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Purpose: Sepsis is the 10th leading cause of death globally and the most common cause of death in patients with infections. 
Ubiquitination plays a key role in regulating immune responses during sepsis. This study combined bioinformatics and Mendelian 
randomization (MR) analyses to identify ubiquitin-related genes (UbRGs) with unique roles in sepsis.
Methods: Relevant genes were obtained from the GSE28750 dataset and GSE95233, weighted gene co-expression network analyses 
were performed to identify gene modules, and differentially expressed UBRGs (DE-UBRGs) were generated by differentially 
expressed genes (DEGs) crossover with key modular genes and UBRGs in sepsis and normal samples. Causal relationships between 
sepsis and UbRGs were analysed using MR, performance diagnostics were performed using subject work characteristics (ROC) 
curves, and an artificial neural network (ANN) model was developed. On this basis, immune infiltration was performed and the 
expression of key genes was verified in animal models.
Results: 3022 DEGs were found between sepsis and normal. A total of 2620 genes were obtained as key modular genes. Crossing 
DEGs, key modular genes and UBRGs yielded 93 DE-UBRGs. MR results showed WDR26 as a risk factor for sepsis (OR>1) and 
UBE2D1 as a protective factor for sepsis (OR<1), which was reinforced by scatterplot and forest plot. ROC curves showed that 
WDR26 and UBE2D1 could accurately differentiate between sepsis and normal samples. Confusion matrix and ROC curve results 
indicate that the artificial neural network model has strong diagnostic ability. The results of immune infiltration showed that.
WDR26 was negatively correlated with plasma cells, while UBE2D1 was positively correlated with CD4 naïve T cells. Significant 
differences between sepsis and normal were obtained between UBE2D1 and WDR26 in the animal model.
Conclusion: There appeared to be a causal relationship between sepsis, WDR26 and UBE2D1. The insights were of value for 
effective clinical diagnosis and treatment in sepsis.
Keywords: sepsis, ubiquitin-related genes, Mendelian randomisation

Introduction
Sepsis, a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to 
infection, is a crucial issue society faces today. Approximately 49 million cases of sepsis are reported annually, with 
11 million deaths, accounting for approximately 20% of all annual deaths worldwide. Sepsis imposes a substantial burden 
on families and society1 Recent studies highlight the complex pathogenesis of sepsis, involves imbalanced inflammatory 
responses, immune dysfunction, mitochondrial damage, coagulation dysfunction, abnormalities in the neuroendocrine 
immune network, endoplasmic reticulum stress, and other pathophysiological processes that ultimately lead to organ 
dysfunction. Despite advancements in anti-infective therapy and organ function support, the intricate mechanisms 
underlying sepsis contribute to its high morbidity and mortality rate. Therefore, to identify novel therapeutic targets 
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and provide a theoretical basis for the clinic applications, exploring the mechanisms underlying sepsis in greater depth is 
crucial.

Post-translational modifications (PTMs) play a crucial role in regulating various cellular processes, including 
phosphorylation, ubiquitination, and acetylation. Among these, dysregulation of ubiquitination is associated with 
a wide range of diseases. Ubiquitin (Ub), a small protein consisting of 76 amino acids with a molecular weight of 
approximately 8.5 kDa, is ubiquitously present in living organisms. It is localized in the cytoplasm, nucleus, and on 
membrane proteins of eukaryotic cells Ub mediates diverse physiological activities within cells, by binding to and 
labeling proteins destined for degradation. Its primary function is to facilitate the hydrolysis of target proteins into small 
peptides. Additionally, Ub can label transmembrane proteins, such as receptors, to facilitate their removal from the cell 
membrane and participates in the vesicular transport of proteins2 Ubiquitination-mediated regulation of protein stability, 
localization, and function influences numerous essential biological processes, including autophagy, DNA damage repair, 
the cell cycle, signal transduction, gene expression, inflammation, immunity, and tumorigenesis.3–5 The Ubiquitination 
involves a series of enzymatic steps mediated by ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), 
and ubiquitin ligases (E3). Studies have demonstrated that these enzymes modulate sepsis-induced injury by regulating 
innate and adaptive immunity. For example, the E3 ligase HECTD3 promotes IFN-I production and sepsis development 
by catalyzing the ubiquitination of TRAF3 the tumor necrosis factor (TNF) receptor-associated factor family6. Similarly, 
Qian et al7 identified that the E3 ligase TRIM47 promotes LPS-induced lung inflammation and acute lung injury by 
facilitating the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway, activates the NF- 
κB and MAPK signaling cascades, triggering inflammatory responses in endothelial cells. Xiong et al8 reported that 
irisin, a cleavage product of fibronectin type III domain-containing protein 5, protects the heart from ischemia/reperfu-
sion injury by upregulating mitochondrial ubiquitin ligase (MITOL). Overall, growing evidence indicates strong 
association between ubiquitination sepsis. However, the role of UbRGs has not been systematically investigated, and 
their diagnostic and therapeutic potential in sepsis remains undefined. Therefore, this study aimed to investigate the 
potential association between UbRGs and the underlying mechanisms of sepsis.

