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Background: Despite the prevalence of sleep-related disorders, few studies have developed deep learning models to predict snoring 
using home-recorded smartphone audio. This study proposes a real-time snoring detection method utilizing a Vision Transformer- 
based deep learning model and smartphone recordings.
Methods: Participants’ sleep-breathing sounds were recorded using smartphones, with concurrent Level I or II polysomnography (PSG) 
conducted in home or hospital settings. A total of 200 minutes of smartphone audio per participant, corresponding to 400 30-second sleep stage 
epochs on PSG, were sampled. Each epoch was annotated independently by two trained labelers, with snoring labeled only when both agreed. 
Model performance was evaluated by epoch-by-epoch prediction accuracy and correlation between observed and predicted snoring ratios.
Results: The study included 214 participants (85,600 epochs). Hospital audio data from 105 participants (42,000 epochs) were used 
for training, while home audio data from 109 participants were split into 54 participants (21,600 epochs) for training and 55 
participants (22,000 epochs) for testing. On the test dataset, the model demonstrated a sensitivity of 89.8% and a specificity of 
91.3%. Correlation analysis showed strong agreement between observed and predicted snoring ratios (r = 0.97, 95% CI: 0.95–0.99).
Conclusion: This study demonstrates the feasibility of using deep learning for real-time snoring detection from home-recorded 
smartphone audio. With high accuracy and scalability, the approach offers a practical and accessible tool for monitoring sleep-related 
disorders, paving the way for home-based sleep health management solutions.
Keywords: snoring, smartphone, artificial intelligence, polysomnography, remote sensing technology

Introduction
Snoring, a common occurrence during sleep, affects a significant portion of the population worldwide. Characterized by 
the turbulent airflow causing tissues in the upper airway to vibrate, snoring manifests as the often disruptive and audible 
sound during breathing while asleep. A study suggests that approximately 23% of adults habitually snore, with 
prevalence rates varying across age groups and genders.1 Another study of large UK Biobank (n=408,317) proposed 
that 37% of registrants reported others complaining about their snoring.2 While snoring is often considered a nuisance or 
a source of comedic anecdotes, it can also be indicative of underlying health concerns. Persistent and loud snoring may 
be a symptom of sleep-disordered breathing, including conditions such as obstructive sleep apnea (OSA). Chronic 
snoring can increase upper airway resistance, leading to airway collapsibility over time. This progression may contribute 
to intermittent hypoxia and sleep fragmentation, key features of OSA. Early monitoring and intervention could help 
mitigate the risk of developing OSA and related health complications. Studies have also associated habitual snoring with 
disruptions in sleep architecture, leading to sleep fragmentation and decreased sleep quality.3,4
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When snoring presents by itself, without documented apneas, hypopneas, or hypoventilation, it is often referred to as 
primary snoring, intermittent snoring, or habitual snoring; and it is classified in the mild end of the spectrum of the sleep- 
related breathing disorders.5 Even in the absence of OSA, some studies showed that snoring is associated cardio- 
metabolic risk factors such as atherosclerosis and endothelial dysfunction.6,7 A recent study proposed the proportion of 
high blood pressure, hyperlipidemia, diabetes, atrial fibrillation, transient ischemic attack, or high-risk group of stroke 
risk rating was significantly higher in snoring group in Chinese population over 40 years old.4

Currently, there is widespread agreement on the significance of OSA and its treatment. However, many sleep 
medicine professionals have shifted their attention towards this more severe condition, paying less attention to primary 
snoring. There is a lack of standardized classification for primary snoring in terms of its severity or frequency, and 
existing diagnostic tools present challenges such as the high cost and impracticality of PSG for long-term monitoring, the 
limited focus of portable sleep apnea tests on apneas rather than snoring, and the lack of validation in consumer-grade 
snoring detection apps. Additionally, it remains uncertain whether the frequency, intensity, or specific location of snoring 
may contribute to potential health risks such as atherosclerosis.8

Primary snoring itself can lead to sleep disruptions for the individuals and, potentially, their bed partner. Even without the 
respiratory events seen in sleep apnea, the loud and repetitive nature of snoring may contribute to sleep fragmentation, 
reducing overall sleep quality.9 Persistent exposure to a snoring partner can contribute to heightened stress and anxiety levels 
for the non-snorer.10 Individuals with primary snoring may experience daytime sleepiness, fatigue, and declined cognitive 
function, especially in the population of children.11 While these symptoms may not be as severe as those associated with sleep 
apnea, they can still impact daily activities, work performance, and overall quality of life. In addition, a significantly positive 
association between depression and various sleep-related parameters, including snoring, was reported.12

In this study, we aimed to develop technology capable of real-time monitoring of snoring, which holds significant potential 
for clinical and home-based applications. Real-time snoring detection could facilitate personalized interventions, such as body 
weight reduction and positional therapy adjustments in positional snorers or titration of oral appliances in patients undergoing 
mandibular advancement therapy. Such technology is not only essential for calculating the proportion of snoring during sleep 
but also holds significant potential for applications in developing real-time interventions to mitigate snoring. By quantifying 
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the percentage of time spent snoring, researchers and healthcare professionals can gauge the severity of snoring episodes, 
which helps in categorizing individuals into different severity levels, allowing for a more nuanced understanding of the impact 
of snoring on sleep quality. While primary snoring alone does not indicate sleep apnea, it is important for healthcare 
professionals to monitor individuals over time. Primary snoring may be a precursor to the development of sleep apnea in 
some cases.13 Also, for individuals undergoing interventions or treatments aimed at reducing snoring, calculating the 
percentage of time spent snoring provides a measurable outcome. This metric allows for the assessment of treatment 
effectiveness and helps in adjusting interventions as needed.

