activa-
tion of the cGAS-STING pathway can promote the expression of type I interferon (IFN) and pro-inflammatory cytokines, 
which play an important role in the pathogenesis of Sjögren’s disease.12,79,95 Studies have found that patients with SjD 
have a high lactate environment in their labial glands, and lactate can damage mitochondrial DNA (mtDNA) and cause 
its leakage, thereby activating the cGAS-STING pathway.96 Our previous studies have found that the cGAS-STING 
signaling pathway is significantly activated in salivary glands of Sjögren’s disease patients. The cGAS-STING signaling 
pathway is significantly related to the pathogenesis of Sjögren’s disease, and regulating autophagy is a key brake that 
limits the activation of the cGAS-STING signaling pathway.58 However, the specific regulatory mechanisms remain to be 
further elucidated.

Other Pattern Recognition Receptor-Related Signaling Pathways
AIM2 (Absent in melanoma 2) is a cytoplasmic DNA-recognition protein capable of identifying double-stranded DNA, 
and forms the AIM2 inflammasome, a protein platform that triggers the innate immune response. Studies have 
demonstrated that genomic DNA activation of the AIM2 inflammasome and STING leads to an inflammatory reaction 
in meibomian gland MECs, potentially contributing to the development of SjD.97 However, there is currently limited 
research on how C-type lectin receptors and RIG-I-like receptor-related signaling pathways impact salivary gland 
epithelial cells in Sjögren’s disease patients. Figure 3 shows activation of pattern recognition receptor-associated 
signaling pathways in salivary gland epithelial cells.
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Programmed Cell Death
Programmed cell death (PCD) refers to the elimination of unwanted cells through multiple distinct pathways in order to 
maintain cellular homeostasis. The main types of programmed cell death include apoptosis, autophagy, ferroptosis, and 
pyroptosis, among others.98 Increased apoptosis of epithelial cells is the main cause of exocrine gland dysfunction and 
epithelial gland structural damage in patients with SjD.99 Therefore, lymphocyte-induced epithelial cell apoptosis is 
considered a key factor in decreased exocrine function. Subsequently, the release of antigens into the apoptotic bodies 
from the apoptotic cells is the main route for presenting self-antigens to the immune system.10 In vitro studies have 
shown that epithelial cell apoptosis can trigger the release of apoptotic bodies containing nuclear material, including Ro/ 
SSA and La/SSB antigens.23 Among these, autophagy and pyroptosis have already been reviewed earlier, so they are not 
discussed again.

Ferroptosis is a novel form of regulated cell death (RCD) caused by fatal accumulation of iron-dependent and lipid 
peroxidation products, ultimately leading to membrane damage and cell death.100 It is currently believed that epidermal 
cell-derived proteins involved in ferroptosis are present in plasma exosomes from SjD patients. Complement C5 and C9 
may be new molecules involved in ferroptosis that play an important role in the pathology of SjD epithelial cells. Plasma 
exosomes from SjD patients, rather than those from non-autoimmune sicca syndrome (nSS) patients, contain ferroptosis- 
related proteins. The content of apoptosis-related proteins in exosomes reflects the state of epithelial cell lesions more 
than that in plasma.101 Interferon-γ induces ferroptosis in salivary gland epithelial cells of Sjögren’s disease (SjD) 
through JAK/stat1 mediated inhibition of system Xc. JAK or STAT1 inhibition in SGEC reverses the downregulation of 
SLC3A2 and GPX4 induced by IFN-γ, as well as IFN-γ-induced cell death.15 GPX4 is a key molecule in the ferroptosis 
process. Downregulation of GPX4 expression in salivary gland epithelial cells can cause salivary secretion dysfunction in 
Sjögren’s disease through lipid ROS/pSTAT4/AQP5 axis.57

Crosstalk Between SGECs and Lymphocytes
SGECs play a pivotal role in the pathological changes of lymphocyte infiltration within the salivary gland of patients 
with Sjögren’s disease (SjD). Current research primarily focuses on elucidating the interactions between epithelial cells 

Figure 3 PRR signaling pathway are involved in the activation of inflammatory signaling pathways in SGEC.
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and B cells, as well as T cells. SGECs possess the ability to regulate recruitment, activation, and differentiation of 
immune cells in SjD. Phenotypic flow cytometry analysis and cytokine studies have confirmed that SGECs secrete B cell 
activating factor (BAFF) while also modulating the activation and differentiation processes of B cells.102 Gene expres-
sion profiling in SGECs has revealed upregulation of genes associated with interferon signaling pathway and immune 
response (HLA-DRA, IL-7, and B cell activation factor receptor) in primary Sjögren’s disease (SjD). Additionally, 
activated genes CD40 and CD48 exhibited upregulation specifically in salivary gland-derived B lymphocytes from SjD 
patients. Furthermore, SGECs can enhance survival of B lymphocytes; notably, those derived from SjD patients exhibit 
higher pro-B lymphocyte survival activity compared to controls.103 Moreover, LAMP3 expression can induce apoptosis 
in SGECs leading to reduced expression of proteins involved in saliva secretion along with impaired lysosomal function. 
Consequently, damage-associated molecular patterns (DAMPs) are released via Toll-like receptors to activate immune 
cells.18 However, further investigations are warranted to ascertain whether these interactions hold true universally.