Mendelian randomization (MR) is a statistical method that uses genetics to establish causal relationships between 
intermediate phenotypes, such as plasma proteins, and clinical phenotypes. In sepsis, numerous studies have demon-
strated significant associations between proteins, metabolites, other biomarkers, and outcomes. However, the causal role 
of these biomarkers is highly uncertain, potentially due to confounding factors, reverse causation, or the fact that 
inflammatory marker, for instance, are often non-specific collateral phenomena. MR provides a robust approach for 
identifying which intermediate features (including plasma proteins, metabolites, and even radiological characteristics) 
contribute to a disease. Studies have investigated the causality associated with the risk of sepsis mortality. For example, 
low-density lipoprotein (LDL), a complex of proteins, cholesterol, and phospholipids that primarily functions as a carrier 
of cholesterol in the bloodstream has been examined. Walley KR9 used MR to investigate whether LDL levels increase 
sepsis mortality. Their results suggested that low LDL increase sepsis mortality and are strongly associated with the 
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) genotype. Therefore, MR holds promise for advancing precision 
sepsis trials. Overall, this study identified UbRGs in patients with sepsis by combining common transcriptome and MR, 
and analyzed the causal relationship between these genes and sepsis, along with their prognostic value, to further explore 
the mechanisms of UbRGs in sepsis.

Materials and Methods
Data Preparation
First of all, the GSE28750, regarded as training set, was downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) and it comprised whole blood samples from 10 Sepsis and 20 normal. 
Besides, the GSE95233, treated as validation set, contained 51 Sepsis and 22 normal whole blood samples. Furthermore, 
Ubiquitin-related genes (UbRGs) were extracted from integrated annotations for Ubiquitin and Ubiquitin-like 
Conjugation Database (iUUCD) (http://iuucd.biocuckoo.org/). The flowchart of the relevant study was at Figure S1.
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Recognition and Analysis of Differentially Expressed UbRGs (DE-UbRGs)
The ‘Limma’ package (3.57.11)10 was exploited to retrieve differentially expressed genes (DEGs) between Sepsis and 
normal in GSE28750. The selection conditions of DEGs were |log2FC| > 0.5, adj.P value < 0.0510 The ‘ggVolcano’ 
(version 0.0.2)11 and ‘ComplexHeatmap’ package (version 2.17.0)12 were employed to visualize the outcomes in the 
form of volcano map and heat map, respectively. To prospect for modules of co-expressed genes and to inspect the 
relationship between gene networks and corresponding phenotype, a Weighted Gene Co-expression Network Analysis 
(WGCNA) network was assembled and modules were characterised in the training set using the ‘WGCNA’ package 
(version 1.72–1)13 At first explicit outliers were eliminated. Then a soft threshold was determined via the 
pickSoftThreshold function. The minimum number of genes per genome (minModuleSize) and MergeCutHeight was 
set to 30 and 0.15 respectively. After that, a gene module was extracted with the help of hierarchical clustering combined 
with the dynamic tree cutting function. It was finally analysed the correlation between sepsis and modules to pick key 
modules and key module genes. DE-UbRGs were produced by crossing DEGs, key module genes and UbRGs. For 
exploring the correlation between DE-UbRGs, Spearman correlation analysis was carried out for DE-UbRGs in the 
training set via ‘Corrplot’ package (version 0.92)14 Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes 
(KEGG) enrichment analysis for DE-UbRGs were performed using ‘clusterProfiler’ package (version 4.4.9)15 Protein- 
Protein Interaction (PPI) network was designed using STRING database (https://cn.string-db.org/) (high confidence was 
set at 0.4), results were visualised in Cytoscape (version 3.7.1).16

