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Background: Systemic lupus erythematosus (SLE) is characterized by aberrant immune activation and disrupted iron metabolism, yet 
the molecular mediators that govern both processes remain unclear. This study aims to identify pivotal genes that modulate immune 
responses and iron metabolism, and to delineate their contributions to SLE pathogenesis.
Methods: Differentially expressed genes related to iron metabolism (IM-DEGs) were identified using datasets (GSE72326, 
GSE110169, GSE126307, and GSE50772) from the GEO database and the MSigDB. Functional enrichment analyses were performed 
on the iron metabolism related genes (IM-Genes). A weighted gene co-expression network analysis was constructed to identify hub 
genes, which were further refined as potential biomarkers using the least absolute shrinkage and selection operator method. The 
predictive value of these biomarkers was validated using receiver operating characteristic (ROC) curves and the nomogram. 
CIBERSORT was employed to evaluate immune cell infiltration in SLE. Additionally, the expression and function of RSAD2 were 
confirmed using RNA interference, quantitative real-time PCR, and Western blotting techniques.
Results: Bioinformatics analyses identified 4 potential biomarkers: RSAD2, MT2A, LCN2, and LTF. RSAD2 exhibited the highest clinical 
validity (AUC = 0.927) and was closely associated with classic diagnostic indicators. Its diagnostic potential was confirmed through ROC 
curve and nomogram, highlighting its role in SLE pathogenesis. Elevated RSAD2 expression was observed in peripheral blood mononuclear 
cells of SLE patients, positively correlating with activated dendritic cells (DCs). Notably, Rsad2 knockdown markedly impaired the function 
of activated DCs, as evidenced by suppressed expression of inflammatory mediators and iron metabolism-related genes.
Conclusion: Our findings suggest that RSAD2 is a potential diagnostic biomarker and therapeutic target for SLE, elucidating the 
intricate relationship between immune dysregulation and aberrant iron metabolism in activated DCs, which exacerbates SLE.
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Introduction
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by heterogenous manifestations.1 

The pathogenesis of SLE is complex, involving the breakdown of immune tolerance, which leads to the production of 
autoantibodies, formation of immune complexes, and their deposition in multiple organs.2,3 Recent studies have 
demonstrated a positive correlation between elevated interferon (IFN) signatures and increased SLE activity, as well 
as higher autoantibody levels. Notably, approximately 60% to 80% of SLE patients exhibit upregulated expression of 
IFN-stimulated genes (ISGs).4 Dendritic cells (DCs), as the most potent antigen-presenting cells, play a pivotal role in 
initiating autoimmune responses and maintaining immune tolerance. Overactivation of DCs can trigger inflammatory 
mediators, disrupt the balance between effector and regulatory T cells, and lead to sustained B cell activation and 
autoantibody production.5

Systemic and intracellular iron homeostasis is essential for numerous biological procedures, including energy 
metabolism, DNA synthesis, oxidative stress management, and cellular respiration. This balance is maintained 
through the coordinated regulation of iron absorption, utilization, storage, recycling, and export.6 Disruption of iron 
metabolic homeostasis is frequently observed in SLE. For instance, many SLE patients exhibit clinical signs 
resembling iron deficiency anemia due to decreased serum iron levels.7 Conversely, iron overload has been 
identified within the renal tissues of patients with lupus nephritis (LN), highlighting the complexity and variability 
of iron homeostasis alterations in SLE.8 Emerging evidence suggests that disturbances of iron metabolism within 
immune cells contribute to SLE pathogenesis.8–10 Although previous studies have highlighted the critical role of 
DCs in initiating autoimmune responses, the interplay between iron metabolism and DCs activation in the context 
of SLE remains poorly understood. Additionally, specific biomarkers for iron metabolism disorders in SLE are 
lacking, and little is known about genes that could simultaneously regulate immune response and iron metabolism 
in SLE.

This study aims to identify key biomarkers associated with iron metabolism in SLE by analyzing raw data from the 
Molecular Signatures Database (MSigDB) and the Gene Expression Omnibus (GEO) database. Through bioinformatics 
analyses, we pinpointed RSAD2 as the key biomarker and validated its expression and protein levels in clinical 
samples. Our findings highlight the critical role of RSAD2 in iron metabolism and the activation of DCs. Notably, this 
research underscores the potential of RSAD2 in predicting iron metabolism disorders linked to immune dysregulation 
in SLE, thereby offering new insights into the mechanisms of SLE and paving the way for innovative therapeutic 
strategies.

Materials and Methods
Data Acquisition and Processing
Microarray datasets, GSE72326 was retrieved from the NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo/).11 This 
dataset, based on the GPL10558 platform (Illumina HumanHT-12 V4.0 expression beadchip), comprised 157 SLE blood 
samples and 20 healthy control (HC) samples (Table 1). Detailed information regarding samples in this dataset was 
provided in the Supplementary Table S1. Probe annotations were converted to corresponding gene symbols using 
platform-specific annotation files.

