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Background: Asthma is a common chronic respiratory disease that affects children and adults and can have a serious impact on their 
quality of life. Factors contributing to the development of asthma and related exacerbations are multifactorial, with microbial 
communities colonizing the airways possibly playing a key role.
Methods: The study included asthmatic (79) and healthy children (57) aged 5–16 years. Nasal and throat swabs were collected, and 
bacterial (16s rRNA) and fungal (18s rRNA) amplicon sequence analysis was performed. Diversity indices and the most abundant 
microbial genera were estimated accordingly.
Results: At the level of the bacteriome in the nasal samples, the asthma group had significantly lower diversity than the control group 
(p = 0.02). However, the microbiota of the asthma cohort was more evenly distributed, and staphylococci were enriched in the control 
group. Throat samples collected from the asthma cohort revealed significantly lower diversity (p < 0.0001), with a significant 
difference in species composition between the two groups (p = 0.005). Enriched bacterial species were different within the asthma 
subgroups (controlled vs uncontrolled asthma). The fungal microbiome of the nasal and throat samples showed no difference in species 
richness between the two groups, however, a significant difference in beta diversity (species composition) was detected. The nasal 
samples from the control group were enriched with Malassezia species, while the asthma cases were enriched with Mucor species. On 
the other hand, throat specimens of the asthma group were found to be enriched with Candida and Saccharomyces.
Conclusion: Our findings suggest that asthmatic samples were less diverse than the control samples with certain microbial genera 
enriching some study groups. Addressing the biomarkers that influence the progression of asthma could lead to improved care for 
children suffering from severe asthmatic episodes, possibly by including targeted therapies and prevention strategies.
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Introduction
Asthma is recognized as one of the most common non-communicable diseases among children with a global burden of 
262.41 cases and more death-related reports in low-income countries.1 In Saudi Arabia, the estimated prevalence of 
pediatric asthma has been reported to range from 8% to 25%.2

The global increase in asthma prevalence and the disease’s heterogeneous nature pose challenges for asthma diagnosis 
and management. Thus, a range of biomarkers have been studied as predictors of asthma severity, including IgE levels, 
eosinophil count, vitamin D and interleukins.3 However, the surge of omics research in the past few years has shed light 
on microbiome dysbiosis and allergic disorders, with asthma frequently being studied as a disease model.4

Studies assessing microbial colonization during infancy and the stages of maturation and differentiation have shown 
that certain bacterial genera are more predominant in specimens collected from children with asthma or respiratory 
allergies.5 Evidence suggests a possible link between microbial dysbiosis and a trigger in immune modulation, leading to 
potential exacerbation.6
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The microbial association with asthma progression may not be restricted to bacterial alteration; other microbial 
communities such as fungi and viruses could contribute to disease initiation and/or severity, but their role is poorly 
understood.7

Fungi are also known to be a pathological cause of atopy and asthma. A number of studies have described the 
potential link between asthma and an imbalanced mycobiome, but with a main focus on intestinal rather than airway 
samples.8

Microbial colonization and its relation to asthma development has been evaluated by examining multiple sites, 
ranging from superficial, easy-to-sample sites such as nose, nasopharynx, oropharynx and gut, to more invasive or 
difficult-to-collect specimens such as induced sputum or bronchoalveolar lavage (BAL), all revealed a microbial pattern 
that was altered in individuals with asthma.9

Studies have shown that asthma-related microbiome originates from the pharynx (naso/oropharyngeal path) or gut 
route.9 While the nasal passage is directly connected to the lungs, the throat (oropharynx) acts as a transition zone 
between upper and lower respiratory tract. Thus, both sites have the potential to reflect on the microbial communities 
associated with asthma development. Additionally, swabbing the nose or throat is particularly useful due to its non- 
invasive nature and the high-level of patient acceptability, especially in pediatric studies.

Different practical magnitudes have also been used to assess potential microbial differences, both at a qualitative level 
(diversity and richness) and through a more in-depth functional analysis (ie, what do organisms do?), providing a more 
meaningful explanation of how microorganisms interact with each other and how this interaction modulates the immune 
reaction that eventually shapes signs and symptoms of asthma among affected children.9

In the present study, the aim was to detect the potential differences in the airway bacterial and fungal microbiota 
associated with asthma. Nasal and throat swabs were collected from children with asthma (controlled and uncontrolled 
asthma cases) and from a healthy control group, then microbiota profiles were evaluated.

