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Purpose: Sepsis, a life-threatening inflammatory condition due to an imbalanced response to infections, has been a major concern.
Necroptosis, a newly discovered programmed cell death form, plays a crucial role in various inflammatory diseases. Our study aims to
identify necroptosis - related genes (NRGs) and explore their potential for sepsis diagnosis.

Patients and methods: We used weighted gene co-expression network analysis to identify gene modules associated with sepsis.
Cox regression and Kaplan-Meier methods were employed to assess the diagnostic and prognostic value of these genes. Single-cell
and immune infiltration analyses were carried out to explore the immune environment in sepsis. Plasma CD74 protein levels were
quantified in our samples, and relevant clinical data from electronic patient records were analyzed for correlation.

Results: CD74 was identified through the intersection of the hub genes of sepsis and NRGs related modules. Septic patients had lower
CD74 expression compared to healthy controls. The CD74-based diagnostic model showed better performance in the training dataset
(AUC, 0.79 [95% CI, 0.75-0.84]), was cross-validated in external datasets, and demonstrated better performances than other published
diagnostic models. Pathway analysis and single-cell profiling supported further exploration of CD74-related inflammation and immune
response in sepsis.

Conclusion: This study presents the first quantitative assessment of human plasma CD74 in sepsis patients. CD74 levels were
significantly lower in the sepsis cohort. CD74 warrants further exploration as a potential prognostic and therapeutic target for sepsis.
Keywords: CD74, immunity, diagnosis, sepsis, prognosis

Introduction
Sepsis is a life-threatening condition characterized by multi-organ dysfunction resulting from a dysregulated immune
response to infection.' Prominently characterized by organ hypoperfusion, sepsis is accompanied by systemic inflam-
matory response syndrome (SIRS), which can lead to extensive tissue damage.” Sepsis carries a high mortality rate and
leads to long-term complications,® including the progression of chronic diseases, impaired immune function, residual
organ damage, and other factors that influence patient survival.* Currently, biomarkers like procalcitonin (PCT) and
C-reactive protein (CRP) are commonly used in sepsis diagnosis. PCT is a well-known biomarker that increases during
severe infections, including sepsis.” CRP, an acute-phase protein, also rises in response to inflammation.” However, their
specificity for sepsis is low, as elevated levels can also occur in non-septic inflammatory conditions. Additionally, their
prognostic accuracy is limited, often failing to reliably predict sepsis outcomes. These limitations underscore the need to
unveil sepsis-related diagnostic and prognostic factors.

Necroptosis, a novel programmed cell death modality, has recently entered the spotlight in the sepsis research arena. It
occurs when caspases, the enzymes typically involved in apoptosis, are inhibited, triggering an alternative pathway that leads
to cell lysis and the release of pro-inflammatory mediators.® In sepsis, this process can exacerbate the already inflamed
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microenvironment, potentially driving disease progression. CD74 is associated with class II major histocompatibility complex
(MHC) and plays a crucial role as a chaperone in regulating antigen presentation for immune responses.”® Recent research has
also linked CD74 with necroptosis.” In the context of sepsis, CD74 may play a pivotal role in immune regulation.'® It could be
involved in antigen presentation and immune cell signaling, potentially influencing the complex inflammatory and immune
responses characteristic of sepsis. Despite the known functions of CD74 in immune-related processes, research on the
relationship between sepsis and necroptosis, especially with respect to CD74, remains limited. In this study, we evaluated
CD74 expression with publicly available datasets at the transcriptome level and our in-house patient cohorts at the protein
level. Moreover, we established a CD74-based diagnostic model and cross-validate its application in external independent
datasets. Further analysis of CD74 in the diagnosis and prognosis of sepsis was supported with its potential relationship with
the immune microenvironment. Our study offers new insights into sepsis from the perspective of necroptosis, providing novel
findings for early diagnosis, treatment, and prognosis of sepsis patients.