Identification of DEGs
The GEO2R web application (http://www.ncbi.nlm.nih.gov/geo/geo2r), which employs the “limma“ R package (v3.54.0), 
was used to identify differentially expressed genes (DEGs) between SLE patients and HCs. Genes lacking official gene 
symbol or with multiple probe sets were excluded from the subsequent analysis. The criteria for DEGs were determined 
with p < 0.05 and |log2FC| >1.12 Volcano plots and heatmaps were generated using “ggplot2” and ”pheatmap” 
R packages to visualize the DEGs.
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Identification of Iron Metabolism Related Genes
A total of sixteen gene sets related to iron metabolism were curated from the MSigDB (http://software.broadinstitute.org/ 
gsea/index.jsp), yielding 514 unique genes after removing duplicates (Supplementary Table S2).13 A Venn diagram14 was 
utilized to separately perform the intersection between dataset genes and iron metabolism gene lists by “ggVennDiagram” 
R package, resulting in the identification of 124 iron metabolism-related genes (IM-Genes) in SLE.

Functional Annotation and Pathway Enrichment Analyses
Gene Ontology (GO) enrichment analysis was performed using the “clusterProfiler“ R package, encompassing biological 
process (BP), cellular component (CC) and molecular function (MF) domains. Results were visualized using the 
“ggplot2” and ”GOplot” R packages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was 
conducted using FunRich 3.1.3 (http://www.funrich.org/). Statistical significance was set at p < 0.05 for both GO and 
KEGG analyses.

Construction of WGCNA
The weighted gene co-expression network analysis (WGCNA) was performed using the “WGCNA“ R package to 
construct co-expression networks of genes from GSE72326. Briefly, a correlation matrix was generated using the Pearson 
correlation coefficients, which was then transformed into a weighted adjacency matrix using an appropriate soft- 
thresholding power. The pickSoftThreshold function is utilized to assist in the selection of the soft threshold. This 
adjacency matrix was converted to a topological overlap matrix (TOM), and genes were clustered into modules based on 
TOM dissimilarity using average-linkage hierarchical clustering. Closely related modules were merged, and module 
eigengenes (MEs) were calculated as the first principal component of each module. Module-trait relationships were 
determined based on correlations between gene modules and clinical traits. Hub genes associated with iron metabolism in 
SLE were identified as those with the highest intramodular connectivity. The ”ggVennDiagram” R package was utilized 
to identify overlapping biomarkers.

Identification and Validation of Potential Biomarkers
The 124 IM-Genes were further analyzed using the LASSO logistic regression algorithm implemented in the “glmnet” 
package of R software.15 The LASSO model parameters were set as follows: alpha = 1; maximum iterations (max_iter): 
500; data normalisation was not performed; and the coefficient update method was cyclic.

To identify candidate genes with high sensitivity and specificity for SLE diagnosis, ROC curves of 4 IM-DEGs were 
generated and the area under the curve (AUC) was calculated using the “pROC“ package in R.16 An AUC value of 
0.5–0.7 indicates a low diagnostic effect, 0.7–0.9 suggests a moderate effect, and above 0.9 indicates a high diagnostic 
accuracy. For further validation, we employed an independent dataset GSE110169 (GPL13667 platform, Affymetrix 
Human Genome U219 Array) comprising 82 rheumatoid arthritis (RA) and 73 SLE samples (Table 1). A risk model was 
constructed using logistic regression, and its performance visualized through a nomogram generated with the ”regplot” 
R package.17 Model calibration predictive performance was assessed by generating a calibration curve.

Table 1 Dataset Information From GEO Database

Dataset Sample Size Platform

GSE72326 177 
(comprising 20 hC and 157 SLE samples)

GPL10558 platform 
(Illumina HumanHT-12 V4.0 expression beadchip)

GSE110169 155 

(comprising 82 RA and 73 SLE samples)

GPL13667 platform (Affymetrix Human Genome U219 Array)

GSE50772 81 

(comprising 20 hC and 61 SLE samples)

GPL570 platform 

([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array)

GSE126307 40 
(comprising 9 hC and 31 SLE samples)

GPL13369 platform 
(Illumina Human Whole-Genome DASL HT)

Abbreviations: HC, healthy control; SLE, systemic lupus erythematosus; RA, rheumatoid arthritis.
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Evaluation of Immune Cell Infiltration
We estimated the relative proportions of infiltrating immune cells using the Cell-type Identification By Estimating 
Relative Subsets Of RNA Transcripts (CIBERSORT) package in R (https://cibersort.stanford.edu/)18 on the LM22 gene 
signature file from CIBERSORT and immune cell markers from PanglaoDB (https://panglaodb.se/index.html). 
Differences in immune cell composition between the HC and SLE groups were compared, with statistical significance 
set at p < 0.05. The “ggplot2” package was used to visualize the results.

Immune Correlation Analysis
The “corrplot“ R package was utilized to analyze the correlation between the expression of RSAD2 and the proportion of 
immune cells. A correlation diagram was created with the “ggplot2” R package to illustrate the immune relationships 
between RSAD2 and specific immune cells. Statistical significance was set at p < 0.05. The correlation of 4 IM-DEGs 
with immune cells was determined using the cor function and visualized using the ”pheatmap” package.