Since snoring has acoustic characteristics and can be recorded using microphones or smartphones, creating a snoring 
prediction model using smartphone-recorded sounds is both feasible and highly practical. Smartphones present a cost- 
effective and accessible alternative to traditional sleep monitoring tools, eliminating the need for additional specialized 
equipment. Their widespread availability enables large-scale home-based sleep monitoring, reducing barriers to participation 
and allowing for longitudinal tracking of snoring patterns. Several studies have investigated audio-based snoring detection, 
including smartphone-integrated models, but many face limitations in accuracy, generalizability, and real-time application. 
Few have been validated against polysomnography in both hospital and home environments. This study addresses these gaps 
by developing a deep learning-based real-time snoring detection model, optimized for home-based monitoring and validated 
with level I and II PSG. In a previous study, we developed a sound-based deep learning model for sleep stage classification 
using home-recorded audio data.14 Building on this foundation, the current study introduces an advanced model specifically 
designed and trained to detect snoring events using home-recorded smartphone audio. Unlike previous approaches that 
primarily relied on PSG-based audio recordings in controlled environments, our model was developed and validated on a large 
dataset spanning both hospital and home settings, ensuring its robustness across diverse acoustic conditions. Our deep learning 
approach enhances accuracy by incorporating contextual information from adjacent audio segments. The neural network 
architecture has been adapted to align with the unique objectives of snoring event prediction. Therefore, the aim of this study is 
to train and validate a snoring prediction model using sounds recorded using smartphones during sleep at home. The potential 
benefits of the study may include providing a scalable and accessible alternative to traditional snoring assessment, enabling 
continuous home-based monitoring without the need for expensive or intrusive equipment. By facilitating early identification 
of individuals at risk for sleep-disordered breathing and tracking snoring severity over time, this approach enhances both 
clinical decision-making and sleep health management.

Methods
Study Population and Data Collection
We included participants who underwent polysomnography (PSG) and simultaneously recorded snoring sounds using 
a smartphone during their sleep between January 2019 and February 2023. The dataset comprised both retrospectively 
collected data from participants who had previously provided consent for secondary data use under an Institutional 
Review Board (IRB)-approved protocol and prospectively collected data from newly enrolled participants following 
additional IRB approval (IRB No. B-2205-755-308, April 2022). Participants were selected based on the inclusion 
criterion of having at least 200 minutes of PSG-derived sleep stage epochs (excluding wake epochs) to ensure that 
a sufficient number of 30-second epochs could be labeled for snoring presence. A power analysis was not conducted 
beforehand, as the study aimed to utilize all available participants meeting this criterion rather than selecting 
a predetermined sample size. The PSG studies were conducted either at a tertiary care hospital or in the participants’ 
homes. At the tertiary care hospital, Level 1 attended full-night polysomnography (PSG, Embla N 7000, Reykjavik, 
Iceland) was performed. A smartphone (LG G3, LG Electronics, Inc., Seoul, Republic of Korea) was positioned 1 meter 
away from the participants to record snoring sounds throughout the night. In the home environment, Level 2 unattended 
full-night PSG (Embletta MPR/ST+ Proxy, Natus Medical Inc) was performed at the participants’ residences. During the 
sleep period, a smartphone (iPhone 11, Apple Inc., Cupertino, CA, USA) was placed 1 meter away from the participants 
to capture snoring sounds. Apart from this placement requirement, no additional constraints or guidelines regarding the 
sleeping environment (eg, room acoustics, bed positioning, or noise control) were imposed. This approach was chosen to 
allow participants to maintain their habitual sleep conditions, ensuring that the recorded snoring events reflected real- 
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world variability in home environments. Both Level 1 and Level 2 PSG included the following measurements: 
electroencephalography, electrooculography, chin and limb electromyography, electrocardiography, nasal pressure trans-
ducer, chest and abdomen respiratory inductance plethysmography, and pulse oximetry. This study was conducted 
following the approval of the institutional review board at the tertiary hospital, with all participants providing written 
informed consents. The report followed the Standards for Reporting of Diagnostic Accuracy (STARD) 2015 guidelines.15

Dataset Composition and Preparation for Snoring Prediction
The snoring sound dataset was divided into a training dataset and a test dataset without oversampling or under sampling. 
Instead, we apply class weighting during training to address this issue. Since snoring epochs were comparatively fewer 
than non-snoring epochs, we applied approximately 2.5X class weights when training on snoring epochs. To achieve 
a balanced and representative dataset, home PSG participants were allocated based on snoring percentage distribution, 
ensuring that the test dataset was not disproportionately different from the training dataset. This method helped maintain 
diversity in snoring severity and clinical characteristics while preventing data leakage. The training dataset consisted of 
snoring sound data collected from participants who underwent either Level 1 or Level 2 PSG in hospital or home settings 
to ensure exposure to diverse acoustic environments. The test dataset, however, included only snoring sound data from 
participants who underwent Level 2 PSG in home settings, ensuring that the model’s performance was evaluated in real- 
world, home-based conditions. Hospital PSG data, recorded in a controlled sleep laboratory environment with minimal 
background noise, provided high-quality training samples, whereas home PSG data introduced natural variability in noise 
levels, room acoustics, and smartphone placement. This dataset design ensured that the model was trained on a broad 
range of conditions while being tested under realistic home monitoring settings, reinforcing its generalizability and 
applicability for real-world use. In order to label snoring, 200-minute recorded audio data on a smartphone matched to 
four hundred 30-second epochs of sleep stages on PSG were sampled from each participant.