Materials and Methods

Data Sources and Download

Eight public datasets of sepsis patients, including GSE65682 (760 sepsis vs 42 normal), GSE54514 (127 sepsis vs 36 normal),
GSE95233 (102 sepsis vs 22 normal), GSE26440 (98 sepsis vs 32 normal), GSE57065 (82 sepsis vs 25 normal), GSE26378
(82 sepsis vs 21 normal), GSE123729 (31 sepsis vs 11 normal), and GSE28750 (21 sepsis vs 20 normal) were downloaded
from the Gene Expression Omnibus (GEO) database with varying clinical information (https://www.ncbi.nlm.nih.gov/geo/)."!

Detailed information of patients included in the above cohorts can be found in the introduction pages of GEO. All datasets
include the whole blood transcriptome of sepsis patients.

Necroptosis-related genes (NRGs) were identified by querying the GeneCards database (https://www.genecards.org/)
41213

using the keyword “necroptosis”, NRGs with correlation scores exceeding 0.75 were selecte

Clinical Sample and Data Collection

For the local sample collection, blood samples and clinical data from 52 sepsis patients in the intensive care unit (ICU) and
32 healthy individuals were collected at the Second Affiliated Hospital of Nanchang University. Ethical approval for this study
was obtained from the Ethical Committee of the Second Affiliated Hospital of Nanchang University, and written informed
consent was obtained from each patient. The inclusion criteria for sepsis patients in our in-house cohort are as follows: Patients
who have clinically defined infections and meet at least two conditions: (i) body temperature > 38°C or < 36°C; (ii) Heart rate
> 90 beats per minute; (iii) Respiratory rate > 20 breaths per minute; (iv) White blood cell count > 12000 per mm® or <
4000 per mm®. The clinical variables analyzed in the study included: Age, Sex, Hospitalization days, Medical expenditure,
Acute Physiology And Chronic Health Evaluation score (APACHE II), Heart rate, Mean arterial pressure (MAP),
Temperature, White blood cell counts (WBC), Red blood cell counts (RBC), Hemoglobin (Hb), Platelet (PLT), Neutrophils
(Neu), Lymphocyte (Lym), Creatine kinase (CK), Lactate dehydrogenase (LDH), Myoglobin (Mb), Glucose (Glu), Creatinine
(Cr), and Estimated glomerular filtration rate (eGFR).

Weighted Gene Co-Expression Network Analysis

The WGCNA method was employed to establish a co-expression network of genes within the GSE65682 dataset to identify
significant functional modules.'* Hierarchical cluster analysis was facilitated using the “gplots” package (version 3.2.0) in
R software. Gene correlations among samples were computed using the WGCNA algorithm. The soft threshold power (10)
was optimized, and a standard non-proportional network was created. The WGCNA model was linked to external sample
characteristics. Different colored modules were generated through hierarchical gene clustering using a dynamic tree-cutting
approach. Subsequently, gene co-expression modules were constructed, and gene information was extracted from each
module using WGCNA. Furthermore, the correlations between module eigenvectors and gene expression were calculated
for module membership (MM), and genes with [MM]| > 0.7 and within the clinically significant module were identified as
hub genes for that module.
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Differential Expression Analysis

To investigate transcriptional differences between the septic and control cohorts, we performed differential expression
analysis using the “limma” package (version 3.56.2) in R.'> This analysis identified differentially expressed genes
(DEGs) in the GSE54514 dataset, comparing survivors and non-survivors at 1, 3, and 5 days post-infection. DEGs were
defined by an absolute log, fold change (|log,FC|) greater than 0.5 for GSE54514, greater than 1 for GSE65682, and
a P-value less than 0.05. To present the findings, we used the “ggplot2” package (version 3.5.2) in R to create a volcano

plot and heat map, visualizing the results of the differential expression analysis.

Short Time-Series Expression Miner Analysis

The Short Time Series Expression Miner (STEM) was utilized to explore the expression trends of DEGs in sepsis
patients (GSE54514) at day 1, 3, and 5.'® Specifically, the average expression of each DEG served as input data. DEGs
were categorized into different clusters based on their time-dependent expression trend changes, with significance
determined at a P-value < 0.001.