Materials and Methods
Children Recruitment
Patient Inclusion Criteria
The study enrolled Saudi children with physician-diagnosed asthma (aged 5–16 years) with and without asthma 
exacerbations (controlled and uncontrolled). Controlled asthma was defined as non-urgent, physician-diagnosed asthma 
with symptoms and/or use of reliever medication less than twice/week, no nocturnal symptoms, and no exercise-induced 
symptoms. Uncontrolled, or poorly controlled, asthma is considered if the patient had, in the past 4 weeks, at least 3 of 
the following: self-reported day time symptoms of shortness of breath, or the requirement for the use of short acting 
bronchodilator, more than twice/week, exercise-induced symptoms, and/or nocturnal awakening due to asthma 
symptoms.10 The diagnosis of asthma exacerbation is considered if the patient had worsening of asthma symptoms, 
including shortness of breath, wheezing, and cough, and the need for systemic corticosteroid therapy or hospitalization.11 

In this study, asthmatic patients with an exacerbation were considered under the category of uncontrolled asthma. Healthy 
controls without asthma or atopy were recruited and age- and sex-matched with the asthmatic participants.

Sample collection was conducted prospectively from February 2021 till September 2023. In patients with controlled 
asthma, samples were collected during follow-up visits at least 4 weeks after the resolution of the most recent symptoms 
of asthma exacerbation.

Exclusion Criteria
Individuals with no asthma but who had other diagnoses of pulmonary diseases that may resemble bronchial asthma in 
terms of symptoms and exacerbations were excluded from the study.

Sample Collection and Processing
From each asthma group and control group participants, two nasal swabs (right and left nostril) and one throat swab were 
collected and placed in a tube containing DNA–RNA shield (Zymo Research, USA). The tubes were stored at −80°C 
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until DNA extraction, which was performed using DNeasy PowerSoil Pro Kit with bead beating technology (Qiagen, 
Germany) following manufacturer recommendations.

Beside the swab collection, blood tests and clinical data were gathered for the asthmatic children during the clinic 
visit, therefore no blood test was done for the control group as their samples (only swabs) were collected randomly from 
the community.

16s and 18s Amplicon Sequencing and Filtering
16s ribosomal RNA (rRNA) amplification was conducted as described by Krogsgaard et al12 using primers targeting the 
V3–V4 region (5’-ACTCCTAYGGGRBGCASCAG-3’ and 5’-AGCGTGGACTACNNGGGTATCTAAT-3’) of the ribo-
somal small subunit (16s rRNA) and PCR master mix (Takara Bio Group, San José, CA, USA). Subsequent sequencing 
was performed on the MiSeq platform (Illumina Inc., San Diego, CA, USA) as described by Eickhardt-Dalbøge et al.13

We used three different sets of primers targeting 18s rRNA gene to ensure amplification of as broad a spectrum as 
possible of eukaryotic organisms, including G3F1/G3R1 (5’-GCCAGCAGCCGCGGTAATTC-3’/5’- 
ACATTCTTGGCAAATGCTTTCGCAG-3’), G4F3/G4R3 (5’-CAGCCGCGGTAATTCCAGCTC-3’/5’- 
GGTGGTGCCCTTCCGTCAAT-3’) and G6F1/G6R1 (5’-TGGAGGGCAAGTCTGGTGCC-3’/5’- 
ACGGTATCTGATCGTCTTCGATCCC-3’).10

Prior to analysis, all sequences belonging to Mammalia and Cyanobacteria/Chloroplast were removed. For 18s rRNA 
data, only fungal taxa belonging to phyla associated with infestation of human airways were included: Ascomycota, 
Basidiomycota, Chytridiomycota, Entomophthoromycota, Hyphochytriomycetes, Kickxellomycotina, Mucoromycotina, 
and Peronosporomycetes.14

Statistical Analysis
To identify and visualize taxonomic differences in the bacterial and fungal microbiota between the asthma and control 
groups, analyses of alpha (the Shannon Diversity Index and observed richness) and beta (principal coordinate analysis 
(PCoA) of Bray-Curtis distances) diversity were performed, along with linear discriminant analysis effect size (LEfSe). 
All analyses were performed using the statistical programming software R (v. 4.3.3).15