Validation of the Hub Genes Expression
To validate the expression of the hub genes in SLE, datasets GSE126307 (platform GPL13369, Illumina Human Whole- 
Genome DASL HT) and GSE50772 (platform GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array) were analyzed. The detailed information of the two datasets could be found in Table 1. Data visualization was 
conducted using the “ggpubr” R package to generate box plots.

Ethics Approval
This study was conducted in accordance with the Declaration of Helsinki and received approved from the Clinical 
Research Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University. All participants provided 
signed informed consent forms. The Issuing Number is KY2023-083. All experiments using mice were approved by the 
Institutional Animal Care and Use Committee at Wenzhou Medical University (Animal Welfare Assurance), the approval 
number for animal ethics is xmsq2022-0792 and complied with the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals.

Human Subjects and Clinical Protocol
Clinical samples were collected from the First Affiliated Hospital of Wenzhou Medical University between January and 
December 2023. All patients met the American College of Rheumatology revised criteria for the classification of SLE.19 

The SLE disease activity index 2000 (SLEDAI-2K) was assessed at the time of blood sampling.20 Detailed clinical 
features of the participants are available in Table 2. PBMCs were isolated from peripheral blood using Ficoll density 
gradient centrifugation.

Table 2 Clinical Patients Information and Related 
Immune Molecules

Characteristics SLE HC

Number of cases 46 20
Age, Mean ± SD (years) 36.45 ± 7.11 30.48 ± 5.39

Sex ratio (male: female) 1:8 1:6

C3 (g/L) 0.69 ± 0.08 1.18 ± 0.6
C4 (g/L) 0.13 ± 0.17 0.35 ± 0.74

IgG (g/L) 18.35 ±4.37 9.21 ± 2.81

Albumin (g/L) 45.3 ± 6.6 42.7 ± 5.9
BUN (mmol/L) 6.5 ± 1.2 3.4 ± 0.9

Creatinine (μmol/L) 112 ± 17 46 ± 3

Abbreviations: SLE, systemic lupus erythematosus; HC, healthy 
control; C3, complement component 3; IgG, immunoglobulin G; 
BUN, blood urea nitrogen.
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Primary Dendritic Cell Culture
Female C57BL/6 mice, aged 4–6 weeks, were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. 
These mice were maintained under specific pathogen-free (SPF) conditions, with a 12-hour light-dark cycle. A minimum 
acclimation period of one week was allowed before any experimental procedures were conducted. Bone marrow-derived 
dendritic cells (BMDCs) were generated from femoral and tibial bone marrow progenitor cells. Following harvest, cells 
underwent erythrocyte lysis using a buffer provided by Solarbio (Beijing, China). These cells were then seeded in 12-well 
plates at a density of 1×106 cells/mL in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum, 10 ng/ 
mL recombinant GM-CSF and 10 ng/mL recombinant IL-4 (PeproTech, Rocky Hill, NJ, USA). Half of the medium was replaced 
every 2 days. By day 6, non-adherent and loosely adherent cells were collected for further experimental use. All cell cultures were 
incubated at 37 °C in a humidified 5% CO2 incubator.

RNA Interference
Small interfering RNA (siRNA) targeting murine Rsad2 and negative control siRNA (scrambled siRNA) were designed 
and synthesized by RiBoBio (Guangzhou, China). The sequences of Rsad2 siRNA were as follows: sense, 5′- 
GCAGAAAGAUUUCUUAUAA-3′; antisense, 5′-UUAUAAGAAAUCUUUCUGC-3′. BMDCs were seeded in 6-well 
plates and stimulated with 1 μg/mL lipopolysaccharide (LPS; Sigma-Aldrich, St. Louis, MO, USA) for 24 h. Cells were 
then transfected with 200 nM siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s instructions. Knockdown efficiency was assessed by RT-qPCR and Western blot analysis 24 h post- 
transfection.

RNA Extraction and RT-qPCR
Total RNA was extracted from cells using Trizol reagent (Takara, Shiga, Japan) according to the manufacturer’s 
instructions. RNA quality and concentration were assessed at 260/280 nm using a NanoDrop spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). One microgram of RNA was reverse-transcribed to cDNA according 
to the kit (Vazyme, Nanjing, Chian). Quantitative real-time PCR was performed using ChamQ SYBR Green Master 
Mix (Vazyme). The primer sequences were as follows: Rsad2, forward 5′-ACCCTCCTACCTCAACTCCAAG-3′, and 
reverse 5′-CCATCCAACTGACCACATCCAT-3′; β-actin, forward 5′-TCAAGATCATTGCTCCTCCTGAG-3′, and 
reverse 5′-ACATCTGCTGGAAGGTGGACA-3′. The cycling conditions were: 95°C for 30s, followed by 40 cycles 
of 95°C for 10s, and 60°C for 30s. Relative gene expression was calculated using the 2^-ΔΔCt method, where the fold 
difference = 2−(ΔCt of the target gene-ΔCt of the reference gene) = 2−ΔΔCt. The normalized value for RSAD2 mRNA expression 
were calculated as the relative quantity of RSAD2 divided by the relative quantity of β-actin. All samples were run in 
triplicate.