Immune Infiltration Analysis

The CIBERSORT method, a commonly used algorithm, was applied to estimate the infiltration scores of 22 distinct immune
cell types in each tissue sample, transforming the normalized gene expression data into corresponding immune cell
matrices.'”'® Additionally, we employed single-sample gene set enrichment analysis (ssGSEA) to gene set variation analysis,
which uses unsupervised clustering of specific gene sets to assess the scores of 28 different immune cells in sepsis.'® The genes
associated with these 28 immune cell types were derived from previous studies and utilized to predict the extent of immune
cell infiltration.

Enrichment Analysis
Gene Ontology (GO) enrichment results encompassing biological processes, cellular components, and molecular func-
tions were obtained using the R software package “clusterProfiler” (version 4.8.3) The same R software package was

used for Reactome enrichment analysis (https://www.reactome.org/).°

Single Cell Analysis

The distribution of CD74 in various immune cell clusters was analyzed using the dataset GSE167363, including 6 normal
and 6 sepsis samples. We utilized the Seurat 4.0 package in R to conduct scRNA-seq data analysis.>'** Following quality
control, we selected the top 2000 highly variable genes for further analysis. Dimensionality reduction was performed
using principal component analysis, and cluster analysis was carried out using the top 20 principal components, leading
to the identification of 9 major cell types: T cells, CD34- Pre-B Cell, Platelets, Natural killer (NK) cells, Neutrophils,
Monocytes, Erythroblast, Common myeloid progenitor (CMP), and B cells.

Enzyme-Linked Immunosorbent Assay (ELISA)
The protein level of serum CD74 was determined using the Human HLA class II histocompatibility antigen gamma chain
(CD74) kits (CSB-EL004956HU, Wuhan, China) following the manufacturer’s instructions.

Statistical Analysis

All statistical analyses in our study were conducted using R software (version 4.3.1) and GraphPad Prism (version 8.0.2).
We utilized the unpaired #-test, log-rank test, and one-way ANOVA to assess statistical differences. The Kaplan-Meier
methods and log-rank test were utilized to compare the survival difference. Correlation analyses were performed using
the Spearman method. A P-value of less than 0.05 was considered statistically significant throughout the analysis.
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Results

Weighted Gene Co-Expression Network Analysis

In GSE65682 dataset, WGCNA was employed to identify gene modules significantly associated with sepsis in both the
sepsis and healthy cohorts (Figure S1A), and a scale-free co-expression network was established (Figure S1B and S1C).
The correlation coefficients between each module and the two mentioned groups were calculated, leading to the
identification of 16 modules. Each module was assigned a distinct color label. Among these, the black module showed
the highest correlation coefficient (r = —0.56, P-value = 3.5e-66) (Figure S1D). Additionally, in this black module, the
correlation between septic-related gene and module membership (MM) was 0.66 (P-value = 1.8e-133) (Figure S1E).
Furthermore, 459 genes with [MM| > 0.7 were designated as hub genes, visualized in Cytoscape, and selected for
significant gene clusters using the MCODE plug-in (Figure S1F-S1K).

The ldentification of CD74

Following the identification of the black gene module, differential expression analysis was conducted on survivor and
non-survivor samples at days 1, 3, and 5 post-admission in GSE54514. This analysis yielded 1025 DEGs in non-survivor
samples at day 1 (448 up-regulated and 577 down-regulated), 757 DEGs at day 3 (418 up-regulated and 339 down-
regulated), and 612 DEGs at day 5 (367 up-regulated and 265 down-regulated) for the survivors and non-survivors in
GSE54514. The volcano plots represented these results (Figure S2A—S2C). Heat maps were generated to display DEGs
at each time point (Figure S2D-S2F). These identified DEGs were subsequently used in further analyses.