Mendel Randomization (MR) Analysis
Initially, a total of 90 expression quantitative trait Loci (eQTL) data of DE-UbRGs were collected from the IEU Open 
Genome-wide Association Studies (GWAS) database (https://gwas.mrcieu.ac.uk/) as exposure factors, and sepsis was 
assumed as the outcome. Exposure factors were read and instrumental variables (IVs) were screened through the 
‘TwoSampleMR’ package (version 0.5.7)17 The screening standard was P<5*10-6. Then IVs significantly related to 
exposure factors were found. Clump was set as ‘TRUE’. IVs of linkage disequilibrium analysis (LDA) were discarded. 
MR analysis was undertaken by combining 5 algorithms: MR Egger18 Weighted median (WM)19 Inverse variance 
weighted (IVW)20 Simple mode and Weighted mode21 The IVW method was adopted as the main benchmark of the 
findings. Afterwards, a scatter diagram was constructed to appreciate the correlation between the exposure factors and the 
outcome. A funnel diagram was plotted to judge randomness. A forest diagram was generated to assess the effectiveness 
of each he single nucleotide polymorphism (SNP) site in predicting exposure factors for outcome diagnosis. Ultimately, 
a sum of 3 validation methods were implemented to evaluate the credibility of the analysis: Heterogeneity test, the 
Horizontal pleiotropy, and Leave-one-out analysis. Eventually, inverse MR analyses were performed.

Construction of Diagnosis Model by Artificial Neural Network (ANN)
The candidate genes analysed using MR were utilised as biomarkers for further analysis. To further evaluate the 
biomarkers’ capabilities to distinguish sepsis samples from normal samples, ROC curves were analysed applying 
‘pROC’ package (version 1.18.4)22 in training and validation sets between Sepsis and normal samples. An ANN 
model of diagnosis was then constructed to judge the diagnostic value of the biomarkers via ‘neuralnet’ package (version 
1.44.2)23 Later on, a three-fold cross-validation method was deployed to enable more effective evaluation of the results 
of the neural network model. The dataset was randomly separated into training and validation datasets. Eventually the 
classification score of the neural network model of the disease was extracted.

Function Analysis of Biomarkers and Immune Infiltration
In the training set, ‘c2.cp.kegg.v7.5.1.entrez.gmt’ in the Molecular Signatures Database (MSigDB) database was taken as 
a reference gene set. The biomarkers were analysed by ‘clusterProfiler’ package (version 4.4.9)15 and P<0.05 was 
deemed as significant enrichment. Furthermore, genes associated with the function of biomarkers and their corresponding 
functions were predicted by GeneMANIA (http://www.genemania.org/). The proportion of 22 immune cells in each 
sample (human blood samples in the database) was then calculated via the Cell-type Identification By Estimating 
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Relative Subsets of RNA Transcripts (CIBERSORT). The distinctions of the 22 immune cell types between samples with 
sepsis and normal samples were contrasted. Spearman analysis was utilised to explore the correlation between different 
immune cells and correlation between biomarkers and different immune cells. Afterwards, the biomarkers were entered 
into miRDB (https://mirdb.org/), Tarbase (https://www.tarbase.com/) and TargetscanHuman (https://www.targetscan.org/) 
databases, respectively. Then the generated miRNAs were crossed. The received miRNAs were entered into miRNet 
(https://www.mirnet.ca/) and starbase (https://rnasysu.com/encori/) databases, crossed with lncRNAs. Afterwards the 
Competing endogenous (ceRNA) network was constructed. Lastly, the differences in biomarker expression in sepsis and 
normal samples in the training and validation sets were investigated.

The Expression of Biomarkers in Mice Was Verified by Experiments
Construction of Animal Models
First, a total of 12 male 6-8-week-old C57 mice were purchased from Specific (Beijing) Biotechnology Co. Ltd 
(Production License No.: SCXK (Beijing) 2019–0010; Use License No.: SYXK (Yunnan) K2020-0006). Thereafter, 6 
of them were randomly taken for animal model construction, mice were fasted for 12h. Next, mice were anesthetized by 
intraperitoneal injection of 4% chloral hydrate according to the dose of 0.1 mL/10g. Then, the animals were fixed supine 
on a surgical board, and their abdominal surgical area was routinely sterilized and depilated. Under aseptic conditions, 
the abdominal wall of the mice was incised 1 cm with a scalpel. After entering the abdomen through the incision, the 
cecum was separated at the distal end of the ileocecal valve, the cecum was ligated with a No. 4 silk thread, an 18-gauge 
injection needle was perforated twice at the ligated end, a small amount of feces was extruded before the peritoneum and 
skin were closed intermittently with a No. 4 silk suture. The remaining 6 mice were kept normally without surgical 
manipulation.