Labeling of Snoring
Snoring labeling was conducted in a 30-second epoch-by-epoch manner for the audio recordings. Two independent 
labelers, selected through a competitive accuracy-based screening process, annotated each epoch for the presence of 
snoring. To ensure high reliability, a strict consensus-based approach was employed, where an epoch was labeled as 
containing snoring only if both labelers independently identified snoring within the epoch. If there was any disagreement, 
the epoch was classified as non-snoring. This approach eliminates ambiguity and ensures that only confidently labeled 
snoring events were included in the dataset. The final classification was binary, with each 30-second epoch designated as 
positive for snoring if a snoring event was captured within the epoch window and negative otherwise (Figure 1).

Figure 1 Snoring identification process involving two independent labelers. An epoch was conclusively labeled as snoring only if both labelers independently agreed on its 
presence.
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Snoring Prediction Model
We developed a snoring prediction model based on sound which was transformed into Mel-spectrograms. Before generating Mel 
spectrograms, the raw audio recordings underwent adaptive noise reduction to minimize environmental noise while preserving 
the original spectral characteristics of snoring sounds. This method dynamically adjusted to background noise variations without 
altering the core acoustic properties of snoring events. No additional filtering, amplitude normalization, or artificial data 
augmentation techniques were applied, as we aimed to maintain the natural variability in snoring characteristics across different 
participants and recording environments. Instead, the model robustness was enhanced through semi-supervised learning 
techniques, such as consistency loss and contrastive learning. These approaches helped improve generalization across diverse 
snoring patterns and recording conditions.

Each Mel spectrogram was labeled as “snoring” or “normal” according to the presence of snoring during each 30-second 
epoch. We utilized a Vision Transformer-based deep learning model similar to the one employed in our previous research.16 In 
brief, we designed an model for detecting snoring events on an epoch-by-epoch basis. It takes 14 input epochs and generates 
predictions for 10 output epochs, categorizing each as either “snoring” or “normal”. The model comprises two main components: 
a feature extractor and a multi-epoch detector. The feature extractor processes Mel spectrograms to capture unique acoustic 
characteristics of snoring. Building on this, the multi-epoch detector identifies snoring events and determines their classification 
by leveraging contextual information from adjacent epochs.

Evaluation of Model Performance
We validated the performance of the snoring prediction model using the test dataset. Epoch-by-epoch agreement between 
the snoring prediction model and human-annotated ground-truth snoring. The performance is shown as accuracy, macro 
F1 score, Cohen kappa value, sensitivity and specificity. We also performed subgroup analyses to evaluate the 
performance according to the snoring percentage of each participant.

We conducted a thorough analysis comparing the percentage of snoring in a session as predicted by our model with the 
corresponding values derived from human-annotated ground-truth data. Employing Pearson correlation analysis, we assessed 
the concordance between the smartphone predictions and the PSG-based percentages of snoring events. The performance 
evaluation matrix, in this context, includes regression metrics such as the coefficient of determination, mean absolute error, 
and root mean square error. Statistical analyses were carried out using IBM SPSS Statistics, version 26 (IBM Corp), and 
continuous parametric variables were presented as means (standard deviation [SD]). A subgroup analysis of subjects with 
apnea hypopnea index (AHI) less than 15 per hour (hr) and AHI greater than or equal to 15 per hour were performed to 
evaluate the effect of AHI on the accuracy of snoring percentage prediction.

Results
General Characteristics of Study Participants
The audio dataset in the hospital environment was collected from 105 participants and the hospital dataset was used for 
training. The audio dataset in the home environments was collected from 109 participants. Among them, 54 was used for 
training and 55 for testing. Because 400 30-second epochs were sampled from each participant, the total number of 
epochs used in this study was 85,600 epochs from 214 participants.

Table 1 summarizes the general and PSG characteristics of hospital training dataset (n=105; 42,000 epochs; 69 males), home 
training dataset (n=54; 21,600 epochs; 26 males), and home test dataset (n=55; 22,000 epochs; 28 males). The mean (SD) age for 
each subgroup was 52.9 (12.9), 50.3 (14.7), and 46.0 (15.3) years, respectively (p = 0.757). The percentage of males was 65.7%, 
48.1%, and 50.9%, respectively (p = 0.055). The mean (SD) body mass index (BMI) was 26.2 (4.2), 24.4 (5.3), and 25.1 (4.2) Kg/ 
m², respectively (p = 0.185). The mean (SD) AHI was 23.3 (23.8), 10.8 (15.2) and 13.2 (16.0) per hour, respectively.