Moreover, STEM software was used to categorize the DEGs of GSE54514 into distinct modules to elucidate their
expression trends in the development and progression of sepsis, with each module assigned a unique number. Fifteen
modules were identified, with modules 11, 12, and 3 deemed significant (P-value < 0.001, Figure S3A).

Subsequently, an intersection analysis of the black module in WGCNA of GSE65682, module 3 in STEM of
GSE54514, and the 162 necroptosis-related genes yielded one shared factor: CD74 was found to overlap among the
hub genes in the black module, module 3, and the necroptosis-related genes (NRGs) (Figures S3B and 1A).

Evaluation of CD74 Expression in Sepsis Vs Healthy Group

In GSE65682 dataset, we observed that CD74 displayed significantly different expression between sepsis and healthy
samples (Figure S4A). To obtain a robust predictive model for sepsis, the ROC analysis was performed with CD74- based
model, which revealed an area under the curve (AUC) of 98.89 for CD74 in distinguishing between healthy and sepsis
samples (Figure 1B). We assessed CD74 expression, and compared the CD74-based model performance in other seven
independent public datasets, which yield similar results (Figures 1C—I and Figure S4B—S4H). This model applied to
GSE65682 showed 96.6% accuracy with 96.6% sensitivity and 97.6% specificity (Table 1), showing outstanding ability to
differentiate septic vs healthy patients. Similar results were obtained when evaluating the predictive model on the other
seven datasets. Additionally, we compared the CD74-based model with other previously reported models in diagnosing
sepsis. ROC analysis from our training cohort GSE65682 showed that the AUCs of the sepsis sNIP Score,”® MetaScore,**
Septicyte Score,>> and FAIM3/PLAC8® were significantly lower than the CD74-based model in diagnosing patients with
sepsis (Figure 1J). These findings underscore the expression pattern and diagnostic potential of CD74 in sepsis.

Validation of CD74 Expression in Sepsis Patients

Having established the differential transcriptional expression of CD74 in sepsis patients from public datasets, we
validated the serum concentration of CD74 protein in our local plasma samples from 52 sepsis patients and 32 healthy
individuals. The baseline information of the in-house cohort was exhibited in Table 2. CD74 concentrations were
significantly lower in sepsis patients (P-value < 0.0001). The AUC of CD74-based model in our in-house cohort is
78.79, which is higher than the AUC of APACHE II Score (65.97), further emphasizing the robustness of CD74-based
model in diagnosing sepsis patients (Figure 2A). Subsequently, in the univariate Cox regression analysis results, 9
variables exhibited statistical significance (Figure 2B and Table S1). Subsequently, adjusted with traditional risk factor
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Figure | Determination of Necroptosis-Related Genes in Sepsis across Eight External Cohorts. (A) Venn diagram illustrating the overlap between hub genes in the black
module, necroptosis-related genes, and Cluster No.3 identified via STEM. (B) The ROC curve demonstrating the diagnostic potential of CD74 expression in GSE65682 to
distinguish healthy and sepsis groups. (C) The ROC curve demonstrating the diagnostic potential of CD74 expression in GSE54514 to distinguish healthy and sepsis groups.
(D) The ROC curve demonstrating the diagnostic potential of CD74 expression in GSE95233 to distinguish healthy and sepsis groups. (E) The ROC curve demonstrating
the diagnostic potential of CD74 expression in GSE26440 to distinguish healthy and sepsis groups. (F) The ROC curve demonstrating the diagnostic potential of CD74
expression in GSE57065 to distinguish healthy and sepsis groups. (G) The ROC curve demonstrating the diagnostic potential of CD74 expression in GSE27638 to distinguish
healthy and sepsis groups. (H) The ROC curve demonstrating the diagnostic potential of CD74 expression in GSEI123729 to distinguish healthy and sepsis groups. (I) The
ROC curve demonstrating the diagnostic potential of CD74 expression in GSE28750 to distinguish healthy and sepsis groups. (J) The AUCs of the sNIP Score, MetaScore,
Septicyte Score, and FAIM3/PLAC8 compared with the CD74 in our training cohort GSE65682.