Western Blot Assay
For mice in the model and control groups, 50–100mg of lung tissue was respectively weighed and added to 
500–1000ul of RIPA lysate and homogenized on ice using a tissue homogenizer. The tissue was centrifuged at 4°C, 
16000g for 15min and the supernatant was taken and dispensed into 80ul. Subsequently, the protein concentration was 
determined by BCA protein quantification kit. The 80ul protein samples were quantified and mixed with the 
appropriate 5× protein sampling buffer and boiled in a boiling water bath for 10 min, cooled to room temperature 
and stored at −80°C. After SDS-PAGE electrophoresis, the membrane was transferred and placed in 5% BSA for 
closure. The closed PVDF membrane was transferred into primary antibodies (UBE2D1, 1:2000, Affinity, DF6715 and 
WDR26, 1:1000, Bioss, bs-0932R) and incubated at 4°C overnight. On the following day, it was rewarmed for 1h and 
washed three times with TBST for 5 min each time, followed by incubation of secondary antibody for 60 min at room 
temperature (secondary antibody: 5% skimmed milk prepared at 1:5000). After the secondary antibody incubation, it 
was washed 3 times with TBST for 5 min each. Finally, the protein level was assessed on a gel imager using ECL 
chemiluminescent substrate.

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
In order to deeply investigate the role of biomarkers in Sepsis, RNA was extracted from whole blood samples (whole blood 
from animal models) of models and controls using Trizol reagent according to the manufacturer’s protocol. This study was 
approved by the Ethics Committee of The People’s Hospital of the Ningxia Hui Autonomous Region [Approval No.: 
Yinchuan, China; accession No. [2019] Luncheon Review [Scientific] No. (053)]. The cDNA was extracted by reverse 
transcription reaction through SureScript First Strand cDNA Synthesis Kit. RT-qPCR reaction conditions were as follows: pre- 
denaturation at 95°C for 2 min, denaturation at 95°C for 10s, annealing at 60°C for 30s, and extension at 60°C for 30s. The 
reaction conditions were as follows. A total of 40 cycles were performed. Each sample was tested in triplicate and each sample 
was subjected to unchaining curve analysis to check the specificity of amplification. GAPDH-M was considered as the internal 
reference gene. qPCR primer details have been listed in Table S1. We used the 2-ΔΔct method to calculate the relative 
expression levels of key genes.
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Statistical Analysis
All analysis were executed in the R software and the comparison of data of different groups were accomplished 
according to the Wilcoxon test. Except where otherwise stated, the result of statistically significant difference was 
defined as P<0.05.

Results
A Variety of 2,620 Key Module Genes Were Yielded
The GSE28750 dataset was employed to differential analysis, generating 3,022 DEGs, comprising 1,626 up- 
regulated and 1,396 down-regulated genes. The results were plotted on volcanic maps and heat maps (Figure 1A 
and B). Following this, WGCNA was executed. To begin with, all samples were subjected to hierarchical clustering, 
and obviously distinguished samples were removed (Figure 1C). A scale-free network was then constructed and 
a soft threshold of 14 was detected (Figure 1D). Hierarchical clustering combined with a dynamic tree cutting 
function was then applied to determine the gene modules (Figure 1E). Sepsis was then treated as a phenotype and 
the correlation between sepsis and modules was analyzed. In addition, a heat map was employed to show the 
correlation between modules and sepsis. According to cor>0.5 and P < 0.05, Sepsis-related modules were selected as 
key modules, and genes in key modules were screened to obtain MEbrown, MElightcyan, MElightyellow, and 
MEtan modules (cor> 0.7 and P< 0.05). Moreover, a sum of 2,620 genes were achieved as key module genes 
(Figure 1F). DEGs, key module genes and UbRGs were taken for intersection and a total of 93 DE-UbRGs were 
acquired. (Figure 1G).