Abnormal Epigenetic Modifications
The key mechanisms of epigenetics encompass various processes, including methylation modification, histone modifica-
tion, and non-coding RNA regulation.104 During the progression of Sjögren’s disease, significant alterations in epigenetic 
modifications are frequently observed in immune cells and salivary gland epithelial cells, indicating a robust association 
with autoimmune responses.105 Currently, more and more research is focusing on the role of epigenetic changes in the 
onset of Sjögren’s disease. Methylation modification encompasses DNA methylation and RNA methylation, which play 
pivotal roles in regulating gene expression and cellular functions by modulating the accessibility of DNA to transcription 
factors and other regulatory proteins.106 The present study investigated the association between DNA methylation and the 
European League Against Rheumatism (EULAR) Sjögren Syndrome Disease Activity Index (ESSDAI) score, revealing 
a significantly higher number of differential methylation regions in patients with high ESSDAI scores compared to those 
with low ESSDAI scores.107 The study revealed an increased proportion of B cells in the LSG tissue of SjD patients 
compared to non-SjD controls, accompanied by upregulated gene expression associated with B cell function and reduced 
methylation of genes involved in immune response and immune tolerance.108 An epigenetic analysis of LSGs in SjD 
patients revealed distinct methylation patterns at CpG sites with differential methylation between SjD subgroups, 
providing evidence for the involvement of epigenetic factors in the heterogeneity of SjD.109 The dysfunction of the 
IRE1alpha/XBP-1 pathway, which is associated with DNA methylation, may result in impaired salivary gland function in 
patients diagnosed with Sjögren’s disease.110 The aforementioned findings further underscore the significance of 
methylation modifications in the pathogenesis of SjD and have the potential to inform the development of novel 
diagnostic and therapeutic strategies.111

The RNA modification methyladenosine N6 (m6A) is widely recognized as the most prevalent form of RNA 
methylation. Extensive research has demonstrated its significant involvement in immune infiltration and autophagy 
processes associated with SjD.67 The presence of M6A methylation and the upregulation of METTL3 protein exhibit 
associations with blood serological markers and dry eye symptoms in patients diagnosed with primary Sjögren’s 
disease.112 When exposed to inflammatory stimuli, the impairment of m6A modification in SGEC facilitates the 
generation of double-stranded RNA (dsRNA), thereby potentially amplifying the interferon cycle and contributing to 
the pathogenesis of Sjögren’s disease.113 However, METTL3-mediated m6A modifications impeded the formation of 
dsRNA and activation of IFN signaling. Additionally, the m6A methylation detector can aid in subtyping patients with 
Sjögren’s disease into diagnostic subgroups through consensus clustering, thereby categorizing SjD patients into distinct 
m6A patterns. The m6A score of Group B patients surpasses that of Group A patients.114 However, further investigation 
is required to elucidate the immunoregulatory role of methylation modification in this disease.

Post-translational modifications (PTMs) are implicated in a diverse array of biological processes and play a crucial 
role in modulating protein structure, activity, and function.115 Numerous studies have demonstrated the widespread 
involvement of protein post-translational modifications in the regulation of inflammatory processes.116 However, there 
remains a paucity of research on PTMs in the pathogenesis of Sjögren’s disease. A recent comparative proteomic analysis 
of serum samples identified and validated ITIH3 as a potential biomarker, while also pinpointing hexosamine and 
arginine modification sites on ITIH3. Furthermore, analysis of autoantibody subtypes against arginine-modified ITIH3 
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peptides allowed for further differentiation between patients with rheumatoid arthritis (RA), primary Sjögren’s disease, 
RA-secondary SjD, and healthy controls.117 Additionally, some studies have characterized the newly discovered Kmal 
(lysine acetylation form) in SjD and provided proteomic data for SjD patients. Notably, several key differentially 
modified proteins were found to be associated with the cell adhesion pathway, which is implicated in the development 
of SjD.118 In terms of PTMS, it is also a research direction that needs to be paid attention to in the future to recognize and 
regulate the immune homeostasis of salivary epithelial cells in response to imbalance immune responses.