APACHE I score and protective factor lymphocyte levels, multivariate regression suggested CD74 was an independent
protective factor (Figure 2C).

In order to delve into the clinical characteristics of CD74, correlation analysis was conducted between CD74 and
other clinical variables (Table S2). CD74 exhibited negative correlations with days of hospitalization, WBC, medical

expenditure, APACHE II Score, Temperature, Mb, and Cr, while displaying positive correlations with eGFR, Lym,
and RBC.

The Crucial Role of CD74 in the Prognosis of Sepsis

Based on our findings, we hypothesized that CD74 is significantly associated with patient prognosis and survival. We
further examined potential prognostic factors, including CD74 expression levels, acquisition of infection in the intensive
care unit, presence of diabetes, age, gender, and whether patients had community-acquired or hospital-acquired
pneumonia, in the public patient datasets GSE65682. Only CD74 exhibited a notable impact on sepsis prognosis
(P-value = 0.02, Figure S5A). Subsequently, as depicted in the prognostic heatmap (Figure S5B), survival of sepsis

https:

3834

Journal of Inflammation Research 2025:18


https://www.dovepress.com/get_supplementary_file.php?f=509089.pdf
https://www.dovepress.com/get_supplementary_file.php?f=509089.pdf
https://www.dovepress.com/get_supplementary_file.php?f=509089.pdf

Hu et al

Table | The Characteristic of CD74 in the Eight Cohorts

Cohort Sample Counts AUC Sensitivity | Specificity | PPV | NPV | Accuracy
(Sepsis/Normal) (95%Cl) (%) (%) (%) (%) (%)
GSE65682 760/42 98.89 96.6 97.6 99.9 61.2 96.6
(0.98,0.99)
GSE54514 127/36 97.86 78.5 71.7 83.2 65.2 779
(0.94,0.99)
GSE95233 102/22 97.77 94.1 95.5 99.0 778 94.4
(0.95,1.00)
GSE26440 98/32 77.76 83.7 68.8 89.1 579 80.0
(0.68,0.87)
GSE57065 82/25 97.51 92.7 100.0 100.0 | 80.6 94.4
(0.95,1.00)
GSE26378 82/21 82.43 732 81.0 93.8 43.6 748
(0.73,0.92)
GSE123729 31/11 97.36 96.8 100.0 1000 | 91.7 97.6
(0.92,1.00)
GSE28750 21/20 98.57 95.2 95.0 95.2 95.0 95.1
(0.96,1.00)

Table 2 The Characteristic of CD74 in the Eight Cohorts. The Italic Fonts Mean the
Characteristic With Statistical Significance

Characteristics Control (n = 32) Sepsis (n = 52) P-value
CD74, ng/mL, median (IQR) 17.91 (15.38-21.12) 11.65 (2.877-16.74) 0.0036
Sex, Male/Female 17/15 33/15 0.3352
Age, yr, median (IQR) 60.5 (54.25-65.25) 70 (58-76) 0.1635
Hospitalization Days, day, median (IQR) 8 (6-9) 16 (8-28) 0.0035
Medical Expenditure, yuan 2031 (67.31-2272) 18,720 (9623-110,217) | 0.0005
APACHE I Score, median (IQR) 14 (7-19) 3(1-4) <0.0001
Heart Rate, per minute, median (IQR) 96 (89-105) 100 (94-113) 0.079