Western Blotting
Cells were lysed in RIPA buffer (Beyotime, Shanghai, China) supplemented with 1 mm PMSF. Protein concentra-
tions were determined using a BCA Protein Kit (Beyotime, Shanghai, China). Equal amounts of protein were 
separated by 12% SDS-PAGE and transferred to PVDF membranes (Millipore, Burlington, MA, USA). Membranes 
were blocked with 5% non-fat milk in TBST for 1h at room temperature and then incubated with primary antibodies 
(1:2000) overnight at 4°C. After washing, membranes were incubated with HRP-conjugated secondary antibodies 
(1:3000, Affinity Biosciences, Cincinnati, OH, USA) for 1 h at room temperature. Protein bands were visualized 
using an enhanced chemiluminescence kit (Vazyme) and imaged using an Amersham Imager 680 (GE Healthcare, 
Chicago, IL, USA). Band intensities were quantified using Image J software (National Institutes of Health, Bethesda, 
MD, USA).

Statistical Analysis
Statistical analyses were conducted using R software (version 4.3.2) (https://www.r-project.org/) and the relevant 
R packages (http://www.bioconductor.org/). Continuous variables were analyzed using Student’s t-test or one-way 
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ANOVA with Tukey’s post hoc test for multiple comparisons. Correlations were assessed using Spearman’s rank 
correlation coefficient. P < 0.05 was considered statistically significance. Data are presented as mean ± standard 
deviation (SD) from at least three independent experiments. GraphPad Prism 8 (GraphPad Software, San Diego, USA) 
was used for data visualization.

Results
Identification and Biological Enrichment Analyses of DEGs
Figure 1 depicts the comprehensive workflow of our study. Utilizing high-throughput transcriptomic analysis, we utilized 
dataset GSE72326 from the GEO database, ultimately identifying 4950 genes with p-value < 0.05. The GSE72326 
dataset21 comprises 177 samples, including 157 SLE patients and 20 hCs (Supplementary Table S1). With the threshold 
of |log2FC| > 1 and p-value < 0.05, we identified 100 DEGs (90 up-regulated, 10 down-regulated). These DEGs were 
visually represented in the volcano plots (Figure 2A). A heatmap was generated to display the expression patterns of the 
top 10 upregulated and top 10 downregulated genes with the most statistical significance (Figure 2B). The comprehensive 
list of all DEGs were listed in Supplementary Table S3.

Subsequently, GO and KEGG pathway enrichment analyses were performed to explore the functional implications of 
the 4950 genes. GO analysis highlighted key BP, MF and CC terms, particularly focusing on immune response 
regulation. Significant GO terms include those related to the regulation of innate immune response, response to type 
I IFN, cellular response to type I IFN, and IFN-mediated signaling pathways, as detailed in the chord diagram 
(Figure 2C) (Supplementary Table S4). The KEGG pathway enrichment analysis further emphasized the involvement 
of critical immune pathways, notably IFN-α/β signaling, and cytokine signaling in the immune system. These biological 
pathways were associated with significant p-values and effect sizes (Figure 2D), supporting the central role of these genes 
in the dysregulation of immune responses in SLE pathogenesis.

Identification of Key Gene Modules Associated With SLE Progression by WGCNA
To elucidate the gene modules relevant to the progression of SLE, we applied WGCNA to the GSE72326 dataset. Initial 
clustering of all samples facilitated the inclusion of relevant data for subsequent analysis (Figure 3A). The optimal soft- 
threshold power was determined to be β = 12, achieving a scale-free topology fit index R2 = 0.9, which confirmed the 
scale-free network distribution of gene connectivity (Figure 3B). A hierarchical clustering tree was constructed using the 
TOM, resulting in the identification of eight distinct gene modules after merging those with similar expression profiles 
(Figure 3C). Each module was assigned a unique color for ease of identification. The correlation analysis conducted 
between these modules and clinical traits demonstrated a statistically significant correlation with the clinical character-
istics of SLE. Specifically, the blue, brown, red, and yellow modules exhibited statistically significant correlations with 
SLE (p < 0.05), as depicted in module-trait heatmap (Figure 3D). Notably, the MEbrown module demonstrated the 
strongest positive correlation with SLE, with a correlation coefficient of 0.53. Further analysis using a scatter plot 
confirmed correlation between the brown module and SLE (r = 0.7, p = 7.3e–34) (Figure 3E), comprising 221 genes 
(Supplementary Table S5).