Epoch-by-Epoch Performance of Snoring Event Prediction
The epoch-by-epoch performance of our snoring prediction model was tested using 22,000 epochs of the test dataset. The 
model showed a good epoch-by-epoch prediction performance for snoring with a sensitivity of 89.8% and an specificity 
of 91.3%.
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Subgroup analyses were conducted in 4 subgroups divided according to the snoring percentage of each participant in 
the test dataset such as subgroups 0 to 24.9% (n=32, 12,800 epochs), 25% to 49.9% (n=13, 5200 epochs), 50 to 74.9% 
(n=5, 2000 epochs) and 75 to 100% (n=5, 2000 epochs). The observed ground truth snoring percentage of each subgroup 
was 4.8%, 38.7%, 59.8% and 78.1%, respectively and the predicted snoring of each subgroup was 8.1%, 44.5%, 62.1% 
and 84.5%, respectively. The AHI of each subgroup was 4.6, 16.8, 33.6 and 34.1/hr, respectively (Table 2).

The sensitivity of the snoring prediction model was 0.838, 0.859, 0.940 and 0.940 for the 4 different subgroups, 
respectively. The specificity of the model was 0.952, 0.816, 0.717 and 0.777 for the 4 subgroups, respectively (Figure 2). 
A representative subject showing epoch-by-epoch comparison between observed and predicted snoring is demonstrated 
in Figure 3.

Correlation Between Observed and Predicted Snoring Percentage
The mean percentage of ground truth observed and predicted snoring of 55 participants in the training dataset was 24.5 
±26.6% and 28.6±28.3%, respectively. The correlation coefficient between observed and predicted snoring ratio was 0.97 
(95% CI, 0.95–0.99). The mean absolute error and root mean squared error were 5.09% (95% CI, 3.42–6.71) and 7.96% 
(95% CI, 5.82–9.93), respectively.

Table 1 Demographic and Polysomnographic Characteristics of Study Subjects

Training Dataset Test Dataset

Hospital Audio 
(n=105, 42,000 epochs)

Home Audio  
(n=54, 21,600 epochs)

Home Audio  
(n=55, 22,000 epochs)

Age (years), mean (SD) 52.8 (12.7) 50.3 (14.6) 46.0 (15.2)
Males, n (%) 69 (65.7%) 26 (48.1%) 28 (50.9%)

BMI (Kg/m2), mean (SD) 26.1 (4.2) 24.3 (5.3) 25.0 (4.1)

BMI<25 kg/m2, n (%) 46 (43.8%) 39 (72.2%) 28 (50.9%)
BMI≥25 kg/m2, n (%) 59 (56.1%) 15 (27.7%) 27 (49.0%)

AHI (/hr), mean (SD) 23.2 (23.8) 10.8 (15.2) 13.2 (16.0)

AHI<15/hr, n (%) 52 (49.5%) 42 (77.7%) 35 (63.6%)
AHI≥15/hr, n (%) 53 (50.4%) 12 (22.2%) 20 (36.3%)

Abbreviations: SD, standard deviation; BMI, body mass index; AHI, apnea hypopnea index.

Table 2 Epoch-by-Epoch Prediction Performance and Characteristics According to the Snoring Percentage of Participants in the Test 
Dataset

Snoring Subgroup

0–24.9%  
(n=32, 12,800 epochs)

25–49.9%  
(n=13, 5200 epochs)

50–74.9%  
(n=5, 2000 epochs)

75–100%  
(n=5, 2000 epochs)

Epoch-by-epoch prediction

Sensitivity 0.838 0.859 0.940 0.940
Specificity 0.942 0.816 0.717 0.777

Subgroup characteristics
Observed snoring (%), mean (SD) 4.8 (7.0) 38.7 (7.0) 59.8 (7.3) 78.1 (9.8)

Predicted snoring (%), mean (SD) 8.1 (10.1) 44.5 (10.6) 62.1 (10.4) 84.5 (8.8)

Age (years), mean (SD) 44.4 (16.4) 49.0 (16.1) 45.6 (13.3) 49.0 (5.1)
Males, n (%) 11 (34.3%) 8 (61.5%) 4 (80%) 5 (100%)

BMI (Kg/m2), mean (SD) 24.3 (4.0) 25.3 (5.0) 26.1 (2.1) 28.3 (2.7)

AHI (/hr), mean (SD) 4.6 (8.6) 16.8 (9.8) 33.6 (24.3) 34.1 (10.6)

Abbreviations: SD, standard deviation; BMI, body mass index; AHI, apnea hypopnea index.
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The correlation analyses were performed in two subgroups divided according to AHI of each participant of the test 
dataset such as subgroups AHI<15/hr (n=35) and AHI≥15/hr (n=20). The correlation coefficient of the two subgroups 
was 0.97 (95% CI, 0.95–0.99) and 0.94 (95% CI, 0.86–0.98), respectively (Figure 4). The mean absolute error and root 
mean squared error were 4.27% (95% CI, 2.56–6.05) and 6.88% (95% CI, 4.45–9.26), respectively for AHI<15/hr, and 
6.53% (95% CI, 3.59–9.49) and 9.57% (95% CI, 5.47–12.96), respectively for AHI≥15/hr

Figure 2 Epoch-by-epoch performance of snoring prediction in 4 subgroups divided according to the snoring percentage of each participant of the test dataset.