MAP, mmHg, median (IQR) 54 (49-65) 59 (51-70) 0.021

Temperature, °C, median (IQR) 36.9 (36.5-37.1) 37.3 (37.0-37.8) 0.003

WBC, x10°/L 5.61 (4.583-6.38) 7.05 (4.69-12.82) 0.0125
RBC, x10°IL 4.61 (4.385-4.87) 3.53 (2.82-4.46) <0.0001
Hb, g/L 138.5 (131.3-155.8) 100 (85-123) <0.0001
PLT, x10°/L 205 (173.5-232.5) 141 (84-212) 0.0163
Neu, % 59.95 (54.2-63.65) 80.7 (70.7-90.6) <0.0001
Lym, % 32.4 (27.03-37.68) 12.2 (4.5-21.4) <0.0001
CK, U/L 1.345 (1.093-70.44) 99 (77.58-183.8) 0.2768
LDH, U/L 132.44 (103.17-174.9) 153.9 (143.1-193.9) 0.5673
Mb, UIL 26.77 (18.24-42.95) 196.2 (152.9-689.4) 0.0001/
Glu, mmoliL 5.34 (4.648-5.808) 8.22 (6.01-10.99) 0.0002
Cr, mgl/dL 65.8 (59-79.48) 119 (76.83-167.5) 0.0234
eGFR, mLImin/|.73m? 96.01 (83.74—125.3) 50.82 (36.2-87.77) 0.0003

Abbreviations: |log,FC|, Absolute log, fold change; APACHE Il, Acute Physiology and Chronic Health Evaluation score;
AUC, Area under the curve; CK, Creatine kinase; CMP, Common myeloid progenitor; Cr, Creatinine; DEGs, Differentially
expressed genes; eGFR, Estimated glomerular filtration rate; ELISA, Enzyme-Linked Immunosorbent Assay; GEO, Gene
Expression Omnibus; Glu, Glucose; GO, Gene ontology; Hb, Hemoglobin; ICU, Intensive care unit; LDH, Lactate
dehydrogenase; Lym, Lymphocytes; MAP, Mean arterial pressure; Mb, Myoglobin; MHC, Major histocompatibility complex;
MM, Model membership; Neu, Neutrophils; NK, Natural killer cells; NRGs, Necroptosis-related genes; PLT, Platelet; RBC,
Red blood cell counts; SIRS, Systemic inflammatory response syndrome; ssGSEA, Single-sample gene set enrichment
analysis; STEM, Short Time Series Expression Miner; WBC, White blood cell counts.
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patients noticeably declined with increasing risk scores. As anticipated and discussed earlier, CD74 was identified as

a protective factor against sepsis.

For survivorship, K-M survival curves based on CD74 expression level in sepsis patients and clinical data from GSE65682
demonstrated significant differences (P-value = 0.00031, Figure 3A). Meanwhile, CD74 also accurately distinguished
survivors and non-survivors. The AUC for CD74 in distinguishing between survivors and non-survivors was 73.31 in
GSE65682, 70.29 in GSES54514, 75.97 in GSE95233, 70.21 in GSE264440, and 67.79 in GSE26378 (Figures 3B-F).
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Differential Expression Analysis and Enrichment Analysis Based on the Expression of

CD74

To investigate the significant genes influenced by CD74 in sepsis, we categorized the samples in each dataset into two

groups—high-expression and low-expression—based on the median CD74 expression levels. Differential expression

analysis was then performed between these two groups. Via intersecting the DEGs in all the seven cohorts, 86 genes were

identified with significant expression differences between two groups (Figure S6A—S6I).

To comprehensively investigate the specific functions and pathways associated with CD74 and these 86 genes, we

conducted enrichment analysis based on the results of the differential expression analysis. We presented the top 10

pathways from the GO (BP, CC, and MF) and Reactome enrichment analyses based on the pathway-specific P-values
(Figures 4A-D). Notably, all the top 10 pathways identified through these two methods were related to the MHC

complex and MHC II activity.
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Investigation of the Immune Microenvironment Associated With CD74

To evaluate the immunological effects of CD74 in sepsis, we utilized immune infiltration analysis through CIBERSORT and
ssGSEA. First, through the infiltration scores of various immune cells between the normal condition and sepsis we found
a significant difference in the immune microenvironment in sepsis compared with the control group (Figure S7A and B).
Correlation analysis between CD74 and the results of the infiltration status of various immune cells were exhibited in
Figure S7C and D.