Oral Microecology Disorder
There is increasing evidence that the diversity of the microbiome is associated with high disease activity in Sjögren’s 
disease.119 Changes in the microbiome have a negative impact on the pathogenesis of Sjögren’s disease. However, the 
causal relationship, especially the impact of oral microecology on salivary gland epithelial cells, is not yet clear.120 

Researchers have detected exogenous (microbial) or endogenous (endogenous retrovirus) genomes in salivary gland 
epithelial cells of Sjögren’s disease patients, which may help clarify the mechanism by which microorganisms participate 
in the activation of salivary gland epithelial cells in Sjögren’s disease.121 In addition, bioinformatics analysis based on the 
transcriptome of salivary glands can also reveal the existence of multiple innate immune signaling pathways and signal 
activation related to pathogen infection in salivary glands of Sjögren’s disease patients, indicating that disruption of oral 
microecology participates in the pathogenesis of the disease.58 However, diagnostic indicators related to this need to be 
further validated by large-sample clinical studies, and the effects of oral microecology on SGEC epithelial cells need to 
be further elucidated through experimental studies.

Future Outlook
The presence of unknown trigger factors in salivary gland epithelial cells may activate the innate immune response and 
subsequently lead to an adaptive immune response against self-antigens, thereby positioning the epithelial cells as both 
the medium and target of the response.122 In recent years, advancements in transcriptomics, proteomics, and metabo-
lomics technologies have provided a deeper understanding of the physiological and pathological mechanisms underlying 
Sjögren’s disease. The altered oral microbiome in Sjögren’s disease patients has been a focal point for researchers for 
numerous years.123 Investigations into SjD-like microbial dysbiosis in individuals with pre-SjD or non-SjD related 
diseases suggest that changes in the microbial community may precede the onset of primary Sjögren’s disease. 
Furthermore, it has been observed that SjD patients treated with HCQ experience partial alleviation of microbial 
dysbiosis. However, there remains disordered composition within the microbial community.124 A reduction in saliva 
flow seems to be unrelated to simple microbial dysbiosis but rather affects host-related risk factors.125 A bioinformatics 
analysis of the composition of salivary microbiota revealed significant differences in oral microbial composition between 
the anti-SSA antibody positive and negative groups. The microbial diversity of patients with SjD was lower than that of 
non-SjD patients. And several potential genetic markers of SjD at the level of microbiota were identified, such as 
a decrease in the abundance of Lactobacillus or an increase in the abundance of Streptococcus.126 There are significant 
differences in microbial dysbiosis between SjD patients and non-SjD patients, and it is unrelated to oral candidiasis and 
DMFT.127 The mechanism by which oral microecology participates in the physiological and pathological process of this 
disease still needs further in-depth research.

In addition, while research on single-cell sequencing in Sjögren’s disease is gradually increasing, the focus has 
primarily been on mononuclear cells128 and CD4 T cells.129 However, there remains a significant gap in genomic 
sequencing that specifically targets the single-cell transcriptome and spatial transcriptome of salivary gland epithelial 
cells. Although single-cell RNA sequencing (scRNA-seq) can identify cell subpopulations within tissues, it does not 
capture their spatial distribution or reveal the local network of cell-to-cell communication for in situ action. On the other 
hand, spatial transcriptomics can elucidate RNA localization within tissues but lacks complete transcriptomic 
information.130 Therefore, there is an urgent need to integrate the results of single-cell and spatial transcriptome 
sequencing to map out the trajectory of cell differentiation and gene regulatory networks, as well as to characterize cell- 
to-cell communication and regulatory networks within tissues.131 This integration will further illuminate the role played 
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by salivary gland epithelial cells in shaping the immune microenvironment of salivary glands in patients with Sjögren’s 
disease.

Restoring the function of the salivary gland is the primary objective in treating Sjögren’s disease,132 as it relies on the 
functional integrity of epithelial tissue. However, there remains a limited understanding of SGEC in this disease. Consequently, 
researchers primarily focus on comprehending secretory physiology and exploring potential regenerative strategies to repair SGs 
and restore saliva production.133 It is imperative to adopt a comprehensive perspective that encompasses the interplay between 
innate immunity and adaptive immunity while elucidating the role of salivary gland epithelial cells in this process.134 

Nevertheless, current research predominantly concentrates on individual cell interactions,135 necessitating an urgent need for 
holistic comprehension of local immune physiology and pathology within submental gland tissue. As immunologists, we can 
consider utilizing organoid research or clinically-based investigations as pivotal approaches to unraveling Sjögren’s disease 
pathogenesis in future studies.

Conclusion
SGEC plays a protective role in the physiological state, and can also participate in the persistence of inflammation as an 
initiating factor in the pathological state. Given the crucial role of salivary gland epithelial cells in the onset of Sjögren’s 
disease, a treatment based on salivary gland epithelial cells may have the potential to alleviate the condition by 
addressing the inflammatory response in the salivary glands. How to restore the immune function of hyperactive salivary 
gland epithelial cells to a state of calmness is a worthy subject for future research.
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