The R package phyloseq (v. 1.46.0) was used for data handling.16 The seed value was set to 42 throughout the 
analysis. The package ggplot2 v. 3.5.1 was used for data visualization.17 Estimated alpha diversity was compared 
between groups using Wilcoxon rank-sum test. For beta diversity, the Adonis (PERMANOVA) function of the 
“vegan” v. 2.6–6 R package18 was used to assess the significance of beta diversity clustering, while the betadisper 
(ANOVA) function was used to analyze the multivariate homogeneity of group variation. Before ordination analysis, data 
was transformed using the Hellinger method (sqrt(x)/sum(x)). The R package microbiomeMarker (v. 1.8.0) was used for 
the LEfSe analysis.19 P-values less than 0.05 were regarded as statistically significant.

Results
Demographic Data and Laboratory Test results
A total of 136 children (5–16 years old) were recruited in the study (control group = 57, asthma group = 79), and a total 
of 272 samples were collected. Demographic and clinical data for children with asthma are shown in Table 1.

Assessment of Bacterial Microbiota (16s rRNA Metabarcoding)
Alpha (Shannon Diversity and Observed Richness) and Beta Diversity
Based on nasal samples analysis, Shannon diversity showed that the asthma group had significantly higher diversity 
than the control group (p = 0.02); however, the observed number of species (richness), indicated that the asthma group 
had significantly lower diversity compared to the control group (p = 0.02) (Figure 1A). For the Beta diversity (Bray- 
Curtis dissimilarity), there was no significant difference in species composition between the two groups (p = 0.07) 
(Figure 2A).
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In throat samples, the asthma group had significantly lower Shannon diversity (p = 0.04) and observed richness (p ≤ 
0.0001) than the control group (Figure 1B). On the other hand, the species composition (Beta diversity) differed 
significantly between the two groups (p = 0.005) (Figure 2B).

Predominant Bacterial Genera in Nasal and Throat Samples
Nasal swabs assessment revealed 466 bacterial genera and the most prevalent bacterial genera are shown in Figure 3A.

The most prevalent genera inhabiting the nasal samples were Gemella, Dolosigranulum, Corynebacterium, Rothia, 
Moraxella, Haemophilus, Prevotella, Staphylococcus, Streptococcus and Veillonella (Figure 3a). However, the 
Staphylococci genus was enriched in the control group of the 205 bacterial genera detected in throat samples, the top 

Table 1 Demographic and Clinical Data of 
Asthmatic Cohort Included in the Study

Frequency %

Gender

Female 29 36.7

Male 50 63.3

Age (Years)

2–5 14 17.7

6–10 40 50.6

11–16 25 31.6

Asthma control

Not controlled 24 30.4

Controlled 55 69.6

Allergies

Single allergy 49 62.0
Multiple allergies 30 38.0

Therapy

No drug given 4 5.1

Single drug 53 67.1
Multiple drugs 22 27.8

Vitamin D

Severe deficiency 16 20.3

Mild to moderate deficiency 35 44.3
Optimum level 13 16.5

Increased risk of hypercalciuria 1 1.3

IgE level 

Normal 39 49.4

Abnormal 26 32.9

Eosinophil count

Normal 8 10.1
Abnormal 62 78.5
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10 most prevalent genera are shown in Figure 3B. Actinomyces, Gemella, Fusobacterium, Leptotrichia, Rothia, 
Haemophilus, Alloprevotella, Prevotella, Streptococcus and Veillonella appeared to be the most prevalent genera in the 
throat samples (Figure 3B). Interestingly, in the controlled asthma group, a range of bacterial genera seemed to be 
enriched, namely Fusobacterium, Streptococcus, Prevotella, Veillonella, Gemella, Haemophilus, Rothia, Leptotrichia, 

Figure 1 Alpha diversity for samples based on 16s rRNA analysis: observed richness (left) and Shannon diversity (right) indices of nasal (A) and throat samples (B). Although 
nasal asthmatic samples appeared to be more diverse, observed number of species was significantly lower than that of the control group. For the samples collected from 
throat, alpha diversity indices showed a lower diversity profile among asthmatic samples.
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Alloprevotella, Campylobacter, Actinomyces and Neisseria (Figure 3C). For the uncontrolled asthma, samples were 
enriched with Prevotella, Streptococcus, Veillonella, Lachnoanaerobaculum and Granulicatella (Figure 3C).