We also investigated the role of CD74 in immunity at the single-cell level. A total of 9 cell clusters were identified,
including T cells, CD34- pre-B cell, Platelets, NK cells, Neutrophils, Monocytes, Erythroblasts, Common myeloid
progenitor (CMP), and B cells. The distribution of cell clusters in both the healthy and sepsis groups was exhibited in
Figure 5A. Meanwhile, we exhibited the expression of CD74 in each cell between the healthy and sepsis groups
(Figure 5B). The expression of CD74 in each cell were exhibited, which also indicated the low CD74 expression in
sepsis (Figure S7E). Moreover, based on the results of comprehensive immune infiltration and single cell analysis, we
found that the increasing number of B cells is associated with a low expression of CD74 (Figures 5C and D). This may be
partially explained by the correlation study that showed that CD74 is positively correlated with the number of
lymphocytes (Lym, r=0.367, p-value=0.001, Table S2). This emphasized the role of CD74 in regulating the immune

microenvironment.
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Discussion

Sepsis continues to exhibit a high prevalence and mortality rate, imposing a substantial burden on the public health
sector.”” Recent years have seen a renewed interest in exploring the relationship between necroptosis and sepsis.?*° To
explore the link between necroptosis and sepsis, we conducted a series of bioinformatic and machine learning analysis in
public dataset with local validation, which was exhibited in the Graphical Abstract. We identified CD74 as the most
significant NRG in the diagnosis and prognosis of sepsis. Previous research has confirmed that reduced level of CD74
mRNA played a crucial role in predicting mortality of patients with septic shock. Specifically, lower expression of CD74
mRNA in septic shock patients is associated with higher mortality.>° Meanwhile, several bioinformatics analyses
regarded CD74 mRNA as a potential diagnostic factor in sepsis.’' Intriguingly, this is the first report that validates the
CD74 protein as a diagnostic marker of sepsis and explored its crucial correlational relationship to other clinical
indicators. The disparities in CD74 expression and diagnostic capabilities were also confirmed through ELISA validation.

Our findings are consistent with previous research. For example, Cazalis et al found that reduced CD74 expression
predicts mortality in septic shock patients.*® In our investigation, we not only evaluated CD74 expression in publicly
available GEO datasets but also validated findings in our patient cohort. Additionally, this study marks the first instance
of integrating CD74 with a range of diverse common clinical variables, aiming to enhance accuracy in the diagnosis of
sepsis. In addition to traditional risk factors such as lymphopenia,** multivariate analysis unveiled CD74 as a novel
independent protective factor for sepsis. Moreover, the prognostic role of CD74 in sepsis was also indicated. The
APACHE II score is a commonly used tool for assessing the degree of organ failure in critically ill patients and is used to
predict patient prognosis and disease severity.”> Sepsis patients with higher APACHE II score often face a poor
prognosis. The negative correlation between CD74 and APACHE II score in our research demonstrated the predictive
possibility of CD74 in the prognosis of sepsis.** Notably, CD74 expression exhibited a negative correlation with WBC
count, indicating that individuals with low CD74 expression may experience more pronounced inflammatory reactions.
Abundant studies have indicated that the lack of CD74 can promote inflammation, such as renal interstitial fibrosis and
inflammation after ureteral obstruction.>>*® Meanwhile, our research suggests that low CD74 is associated with lower
eGFR in patients with sepsis. SIRS itself can damage kidney function and lead to kidney failure.>” Activation of immune
infiltration in patients with a low expression of CD74 may further exacerbate inflammation. Interestingly, sepsis patients
exhibit higher Glu levels compared to normal patients, potentially indicating that severe infection may disrupt Glu
control. Poorly controlled Glu can further exacerbate damage to the immune and circulatory systems, creating a vicious
cycle. Higher Glu levels have been confirmed to increase mortality in sepsis patients.*®*° Moreover, we found that
expression of CD74 was negatively correlated with medical expenses and days of hospitalization, which may play
a critical role in developing reasonable medical strategies and reducing patient burden.