Identification and Functional Enrichment of IM-Genes in SLE
We initially screened 514 iron metabolism genes from the MSigDB database (Supplementary Table S3). To identify the 
overlapping results between two databases, a Venn analysis was conducted. Of the 4950 genes identified in SLE (p < 
0.05), 124 were found to overlap with IM genes, termed IM-Genes (Figure 4A). GO enrichment analysis of the 124 IM- 
Genes revealed their involvement in key terms including mitochondrial membrane composition, iron-sulfur cluster 
binding, and metal ion binding, implicating their potential roles in both iron metabolism and mitochondrial dysfunction 
in SLE (Figure 4B) (Supplementary Table S4). Further KEGG enrichment analysis highlighted significant involvement in 
pathways related to iron uptake and transport, xenobiotic metabolism, and transferrin endocytosis, underscoring the 
importance of iron homeostasis in SLE pathogenesis (Figure 4C). To narrow down critical IM-Genes, we intersected the 
IM gene set with the top 100 DEGs in SLE (p < 0.05, |log2FC| > 1) and WGCNA modules (blue, brown, red, and 
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Figure 1 Workflow of the study. *p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001, ns p ≥ 0.05.
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Figure 2 Identification and biological enrichment analyses of genes from GSE72326. (A) Volcano plot illustrating the distribution of DEGs in GSE72326. Nodes in red 
represent up-regulated genes, blue represent down-regulated genes, and gray represent no significantly changed genes (|log2 FC |> 1, p < 0.05). (B) The heatmap of top 20 
DEGs in GSE72326. Blue and red colors represent low and high expression values, respectively. (C) 4950 Dataset genes in SLE for GO enrichment. (D) KEGG enrichment 
analysis of 4950 dataset genes involved in SLE progression. Top 6 terms of KEGG analysis in biological pathway category (ranked by p-value).
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yellow). This yielded 4 hub IM-DEGs: RSAD2, MT2A, LCN2, and LTF, which are likely key regulators of iron 
metabolism in SLE (Figure 4D). These genes may serve as potential biomarkers or therapeutic targets for SLE, 
highlighting the pivotal role of iron dysregulation in its pathogenesis.

Verification of the IM-Related Biomarkers for SLE Diagnosis
To investigate whether the 4 identified IM-DEG biomarkers could serve as novel clinical diagnostic indicators for SLE 
and RA, a validation was conducted using the dataset GSE110169 dataset.22 This dataset includes samples from 
77 healthy individuals, 82 SLE patients, and 84 RA patients. The analysis focused on the development of a risk 
prediction model, which demonstrated promising performance, as evidenced by the calibration curve that showed strong 
agreement between predicted and actual disease probabilities (Figure 5A). This underscores the robustness of the model 
in predicting SLE risk with minimal deviation, as seen by the consistency of the apparent, bias-corrected, and ideal 
curves. A nomogram was constructed to further elucidate the contribution of 4 IM-DEGs (MT2A, LCN2, LTF and 
RSAD2) to SLE risk prediction. RSAD2, in particular, emerged as the most significant contributor. The combined 
predictive score from these variables allowed for an accurate estimation of individual SLE risk (Figure 5B).

To assess the diagnostic capabilities of the biomarkers, ROC curves were generated. Among the 4 IM-DEGs, RSAD2 
exhibited the highest diagnostic value for SLE, with an AUC of 0.927 (Figure 5C), suggesting its potential as a highly 
reliable biomarker for SLE diagnosis. In contrast, MT2A, LCN2, and LTF demonstrated moderate to lower AUC values, 
indicating relatively weaker predictive power. To explore the discriminative ability of these biomarkers in differentiating 
SLE from RA, a second ROC analysis was performed. RSAD2 once again showed the highest diagnostic accuracy, 
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achieving an AUC of 0.909 (Figure 5D). This finding highlights RSAD2’s capacity not only to diagnose SLE but also 
distinguish it from RA, two autoimmune diseases that share clinical similarities. In summary, RSAD2 consistently 
demonstrated superior diagnostic performance, with AUC values exceeding 0.9 in both SLE diagnosis and differentiation 
from RA. These findings suggest that RSAD2 could be a reliable biomarker for predicting occurrence of SLE and could 
potentially serve as a valuable tool in evaluating therapeutic efficacy in clinical settings.

Identification of RSAD2 as a Key Biomarker in SLE-Associated Iron Metabolism
The 124 IM-Genes were subsequently subjected to LASSO regression algorithm to pinpoint high-value diagnostic 
biomarkers. The LASSO model generated a coefficient profile (Figure 6A), indicating how the variables were progres-
sively regularized. Following cross-validation (Figure 6B), 20 candidate biomarkers were retained, based on the 
optimized log λ value, which minimized the error rate. Subsequently, these 20 genes were compared against the set of 
significant IM-DEGs, and their intersection revealed RSAD2 as a uniquely shared biomarker (Figure 6C).