Figure 3 A representative subject showing epoch-by-epoch comparison between observed and predicted snoring. Upper and lower panels show observed and predicted 
snoring, respectively. The highlighted blue lines demonstrate snoring epochs.
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Discussion
Snoring not only diminishes the sleep quality of bed partners but can also negatively impact the snorer’s own sleep quality. It 
is, therefore, an important condition in itself and a key symptom of OSA, making its early diagnosis critical. Developing 
technology that allows for the easy and accurate diagnosis of snoring at home has significant implications. Such advancements 
can help individuals recognize the severity of their snoring and identify lifestyle habits contributing to it. Many individuals 
remain unaware of their habitual snoring or its potential consequences, leading to delayed diagnosis and treatment of sleep- 
disordered breathing conditions. By offering a simple and user-friendly method to track snoring percentage, home-based 
detection technology could raise awareness and encourage timely medical consultations, reducing the burden of undiagnosed 
OSA. From a clinical perspective, home-based snoring monitoring could serve as a first-line screening tool to help individuals 
and healthcare providers recognize patterns indicative of potential OSA risk. This technology could be particularly valuable in 
remote patient monitoring, allowing individuals to assess snoring burden before undergoing more comprehensive diagnostic 
evaluations such as polysomnography or home sleep apnea testing.

The development of a real-time snoring prediction model using deep learning algorithms may represent a significant 
advancement in the field of sleep medicine, offering a promising avenue for non-invasive, accessible monitoring of sleep- 
related breathing disorders. Our study, incorporating training datasets obtained in a home setting utilizing smartphone 
recordings of sleep-breathing audios, aimed to validate the accuracy and reliability of this innovative approach. With a high 
epoch-by-epoch sensitivity and specificity and correlation coefficient between observed and predicted snoring, our model 
exhibited remarkable prediction performance in quantifying snoring patterns. These findings underscore the feasibility and 
efficacy of utilizing smartphone recordings for real-time snoring prediction, offering a convenient, cost-effective alternative to 
traditional diagnostic methods.

Figure 4 Correlation between observed snoring ratio and predicted snoring ratio in the test dataset.
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While previous studies have explored the prediction of OSA using various home devices, including smartphones, the 
emphasis has primarily been on diagnosing OSA based on AHI. A cross-sectional study of 423 subjects using audio 
recordings during sleep using a smartphone demonstrated accuracies of 82.3% for an AHI threshold of 15/hr.17 Another 
prospective study of 101 participants using home audio recordings showed accuracies 93.3% for an AHI level of 15/hr.18

With regard to prediction of snoring in particular, previous studies have utilized sound samples, audio maps, or 
recordings obtained with microphones. In a recent study of a multi-branch convolutional neural network for classifying 
snoring and non-snoring events based on publicly available dataset consisting of 1000 one-second sound samples with an 
accuracy of 99.5% was achieved.19 The one-second recordings were classified into snoring (500 samples) and non- 
snoring (500 samples). In contrast, our study analyzed 30-second audio epochs recorded in real-world home and hospital 
settings, capturing realistic sleep conditions. Each epoch was annotated by two trained human labelers, requiring 
consensus for snoring classification, ensuring high labeling accuracy. Our dataset is substantially larger, encompassing 
85,600 30-second epochs from 214 participants. Our recordings reflect actual sleep environments, including various 
background noises, enhancing the generalizability of our findings. The use of 30-second epochs allows for a more 
detailed analysis of breathing patterns over time, unlike the one-second snippets used in the above dataset. Consensus- 
based human labeling provides robust ground truth data, reducing misclassification errors, and the larger and more 
diverse dataset improves the reliability and applicability of our deep learning model.

Another study based on the combination of convolutional neural network, deep neural network, and Long and Short 
memory network, analyzed various descriptors extracted from audio maps, and showed that the Mel-spectrogram can 
better distinguish the differences between snoring and non-snoring sound segments than other descriptors.20 They 
utilized 4600 minutes of audio recordings sourced from YouTube, which were segmented into 1-minute intervals and 
annotated by one of four annotators. Ultimately, 1147 segments containing 18,309 snore events were included in their 
dataset. In contrast, our study employed 30-second epochs annotated by two trained human labelers, ensuring a high 
degree of labeling accuracy. Unlike their dataset, which consisted of selected 1-minute segments, our approach captures 
more detailed and granular data across diverse environments, including both home and hospital settings, thereby 
enhancing real-world applicability. Furthermore, our dataset is substantially larger, comprising 85,600 epochs compared 
to their 1147 segments, offering a more robust and comprehensive foundation for training deep learning models.

In a study of a hybrid convolutional neural network model for the automatic snoring prediction using 88 snoring recordings 
obtained using a high-resolution microphone, with sensitivity of 89.7% and specificity of 88.5%.21 The referenced study and our 
study share the common feature of manually annotating snoring. However, while they used a portable PSG without EEG, our 
study employed a Level 2 full PSG, enabling the precise association of respiratory sounds with sleep stages. Additionally, we 
used smartphones in realistic home environments, mirroring real-world conditions while maintaining robust data quality. 
Furthermore, our dataset is significantly larger (85,600 epochs vs 5441 episodes). Another study analyzed the accuracy of 
snoring rates based on 201 snoring records of 11 patients on snoring prediction application for smartphones, showed a mean 
snoring prediction accuracy rate of 95% and a correlation coefficient between predicted and observed snoring rates of 0.91.22 

However, their study sample size was much smaller than ours.
Our snoring prediction model demonstrated robust performance across various metrics. When evaluated on 22,000 epochs 

from the test dataset, the model achieved a sensitivity of 89.8% and a specificity of 91.3% in detecting snoring events. The 
strong correlation between observed and predicted snoring percentages (correlation coefficient of 0.97) across both AHI 
subgroups further highlights the model’s accuracy. Notably, the mean absolute error was 5.09%, reflecting precise prediction 
capabilities. Given the significant correlation between snoring and AHI,23 our results underscore the potential of snoring 
analysis in the early detection of OSA. These performance metrics suggest that the model is well-suited for clinical 
applications, particularly in home-based monitoring and early screening for sleep-related breathing disorders. By effectively 
detecting snoring events while minimizing false positives, the model ensures reliable identification of individuals at risk of 
sleep-disordered breathing. Given the natural night-to-night variability in snoring, the observed error margins are unlikely to 
significantly impact clinical decision-making, further reinforcing the model’s potential for real-world implementation.