Assessment of Fungal Microbiota (18s rRNA Metabarcoding)
Alpha (Shannon Diversity and Observed Richness) and Beta Diversity
For both nose and throat samples, there was no statistical difference in the observed richness of controls and asthmatic 
cases (p > 0.05) (Figure 4A, 4B). Although, the healthy group in our study had a tendency towards an increased richness 
of the selected fungal genera, the difference was not statistically significant (Figure 4A, 4B). For the beta diversity, we 
observed a significant difference in species composition (beta diversity) between the two groups in nasal (p = 0.029) and 
throat samples (p = 0.019) (Figure 5A, 5B).

Predominant Genera in Nasal and Throat Samples
Out of the 213 fungal genera identified in the nasal swabs, the top 10 most prevalent were found to be Penicillium, 
Cladosporium, Malassezia, Mucor, Alternaria, Curvularia, Lewia, Candida, Saccharomyces and Aspergillus (Figure 6A). 
The genus Mucor was enriched in the asthma group, whereas the control cohort was enriched with Malassezia.

For the throat samples, the most prevalent fungal genera included Penicillium, Cladosporium, Malassezia, Alternaria, 
Candida, Saccharomyces, Trichosporon and Aspergillus (Figure 6B).

Figure 2 Beta diversity (PCoA plot of Bray-Curtis dissimilarity) of bacterial microbiota associated with asthma and control groups in nasal (A) and throat samples (B). 
There was no significant difference in species composition between the two groups in nasal samples (A). For throat swabs, the species composition differed significantly 
between the two groups, with homogeneous dispersion (B).
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Assessment of throat samples revealed that the family Saccharomycetaceae and the genus Candida were more 
abundant in the asthma group compared to the control group.

Additionally, no significant difference was identified at the alpha and beta diversity levels between the asthma sub- 
groups (controlled vs uncontrolled cases).

Figure 3 The relative abundance of the 10 most prevalent bacterial genera classified using 16s rRNA sequencing, in nasal (A) and throat (B) samples. Each bar represents 
a sample, with low abundance taxa or unclassified microorganisms grouped under “other”. Linear discriminant analysis effect size (LEfSe) shows enriched genera (C) within 
throat samples of asthma sub-groups: uncontrolled (left) and controlled (right). “g” is genus and “f” is family.
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Figure 4 Alpha diversity based on 18s rRNA analysis: observed richness of nasal (A) and throat (B) samples. For both nose and throat samples, there was no statistical 
difference in the observed richness between control and asthma cases.

Figure 5 Beta diversity (PCoA plot of Bray-Curtis dissimilarity) of Fungal microbiota related to control and asthma cases. A significant difference in species composition 
between the two groups in nasal (A) and throat samples (B) was detected.
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Discussion
The current study assessed potential differences in microbial diversity and composition between children with asthma 
and their healthy counterparts. In our study, nasal samples showed significant differences in alpha diversity between the 
control and the asthma group. The control group showed increased observed richness, while the asthma group had higher 
Shannon diversity (evenness). This could be attributed to the fact that even though the asthma group consisted of fewer 
taxa, the Shannon diversity is still higher as the taxa were more evenly distributed, compared to the control group. In 
some studies, both observed richness and Shannon diversity were found to be lower among the asthma cohort.6

The most prevalent bacterial genera (Figure 3A) identified in our work are similar to those detected by other cross- 
sectional and longitudinal studies that described abundance of Proteobacteria, Actinobacteria, Bacteroidetes and 
Moraxella, Corynebacterium, Dolosigranulum and Prevotella in their samples.20,21

We found that the observed number of species were significantly lower among asthmatic samples with lower 
abundance of Staphylococci species compared to the control group. This is consistent with studies describing the 
Staphylococci as a common colonizer in anterior nares among healthy individuals.22 On the other hand, Tang et al 
reported the presence of a Staphylococcus-dominant microbiome in individuals with asthma.16 Early life studies had also 
linked the dominance of Staphylococcus in the airways with asthma development later in childhood.23,24 Similarly, other 
studies have reported asthmatic microbiome enriched with certain bacterial communities such as Moraxella, 
Streptococcus, and Haemophilus.9,25,26