Sepsis is an infectious disease hallmarked by inflammation and immunosuppression.*® Central to its immune response
regulation is CD74, the high-affinity receptor for macrophage, which is crucial for the immune system’s balance and
assist MHC class II molecules in presenting exogenous antigen peptides, and playing a crucial role in launching the
humoral immune response.*' Specially, our research revealed a positive association between CD74 levels and lympho-
cytes. We observed that lower levels of CD74 expression corresponded with decreased immune cell infiltration,
particularly of B cells, as shown in single-cell analyses. MIF functions to block monocyte migration towards chemokines
and to halt B cell migration in vitro. These functions are modulated by CXCR2 and CXCR4 under the strength of
CD74.*** Accordingly, reduced CD74 levels might impede MIF’s immunosuppressive mechanisms, potentially worsen-
ing the prognosis for patients with sepsis. Concerning B cells in septic patients, diminished CD74 expression could
relieve MIF’s active effect on B cell activity, contributing to a rise in inhibitory B cells in patients with low CD74
expression. Our findings suggest that B cells may be critical in determining sepsis outcomes; a drop in CD74 expression
could impair the body’s capacity to eliminate sources of infection, thereby increasing mortality risk in sepsis patients.
Another perspective of sepsis is cell death. While various studies have delved into the different types of cell death
induced by sepsis, the specific link between CD74/MIF and necroptosis remains under-researched.***> Only a single
study by Soppert et al highlighted that soluble CD74 may promote necroptosis in cardiac myofibroblasts through the
MIF/CXCR4/AKT pathway.*® Despite these insights, current knowledge of the connection between CD74/MIF and
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necroptosis is scarce. The interplay between CD74, MIF, and necroptosis could be complex. CD74 may regulate MIF-
mediated signaling pathways that are involved in the initiation or regulation of necroptosis. For example, MIF, under the
influence of CD74, may interact with other molecules in the necroptotic pathway, such as RIPK1, RIPK3, and MLKL,
which are key players in the necroptotic machinery. Further studies are required to elucidate these potential interactions.
Therefore, it’s imperative that future studies investigate the role of CD74 in relation to necroptosis within the context of
sepsis and other inflammatory conditions.

The strengths of our study include the assessment of CD74 protein expression in sepsis diagnosis, a novel composite of
different clinical variables in sepsis survivors, the use of different independent cohorts and the biological plausibility based on
CD74 levels. The diagnostic value of CD74 is compelling because of the increasing needs of the sepsis population in recent years,
and emerging evidence suggesting that early diagnosis with timely management will significantly change the overall clinical
outcomes. Our study reinforces the relevance of immunoregulatory molecules, especially CD74, in the context of sepsis.

This study has certain limitations. Firstly, the number of patient plasma samples available for clinical validation is
limited. Future studies with larger sample sizes are warranted to yield more robust findings. Secondly, due to budget
constraints, we did not conduct a time-series analysis. Prolonged and dynamic observations would be beneficial in
understanding the significance of CD74 expression in evolving immunity during sepsis. And longitudinal data would
provide insights into how CD74 levels change over the course of sepsis and recovery, which could further validate its
prognostic value. Thirdly, there may exist potential factors that have not been considered and included in our study.
Fourthly, the potential biological mechanisms how CD74 regulates necroptosis by MIF in sepsis are still unclear. Fifthly,
the SOFA score and APACHE II Score cannot be calculated in all GEO sepsis cohorts. Therefore, we are unable to
compare our model with these two clinical scoring models in the public cohort. Larger prospective studies are needed to
compare CD74-based models with other clinical scoring systems.

Conclusions

CD74 expression was associated with sepsis diagnosis. The potential immunoregulatory effects of CD74 significantly
influence the clinical profiles and outcomes of septic patients. Our study suggests a novel diagnostic and prognostic
biomarker CD74 for sepsis; quantification of CD74 could identify possible sepsis patients and aid prompt management,
improving clinical outcomes.
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