Subgroup analyses, categorized by participants’ snoring percentages, revealed that as the proportion of snoring increased, 
sensitivity improved (ranging from 83.8% to 94.0%), while specificity decreased (from 95.2% to 77.7%). This pattern 
suggests that the model maintains relatively high sensitivity in detecting snoring even among individuals with lower snoring 

Nature and Science of Sleep 2025:17                                                                                               https://doi.org/10.2147/NSS.S514631                                                                                                                                                                                                                                                                                                                                                                                                    527

Hong et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



frequencies, albeit with a trade-off in specificity. The subgroup analysis based on snoring percentage provides important 
clinical insights into the potential relationship between snoring burden and sleep-disordered breathing severity. While primary 
snoring is generally considered distinct from OSA, higher snoring percentages have been associated with increased upper 
airway resistance, more frequent oxygen desaturation, and greater sleep fragmentation, which are key features of OSA. 
Although our study did not directly evaluate OSA severity, the findings suggest that individuals with higher snoring 
percentages may warrant further clinical assessment for possible sleep-disordered breathing.

One limitation of our study is the reliance on manual annotation of snoring by human labelers. While this approach ensures 
high labeling accuracy through a consensus method, it reflects the absence of a universally accepted academic definition of 
snoring.24 Our use of human scoring aimed to address this gap and provide a reliable standard for model training. A systematic 
review on snoring detection highlighted significant inconsistencies in measurement methodologies across studies.24 Different 
studies have employed various sensor types, including microphones, piezoelectric sensors, and nasal transducers, with varying 
intensity thresholds and annotation methods, leading to conflicting results. Additionally, concerns about ambient noise and 
microphone placement variability have raised questions about the reliability of smartphone-based snoring detection. These 
methodological differences must be considered when interpreting the findings of snoring detection models, emphasizing the 
need for standardized measurement criteria and further validation across diverse populations. Additionally, the dataset, 
although diverse, may not fully capture variations in snoring patterns across different populations, such as those with distinct 
ethnic or health profiles.25 Another potential limitation is the relatively small sample size in the higher snoring percentage 
subgroups, which is an inherent challenge given that snoring distribution varies among individuals, making it difficult to 
recruit participants with very high snoring percentages. However, despite this limitation, the model demonstrated stable 
performance across all subgroups, suggesting that the small sample size did not significantly affect its reliability. Furthermore, 
while the number of participants in these subgroups was low, the total number of epochs analyzed remained substantial, 
helping to mitigate concerns related to statistical instability. Nevertheless, we acknowledge this limitation and plan to further 
validate our findings by expanding our dataset with additional home-based recordings in future studies. The age and BMI 
distributions, which are somewhat concentrated within middle-aged and overweight individuals, present a potential limitation. 
The mean age of participants suggests that younger individuals are underrepresented, and the BMI range is skewed toward 
overweight participants, potentially limiting the generalizability of the model to populations with different demographic 
profiles. However, the relatively balanced gender distribution helps mitigate concerns about sex-based bias. To enhance the 
model’s applicability across broader populations, future studies will focus on expanding the dataset to include a wider range of 
ages and BMI values. By incorporating more participants from diverse demographic and clinical backgrounds, we aim to 
ensure that the model remains robust across varying physiological and acoustic characteristics. The smartphone-specific 
recording setup may also limit reproducibility across devices or varying home environments.

While this study demonstrates the feasibility of deep learning-based snoring detection using smartphone audio, 
several avenues for future research remain. One key area for advancement is the integration of additional physiological 
signals, such as oxygen saturation, heart rate variability, and EEG-derived sleep parameters. By incorporating multimodal 
data, future models could enhance differentiation between primary snoring and sleep-disordered breathing conditions, 
including OSA. Developing a mobile application that allows individuals to monitor their snoring patterns, receive 
feedback, and securely share data with healthcare providers could facilitate early intervention and personalized sleep 
health management. Future research should explore how snoring detection can be incorporated into telemedicine 
platforms, digital health records, or integrated with wearable sleep monitors to support remote patient monitoring.