With regards to the throat swabs analysis, our findings suggest that the asthma group samples had significantly lower 
diversity indices than the control specimens (Figure 1B and figure 2B), with a range of bacterial genera colonizing the 
throat samples (Figure 3B). There was also a significant difference between the microbial communities of the two groups 

Figure 6 The relative abundance of the 10 most prevalent fungal genera classified by 18s rRNA sequencing, in nasal (A) and throat (B) samples. Each bar represents 
a sample, with low abundance taxa or unclassified organisms grouped as “other”. “g” is genus and “f” is family.
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(beta diversity), and, remarkably, the enriched species differed within the asthma cohort (controlled vs uncontrolled 
asthma cases).

In a multi-center European study that evaluated 241 oropharyngeal swab samples from school-age and preschool 
children, Veillonella, Haemophilus, Prevotella and Rothia appeared to be the most common genera identified, with no 
significant difference in the microbial composition between children with severe and mild asthma.27 Similar microbial 
clusters were found in the throat samples collected from both groups in our study.

In the current study, Streptococci, Prevotella, and Veillonella were enriched in throat samples collected from both 
controlled and uncontrolled asthma cases. However, other different genera were enriched in both categories (Figure 3B). 
Our uncontrolled asthma cohort was enriched with Fusobacterium, Gemella, Haemophilus, Rothia, Actinomycetes and 
Neisseria consistent with Pérez-Losada work, who identified similar microbial genera in the oral cavity of patients when 
analyzing cases with allergic rhinitis with and without asthma.28

On the other hand, Van Beveren et al noted that certain genera dominate the asthma cases (with and without 
exacerbation) including staphylococci, Neisseria, and anaerobes with minimal differences in microbial abundance 
between mild and severe asthma cases, thus questioning the association between microbiota and exacerbation 
severity.29,30

The modest differences in microbiota seen in our study between asthma subcategories could be related to clinical 
factors such as the presence of other atopic condition or treatment plan that exposes uncontrolled asthma cases to steroids 
and antibiotics31 and more important the sample size included in our work (24 not controlled vs 55 controlled cases); 
therefore, more work is needed to explore this direction.

In the current study, the presence of fungal genera belonging to selected phylae in the airways was also evaluated. At the 
alpha diversity level, nasal samples did not show any significant variation; however, genera composition (beta diversity) 
appeared to be significantly different between the two groups (Figures 4–6). Unfortunately, assessment of fungal composition 
in patients with asthma has been described in a limited scope, with a focus on gut-lung access. Such research has linked 
a predominance of certain fungal genera like Candida with increased risk of asthma in children and adults.32

In our cohort, the nasal mycobiota showed abundance of a range of fungal genera including Penicillium, 
Cladosporium, Malassezia and Saccharomyces, however, the control cohort showed increased abundance of 
Malassezia (a genus in the phyla of Basidiomycota). This contrasts with studies that have linked Malassezia colonization 
to certain respiratory conditions such as chronic rhinosinusitis and asthma.33 In another study, 499 fungal genera were 
identified in asthmatic samples collected from nasal blow samples, with certain species of Malassezia being the most 
dominant.34 Interestingly, a shift between the different Malassezia species has been observed in episodes of controlled 
and exacerbated asthma conditions, however this study did not include healthy control samples.34

We found that among asthma cases, certain fungal clusters were enriched, namely the family: Mucoraceae and the 
genus Mucor, consistent with studies linking Mucor presence in the environment with the risk of asthma exacerbation in 
children.35 Contrary, Yuan et al reported that the mold Mucor was negatively correlated with asthma exacerbations.34