Validation of RSAD2 Expression in SLE
To validate the differential expression of RSAD2, we further analyzed two independent public datasets (GSE50772, and 
GSE126307), alongside clinical blood samples. Consistent with our previous results, RSAD2 was significantly upregu-
lated in SLE group compared to HCs, as demonstrated in both datasets (Figure 7A and B). To further corroborate these 
findings, we collected fresh peripheral blood from a cohort comprising 20 hCs and 46 SLE patients (Table 2). RT-qPCR 
analysis revealed a significant increase in RSAD2 transcription in the SLE patients (Figure 7C, p = 0.004), reinforcing the 
results observed in the independent datasets. Furthermore, we assessed the protein expression of viperin, encoded by 

Figure 4 Overlapping dataset genes in SLE and IM-related genes and related enrichment analyses. (A) Venn diagram of overlapping dataset genes (p < 0.05) in SLE and iron 
metabolism-related genes. (B) GO term enrichment analysis of 124 IM-Genes. (C) KEGG enrichment analysis of genes involved in iron metabolism. Top 6 terms of KEGG 
analysis in biological pathway category (ranked by p value). (D) Venn diagram of overlapping between 100 DEGs in SLE, iron metabolism related genes and genes from high 
correlation within the modules in WGCNA.
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RSAD2, using Western blot analysis. The data demonstrated a significant upregulation of viperin in SLE patients 
compared to HCs, with a marked increase in the viperin/GAPDH ratio (p = 0.0083) (Figure 7D).

Correlation Analysis of Classic SLE Biomarkers and RSAD2 Expression
Several traditional molecular biomarkers assist in diagnosing SLE by reflecting disease activity and organ involvement 
through their serum concentrations. In this study, we analyzed the correlation between key biomarkers, including albumin, 
blood urea nitrogen (BUN), creatinine, complement components C3, and C4, as well as IgG, with the expression levels of 
RSAD2. Our results indicate significant associations between these biomarkers and RSAD2 expression, which may provide 
further insight into the molecular mechanisms underlying SLE pathogenesis (Figure 8A–F). Albumin exhibited a moderate 
positive correlation with RSAD2 expression (r = 0.3499, p = 0.0171), suggesting that reduced serum albumin levels, often 
observed in SLE patients with nephritis, may coincide with lower RSAD2 expression (Figure 8A). BUN and creatinine, both 
markers of renal function, also showed moderate to strong positive correlations (r = 0.411, p = 0.0055; r = 0.4784, p = 0.0010, 
respectively) (Figures 8B and C). This suggests that increased RSAD2 expression may drive impaired renal function, 
a common feature in LN. Conversely, C3 and C4 were negatively correlated with RSAD2 expression (r = −0.4735, p = 
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0.0054; r = −0.3809, p = 0.0287, respectively) (Figure 8D and E). This aligns with the clinical observation that decreased 
complement levels, associated with active SLE disease and immune complex formation, may be inversely related to RSAD2 
expression. Finally, IgG levels demonstrated a strong positive correlation with RSAD2 expression (r = 0.5636, p = 0.0012) 
(Figure 8F), reinforcing the potential role of RSAD2 in the heightened immune activation observed in SLE. These findings 
highlight RSAD2 as a promising biomarker, potentially reflective of both immune activation and renal involvement in SLE, 
and warrant further investigation into its mechanistic role in lupus pathogenesis.
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Immune Infiltration Evaluation and Correlation Analysis Between Genes and Immune 
Cells
Based on our findings, RSAD2 has emerged as a significant IM-DEG in SLE and holds potential as a key regulator in immune 
modulation and iron metabolism. Moreover, immune cells, particularly DCs, macrophages and neutrophils, have been 
implicated in kidney infiltration LN, potentially exacerbating renal pathology. To further investigate immune cell infiltration, 
we utilized CIBERSORT deconvolution algorithms to quantify the proportions of 22 immune cell types in SLE and healthy 
groups. The box plot analysis revealed significant infiltration differences between these groups. Specifically, monocytes (p < 
0.0001) and activated DCs (p < 0.001) demonstrated higher infiltration in the SLE cohort. In contrast, naïve B cells (p < 0.01) 
and CD4 memory resting T cells (p < 0.0001) exhibited reduced infiltration in SLE compared to controls (Figure 9A). 
Despite these immune cell distribution changes, the correlation analysis RSAD2 expression and naïve B cells, monocytes or 
CD4 memory resting T cells revealed weak associations (Figure 9B–D). Intriguingly, a positive correlation between RSAD2 
expression and activated DCs infiltration was observed (R = 0.39, p = 3.1e-07; Figure 9E), suggesting a more prominent role 
for RSAD2 in DC-mediated immune responses. Furthermore, a heatmap analysis depicting correlations between 4 IM-DEGs 
and 21 immune cell types highlighted RSAD2’s pronounced association with activated DCs, further supporting its relevance 
in shaping the immune microenvironment in SLE. Among the examined genes, RSAD2 exhibited the strongest correlation 
with activated DCs, implying that it might play a pivotal role in monocyte-to-DC differentiation and contribute to the 
pathogenesis of SLE, potentially via mechanisms involving iron metabolism (Figure 9F).