In conclusion, this study highlights the potential of deep learning combined with smartphone recordings as a practical 
and accessible tool for snoring prediction and analysis. By leveraging real-world data from diverse environments and 
employing rigorous annotation methods, our model achieves high accuracy in detecting snoring and estimating its 
prevalence. This not only provides an objective metric for assessing snoring severity but also lays the groundwork for 
integrating snoring analysis into broader sleep health management frameworks. The real-time, epoch-by-epoch prediction 
capability of the model further enhances its applicability, offering possibilities for immediate feedback and personalized 
interventions. As smartphones continue to proliferate globally, our approach bridges the gap between advanced sleep 
disorder diagnostics and everyday accessibility, paving the way for its adoption in clinical practice and home-based 
monitoring to improve sleep health outcomes.
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Highlights
1. A novel application of real-time, epoch-by-epoch snoring prediction with high sensitivity and specificity, offering 

potential for immediate feedback and personalized intervention.
2. A dataset collected in diverse sleep environments, including home settings, enhancing the generalizability and 

practical relevance of our findings.
3. The demonstration of a strong correlation between observed and predicted snoring percentages, underscoring the 

reliability of our approach.

Data Sharing Statement
Due to privacy and ethical concerns, the data supporting this study cannot be made publicly available. Mel-spectrogram 
data could potentially be reverse-engineered to reconstruct participants’ voices, posing privacy risks.

Ethics Statement
This study was conducted following ethical approval from the Seoul National University Bundang Hospital Institutional 
Review Board (IRB No. B-2205-755-308). Informed consent was obtained from all individual participants included in 
the study. The research was performed in accordance with the ethical standards as laid down in the 1964 Declaration of 
Helsinki and its later amendments.

Acknowledgment
This work was partly supported by SNUBH grant #14-2024-0025.

Author Contributions
Joonki Hong: Conceptualization, Formal Analysis, Writing, Methodology
Seung Koo Yang: Conceptualization, Investigation, Visualization, Writing – Original Draft
Seunghun Kim: Writing, Software
Sung-Woo Cho: Conceptualization, Validation
Jayoung Oh: Data Curation, Investigation
Eun Sung Cho: Data Curation, Resources, Software
In-Young Yoon: Supervision, Validation
Dongheon Lee: Conceptualization, Project Administration
Jeong-Whun Kim (corresponding author): Methodology, Supervision, Validation, Funding Acquisition, Writing – Review 
& Editing

All authors have drafted or substantially revised the manuscript, reviewed and agreed on all versions of the article 
before submission, during revision, and in the final stage before publication, and approved the journal to which the article 
was submitted. Additionally, all authors agree to be accountable for the content of the manuscript and any significant 
changes introduced at the proofing stage.

Disclosure
There is no conflict of interest regarding the publication of this article.

References
1. Enright PL, Newman AB, Wahl PW, Manolio TA, Haponik EF, Boyle PJ. Prevalence and correlates of snoring and observed apneas in 5201 older 

adults. Sleep. 1996;19(7):531–538. doi:10.1093/sleep/19.7.531
2. Campos AI, Garcia-Marin LM, Byrne EM, Martin NG, Cuellar-Partida G, Renteria ME. Insights into the aetiology of snoring from observational 

and genetic investigations in the UK biobank. Nat Commun. 2020;11(1):817. doi:10.1038/s41467-020-14625-1
3. Lofaso F, Coste A, Gilain L, Harf A, Guilleminault C, Goldenberg F. Sleep fragmentation as a risk factor for hypertension in middle-aged nonapneic 

snorers. Chest. 1996;109(4):896–900. doi:10.1378/chest.109.4.896
4. Zhang Y, Zhang T, Xia X, et al. The relationship between sleep quality, snoring symptoms, night shift and risk of stroke in Chinese over 40 years old. 

Front Aging Neurosci. 2023;15:1134187. doi:10.3389/fnagi.2023.1134187

Nature and Science of Sleep 2025:17                                                                                               https://doi.org/10.2147/NSS.S514631                                                                                                                                                                                                                                                                                                                                                                                                    529

Hong et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1093/sleep/19.7.531
https://doi.org/10.1038/s41467-020-14625-1
https://doi.org/10.1378/chest.109.4.896
https://doi.org/10.3389/fnagi.2023.1134187


5. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146(5):1387–1394. doi:10.1378/ 
chest.14-0970

6. Deeb R, Judge P, Peterson E, Lin JC, Yaremchuk K. Snoring and carotid artery intima-media thickness. Laryngoscope. 2014;124(6):1486–1491. 
doi:10.1002/lary.24527

7. Lee SA, Amis TC, Byth K, et al. Heavy snoring as a cause of carotid artery atherosclerosis. Sleep. 2008;31(9):1207–1213. doi:10.1093/sleep/ 
31.9.1207

8. Meira ECM, Soca R, Kryger M. How much is too much after all? Primary snoring as a remaining unsolved issue. J Clin Sleep Med. 2020;16 
(6):991. doi:10.5664/jcsm.8442

9. Blumen M, Quera Salva MA, d’Ortho MP, et al. Effect of sleeping alone on sleep quality in female bed partners of snorers. Eur Respir J. 2009;34 
(5):1127–1131. doi:10.1183/09031936.00012209

10. Leung AK, Robson WL. The ABZzzzs of snoring. Postgrad Med. 1992;92(3):217–222. doi:10.1080/00325481.1992.11701451
11. Smith DL, Gozal D, Hunter SJ, Kheirandish-Gozal L. Frequency of snoring, rather than apnea-hypopnea index, predicts both cognitive and 

behavioral problems in young children. Sleep Med. 2017;34:170–178. doi:10.1016/j.sleep.2017.02.028
12. Liu Y, Peng T, Zhang S, Tang K. The relationship between depression, daytime napping, daytime dysfunction, and snoring in 0.5 million Chinese 

populations: exploring the effects of socio-economic status and age. BMC Public Health. 2018;18(1):759. doi:10.1186/s12889-018-5629-9
13. Yu S, Guo X, Li G, Yang H, Sun Y. Influence of snoring on the incidence of metabolic syndrome: a community-based prospective cohort study in 

rural northeast China. J Clin Med. 2023;12(2):217. doi:10.3390/jcm12020447
14. Tran HH, Hong JK, Jang H, et al. Prediction of sleep stages via deep learning using smartphone audio recordings in home environments: model 

development and validation. J Med Internet Res. 2023;25:e46216. doi:10.2196/46216
15. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ 