Similar to the nose samples, the throat samples from both categories showed common fungal genera such as 
Penicillium, Cladosporium, Malassezia, Alternaria, Candida, Saccharomyces, Trichosporon and Aspergillus 
(Figure 6A); however, the asthma cohort was enriched with Saccharomyces and Candida. Although the former genera 
are known to be part of the developing mycobiome since infancy36 and among healthy adults with higher intraindividual 
variability,37 other studies showed an elevation in Candida species in asthmatic airway samples relative to a healthy 
control.38 On the other hand, work by Da Liu et al showed that certain species of Saccharomyces can alleviate the asthma 
condition.39 Yet, their work was based on samples collected from the gut. Saccharomyces dominance was also linked to 
symptoms severity in a study evaluating mycobiome differences among other respiratory conditions, known as chronic 
obstructive pulmonary disease (COPD).7

Notably, both nose and throat samples evaluated for fungal microbiota revealed significant differences in species 
composition, and this could relate to the notion that the airways are frequently exposed to fungal elements colonizing 
household environments, leading to a wide variability in mycobiota composition between individuals.40

Although studies have shown that certain fungi are frequently linked to asthma and to other allergic diseases, the 
underlying process remains unclear. For instance, it is not clear whether early exposure leads to sensitization followed by 
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consequent hypersensitivity or directly by imposing immunomodulatory effects.8 Taken together, studies have reported 
variable findings concerning the microbial diversity and its relation to asthma exacerbations. Some studies had identified 
no difference or lower diversity and others found that higher diversity is linked to loss of asthma control and prolonged 
wheezing episodes.

One aspect to consider in the current study is the use of Bray-Curtis for beta-diversity in the 18S fungal dataset. 
Although commonly used in microbiome studies,41 this metric may be influenced by data filtering to exclude mammalian 
sequences. Therefore, alternative metrics less affected by filtration may be more suitable for future analyses.

Factors influencing microbiota differences could also be related to the anatomical sampling site within the upper 
respiratory tract (e.g, nasopharynx, hypopharynx, oropharynx, nasal cavity swabbing or wash), time of sample collection 
across the year, age, treatment received (antibiotics in particular), variation in sample size, genetic background and living 
environment.40 Additionally, technical steps involved in the process of microbiome study play a major role in result 
variation including sample storage, DNA extraction methods, metabarcoding technique, sequencing platform, and to the 
bioinformatic pipeline used.42

In the current study, Vitamin D levels were low and eosinophil count was elevated among the asthma group samples, 
these findings are in agreement with previous studies targeting biomarkers of asthma severity.3,43 However, since data 
were only available for the asthma group, no further work was done to link vitamin D level or other allergy biomarkers 
with microbiome disturbance between control and cases.

Although, in our study, certain bacterial and fungal community types have been detected in the patients’ samples, 
more studies are needed to understand the relationship between certain mycobiome–bacteriome interactions and factors 
influencing this partnership in the different asthma phenotypes, such as dietary, drug and environmental aspects. Our 
study examined the microbiome differences at a single point estimate, and this may be considered a limitation, as studies 
addressing microbial differences on a longitudinal scale demonstrated variation in microbial dominance relative to the 
patient condition.26

Though difficult to collect from children, more invasive samples (sputum, BAL) and higher sample size may reveal 
different microbiome profiles and provide more insights into how microbiomes evolve and respond to changes that shape 
the severity of asthma.

To the best of our knowledge, this is the first study in Saudi Arabia assessing the bacterial and fungal microbiota 
among children with asthma.

Conclusion
The airway microbiota changes extensively from birth. In the past decade, researchers have directed increasing attention 
to evolving microbiomes and the related risks of allergies and asthma progression. In the current study, the asthmatic 
airways were found to be significantly less diverse with enrichment of certain genera in both the asthmatic children and 
the control group. Although the current report focuses on the potential alteration of the airway’s microbiota, represented 
by nose and throat samples, combining a multi-omics approach (proteomics, transcriptomics, and metabolomics) could 
improve our understanding of asthma initiation and progression.

Data Sharing Statement
The datasets used and/or analyzed in the current study are available from the corresponding authors upon reasonable 
request.

Ethical Approval and Consent to Participate
The ethical approval for this study was granted by the Institutional Review Board of Imam Abdulrahman bin Faisal 
University (IAU), Dammam, Saudi Arabia (IRB-2020-03-408).

Informed consent was obtained from parents before the children’s enrollment and sample collection.
The work described has been carried out in accordance with The Code of Ethics of the World Medical Association 

(Declaration of Helsinki) for experiments involving humans.
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