Figure 7 Verifying the expression of RSAD2. (A and B) GSE50772 (A) and GSE126307 (B) datasets were used to validate the expression of RSAD2. (C) RT-qPCR 
determination of expression of RSAD2 mRNA in SLE patients (n = 46) compared with HCs (n = 20). (D) Western blot analysis of the expression of viperin in PBMCs of HCs 
and patients with SLE and the protein expression level is calculated by the ratio of protein to GAPDH (n = 3). All experiments are conducted in triplicate. Data were 
presented with mean ± SD. **p < 0.01, ***p < 0.001.
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Knockdown of Rsad2 in Activated DCs Affects the Expression of Inflammatory 
Mediators and Iron Metabolism Genes
Immune infiltration analysis revealed a strong association between activated DCs and RSAD2 expression in patients with SLE. 
To investigate the functional role of Rsad2 in DC activation, we cultured bone marrow-derived DCs in vitro and treated them 
with LPS or LPS in combination with TREM-1 agonists, a combination known to enhance DC activation. Rsad2 expression 
was markedly elevated in activated DCs, particularly with the combination of LPS and TREM-1 agonists, highlighting its 
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Figure 8 Correlation analysis between classic clinical biomarkers of SLE and the expression level of RSAD2. (A-F) Correlation between RSAD2 and commonly used 
diagnostic indicators (albumin, BUN, creatinine, C3, C4, and IgG) in clinical practice.
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association with activation states of DCs (Figure 10A). To further explore the role of Rsad2, we performed RNA interference 
to knock down its expression, as validated by RT-qPCR and Western blot (Figure 10B and C). The silencing of Rsad2 
significantly suppressed the production of key inflammatory cytokines, including IL-6, TNF-α, and MCP-1 (Figure 10D–F), 
underscoring its role in regulating the inflammatory response in DCs. This reduction in inflammatory mediators suggests that 
Rsad2 plays a pivotal role in modulating immune responses during DC activation. Additionally, given that Rsad2 has been 
identified as a key regulator of iron metabolism, we assessed the expression of classic iron metabolism related genes following 
Rsad2 knockdown. Interestingly, Hamp and Fth1, two critical regulators of iron sequestration and storage were significantly 
upregulated. Meanwhile, due to the silence of RSAD2, Slc40a, a gene encoding ferroprotein was also upregulated 
(Figure 10G–I). These findings suggest that Rsad2 in not only crucial for inflammatory responses but also plays 
a significant role in the regulation of iron metabolism in activated DCs.

Discussion
In this study, we employed bioinformatics analyses to identify 124 IM-Genes between SLE patients and HCs using gene 
expression profiles from GSE72326 and the MSigDB database. GO and KEGG analyses revealed that these IM-Genes 
are significantly associated with metal ion metabolism and the IFN signaling pathway, which is crucial in SLE 
pathogenesis. Subsequently, WGCNA was utilized to identify hub genes among the IM-Genes, with 4 IM-DEGs 
(RSAD2, LTF, LCN2, and MT2A) emerging as particularly noteworthy due to their significant expression characteristics 
in the clinical significance module and close association with iron metabolism.

Our findings demonstrate a correlation between RSAD2 expression levels and clinical indicators of SLE. We utilized 
machine learning techniques and the validation set GSE110169 to develop and evaluate a clinical prediction model. 
Consistent with our bioinformatics analyses, RSAD2 expression was confirmed to be significantly elevated in PBMCs of 
SLE patients. Among the 4 common IM-DEGs identified, RSAD2 exhibited the highest sensitivity and specificity in 
distinguishing SLE patients from both healthy individuals and RA patients. These data suggest that RSAD2 may play 
a crucial role in SLE pathogenesis and could serve as a specific biomarker for diagnosing iron metabolism disorders in 
SLE patients, potentially facilitating more precise treatment strategies.

Figure 9 Evaluation of immune cell infiltration and immune correlation analysis. (A) Box diagram of the proportion of 22 types of immune cells in GSE72326 with SLE group 
versus HC group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001, ns p ≥ 0.05. (B-E) Correlation scatter diagram of expression of RSAD2 with, CD4 memory resting 
T cells (R = −0.22, p = 0.0064) and activated DCs (R = 0.39, p = 3.1e-07) infiltration level. (F) Heatmap of correlations between IM-DEGs (RSAD2, LTF, MT2A, and LCN2) and 
infiltrating immune cells. Darker color implies stronger association.
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RSAD2, a key ISG, plays a pivotal role in activating the immune response and has been implicated in multiple 
autoimmune diseases.23 Previous studies have established a significant association between SLE patients and dysregula-
tion of IFN and expression of ISGs. In cross-sectional SLE studies, the IFN signature has been demonstrated to correlate 
with disease activity. Five ISGs (NRIR, RSAD2, USP18, IFI44, and ISG15) have been identified as biomarkers for the 