Open. 2016;6(11):e012799. doi:10.1136/bmjopen-2016-012799
16. Le VL, Kim D, Cho E, et al. Real-time detection of sleep apnea based on breathing sounds and detection reinforcement using home noises: 

algorithm development and validation. J Med Internet Res. 2023;25:e44818. doi:10.2196/44818
17. Cho SW, Jung SJ, Shin JH, Won TB, Rhee CS, Kim JW. Evaluating prediction models of sleep apnea from smartphone-recorded sleep breathing 

sounds. JAMA Otolaryngol Head Neck Surg. 2022;148(6):515–521. doi:10.1001/jamaoto.2022.0244
18. Han SC, Kim D, Rhee CS, et al. In-home smartphone-based prediction of obstructive sleep apnea in conjunction with level 2 home 

polysomnography. JAMA Otolaryngol Head Neck Surg. 2024;150(1):22–29. doi:10.1001/jamaoto.2023.3490
19. Dong H, Wu H, Yang G, Zhang J, Wan K. A multi-branch convolutional neural network for snoring detection based on audio. Comput Methods 

Biomech Biomed Engin. 2024;27(2):1–12. doi:10.1080/10255842.2024.2317438
20. Jiang Y, Peng J, Zhang X. Automatic snoring sounds detection from sleep sounds based on deep learning. Phys Eng Sci Med. 2020;43(2):679–689. 

doi:10.1007/s13246-020-00876-1
21. Li R, Li W, Yue K, Zhang R, Li Y. Automatic snoring detection using a hybrid 1D-2D convolutional neural network. Sci Rep. 2023;13(1):14009. 

doi:10.1038/s41598-023-41170-w
22. Chiang JK, Lin YC, Lin CW, Ting CS, Chiang YY, Kao YH. Validation of snoring detection using a smartphone app. Sleep Breath. 2022;26 

(1):81–87. doi:10.1007/s11325-021-02359-3
23. Chiang JK, Lin YC, Lu CM, Kao YH. Correlation between snoring sounds and obstructive sleep apnea in adults: a meta-regression analysis. Sleep 

Sci. 2022;15(4):463–470. doi:10.5935/1984-0063.20220068
24. Kim SG, Cho SW, Rhee CS, Kim JW. How to objectively measure snoring: a systematic review. Sleep Breath. 2024;28(1):1–9. doi:10.1007/ 

s11325-023-02865-6
25. O’Connor GT, Lind BK, Lee ET, et al. Variation in symptoms of sleep-disordered breathing with race and ethnicity: the sleep heart health study. 

Sleep. 2003;26(1):74–79. doi:10.1093/sleep/26.1.74

Nature and Science of Sleep                                                                                                       

Publish your work in this journal 
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, 
including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders 
and therapy, and strategies to optimize healthy sleep. The manuscript management system is completely online and includes a very quick and fair 
peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/nature-and-science-of-sleep-journal

Nature and Science of Sleep 2025:17 530

Hong et al                                                                                                                                                                    

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1378/chest.14-0970
https://doi.org/10.1378/chest.14-0970
https://doi.org/10.1002/lary.24527
https://doi.org/10.1093/sleep/31.9.1207
https://doi.org/10.1093/sleep/31.9.1207
https://doi.org/10.5664/jcsm.8442
https://doi.org/10.1183/09031936.00012209
https://doi.org/10.1080/00325481.1992.11701451
https://doi.org/10.1016/j.sleep.2017.02.028
https://doi.org/10.1186/s12889-018-5629-9
https://doi.org/10.3390/jcm12020447
https://doi.org/10.2196/46216
https://doi.org/10.1136/bmjopen-2016-012799
https://doi.org/10.2196/44818
https://doi.org/10.1001/jamaoto.2022.0244
https://doi.org/10.1001/jamaoto.2023.3490
https://doi.org/10.1080/10255842.2024.2317438
https://doi.org/10.1007/s13246-020-00876-1
https://doi.org/10.1038/s41598-023-41170-w
https://doi.org/10.1007/s11325-021-02359-3
https://doi.org/10.5935/1984-0063.20220068
https://doi.org/10.1007/s11325-023-02865-6
https://doi.org/10.1007/s11325-023-02865-6
https://doi.org/10.1093/sleep/26.1.74
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress

	Introduction
	Methods
	Study Population and Data Collection
	Dataset Composition and Preparation for Snoring Prediction
	Labeling of Snoring
	Snoring Prediction Model
	Evaluation of Model Performance

	Results
	General Characteristics of Study Participants
	Epoch-by-Epoch Performance of Snoring Event Prediction
	Correlation Between Observed and Predicted Snoring Percentage

	Discussion
	Highlights
	Data Sharing Statement
	Ethics Statement
	Acknowledgment
	Author Contributions
	Disclosure