Figure 10 Knockdown of Rsad2 in murine DCs inhibited their overactivation and regulated iron metabolism genes expression. (A) RT-qPCR determination of Rsad2 mRNA 
expression in LPS or LPS in combination with TREM-1 agonists activated DCs. (B and C) Activated DCs were transfected with small interfering RNA or negative control 
(NC), and the expressions of Rsad2 and viperin were measured by RT-qPCR (B) and Western blot (C). (D–F) The expressions of IL-6 (D), TNF-α (E), and MCP-1 (F) were 
determined by RT-qPCR. (G–I) The expressions of Hamp (G), Fth1 (H), and Slc40a (I) were detected by RT-qPCR. All of the experiments were performed in triplicate. Data 
were presented with means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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diagnosis and stratification of SLE.24 A meta-analysis revealed that RSAD2 is a hub gene of the SLE-associated 
“magenta” module and is significantly upregulated in SLE patients compared to normal controls.23 However, it is 
worth noting that currently, IFN-α levels are challenging to measure, and the ISG signature is not yet available in clinical 
routine.25 A systematic review revealed that the expression of ISGs used for the IFN signature in SLE patients was 
influenced more by ancestry than disease activity.26 Therefore, further exploration is urgently needed to elucidate more 
precise regulatory mechanisms regarding IFN-related genes.

In SLE patients, RSAD2 is highly expressed in various CD4+ T-cell subsets, potentially promoting B-cell activation 
by fostering the differentiation of T helper 17 (Th17) and T follicular helper (Tfh) cells.27 A previous study indicated that 
RSAD2 is required for IRF7-mediated type I IFNs secretion by myeloid DCs (mDCs).28 Our results align with the 
findings, suggesting that RSAD2 not only participates in IFN-related pathways but also closely correlates with activated 
DCs in the immune infiltration of SLE. Intriguingly, our in vitro experiments demonstrated that activated DCs express 
higher level of Rsad2, while knockdown of Rsad2 significantly inhibited the inflammatory cytokines produced by 
activated DCs, highlighting the important role of Rsad2 in the regulating immune function in DCs.

In this study, we have elucidated the novel relationship between RSAD2 and iron metabolism within the context of 
SLE, supported by an integration of clinical data and bioinformatics analyses. Previous studies have indicated that 
disruptions of iron metabolism can influence SLE by impairing the function and metabolism of specific immune cells, 
such as T cells.29 Furthermore, research has highlighted potential pathways where iron accumulation, oxidative stress, 
and lipid peroxidation contribute to ferroptosis, a recognized aspect of SLE pathogenesis.30 Viperin, encoded by RSAD2, 
features a radical S-adenosylmethionine (RS) enzyme domain and a [4Fe-4S] cluster, playing a crucial role in biological 
processes with a primary focus on antiviral activity.27 Our RNAi data reveal that knockdown of Rsad2 significantly 
impacts the expression of key iron metabolism genes (Hamp, Fth1, and Slc40a) in activated DCs. Based on our findings, 
it is crucial to investigate the implications of the observed relationship between Rsad2 and iron metabolism in the context 
of SLE. The modulation of iron metabolism by Rsad2 in activated DCs may represent a pivotal mechanism underlying 
immune dysregulation in SLE. Specifically, Rsad2 may influence vital genes involved in iron metabolism, such as Hamp 
and Fth1, with ferritin primarily serving to store iron in a soluble and non-toxic form, potentially leading to abnormal 
iron storage. Additionally, Rsad2 may inhibit the expression of Slc40a, a gene implicated in iron export, resulting in the 
abnormal accumulation of intracellular iron and subsequent imbalance in iron metabolism. This imbalance could 
exacerbate oxidative stress and promote the inflammatory responses characteristic of SLE. Furthermore, the interplay 
between Rsad2-mediated iron metabolism warrants further investigation, as it may reveal novel therapeutic targets aimed 
at mitigating the pathogenic processes in SLE.

Despite these insights, our study has several limitations that warrant further investigation. While we have demon-
strated the involvement of RSAD2, the precise molecular mechanisms by which it influences SLE pathogenesis and 
progression remain to be fully elucidated. Our experimental scope was primarily focused on examining Rsad2’s effects 
on inflammatory cytokines production and iron metabolism-related gene expression in murine bone marrow-derived 
DCs. However, the detailed molecular pathways through which Rsad2 orchestrates iron homeostasis in DCs require 
further clarification. Moreover, the intricate relationship between Rsad2-mediated regulation of iron metabolism and its 
impact on DC activation states needs to be comprehensively explored in future studies.

Conclusion
In summary, our research has unveiled the significant role of RSAD2 in SLE pathogenesis and its potential as a dual- 
purpose biomarker for diagnosing iron metabolism imbalances and immune dysregulation in SLE patients. The 
diagnostic capabilities of RSAD2 were confirmed, and its involvement in SLE pathogenesis was clarified through the 
application machine learning techniques. Notably, RSAD2 is linked to pathways governing iron metabolism and IFN 
signaling, shedding light on the molecular underpinnings of SLE. Our findings also underscore the role of dysregulated 
DCs in SLE, suggesting avenues for immune-modulatory treatments. The discovery of RSAD2’s influence on the immune 
responses of DCs via the iron metabolism pathway opens new possibilities for investigating and managing SLE. 
Collectively, this study enhances our understanding of SLE pathogenesis and paves the way for refined diagnostic 
tools and dual-targeted therapeutic strategies.
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