GO Enrichment Analysis Pointed Out That DE-UbRGs Enriched in 33 GO Terms
For the purpose of investigating the relationship among DE-UbRGs, Spearman correlation analysis was performed. The 
heatmap demonstrated that RLIM was positively correlated with UBA6 and GRAP was negatively associated with 
UHRF1 (P < 0.01) (Figure 2A). Moreover, to explore the functions of these DE-UbRGs, GO and KEGG enrichment 
analyses were performed. Interestingly, KEGG enrichment analysis disclosed that 93 DE-UbRGs were significantly 
enriched in 3 pathways, namely ‘ubiquitin-mediated proteolysis’, ‘autophagy’, and ‘protein processing in the endoplas-
mic reticulum’ (Figure 2B and C). The findings of GO enrichment analysis pointed out that DE-UbRGs enriched in 33 
GO terms, such as ‘regulation of protein catabolic processes’ (Figure 2D and E). PPI network revealed that RNF7 and 
UBE2D1 have strong collaboration with other genes (Figure 2F).

WDR26 Was a Risk Factor and UBE2D1 Was a Protective Factor
In contrast to clinical observational studies, MR analyses provided the advantage of circumventing the effects of 
suspected reverse causality and confounding factors. As depicted in the table, WDR26 was a risk factor (OR>1) and 
UBE2D1 was a protective factor for sepsis (OR<1) (Table 1). The scatter diagram clearly indicated that the slope of the 
WDR26 line was positive, which was a risk factor. The slope of the UBE2D1 line was negative, which was a protective 
factor (Figure 3A). At the same time the forest map also reinforced this conclusion. The MR effect size for WDR26 was 
greater than 0 and the MR effect size for UBE2D1 was less than 0 (Figure 3B). By the way, the funnel plot illustrated that 
both genes were symmetrically allocated along the IVW line, evidencing that the results were in compliance with 
Mendel’s second law (Figure 3C). Heterogeneity test revealed that there appeared to be no heterogeneity of results 
(Q>0.05) (Table 2). The horizontal pleiotropy test suggested no level (P>0.05) (Table 3). The Leave-one-out analysis 
suggested that there were no serious biases for the 2 exposure factors, reflecting the validity of the results and the fact that 
no single SNP had a large impact on the outcome (Figure 3D). Eventually, the results of inverse Mendelian randomiza-
tion analysis revealed that there was no causal relationship between Sepsis as an exposure factor and WDR26 and 
UBE2D1 as endpoints when they were considered as endpoints (P>0.05) (Figures S2–5, Tables S2–4). That is to say, 
WDR26 and UBE2D1 could affect sepsis, while sepsis did not affect these two genes, which demonstrated the reliability 
of the causal results we obtained.
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Figure 1 A variety of 2,620 key module genes were yielded. 
Notes: (A) Differential volcano plot of the GSE89632 dataset, points within the dashed line in the upper left corner represent down-regulated genes obtained from the 
screen, and points within the dashed line in the upper right corner represent up-regulated genes obtained from the screen. (B) Differential heatmap of the GSE89632 
dataset, red to blue color represents the expression level from high to low in the heatmap. (C) Sample level clustering plot. (D) Soft threshold selection plot, the red line 
indicates the value of the scale-free fit index taken for subjective selection, and the determination of the optimal soft threshold is mainly referred to the left plot. (E) Gene 
clustering tree diagram. (F) Module correlation heat map, the darker the red color, the more positive correlation; the darker the blue color, the more negative correlation. 
(G) DEGs, Module_genes and UbRGs are merged to take the intersection.
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Figure 2 GO enrichment analysis pointed out that DE-UbRGs enriched in 33 GO terms. 
Notes: (A) Heat map of top 10 gene correlations. (B) KEGG enrichment analysis bagua diagram. (C) KEGG enrichment analysis string diagram. (D) GO enrichment analysis 
bagua diagram. (E) GO enrichment analysis string diagram. (F) PPI interaction network diagram, the size and color of the circle indicate its degree, the larger the circle, the 
greater the degree, the purpler the circle, the greater the degree, and the thickness of the line indicates the degree of gene co-expression, the thicker the line, the greater 
the degree of co-expression.
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Table 1 MR Analysis Results

Gene id.exposure id. 
outcome

Outcome Exposure Method nsnp b se pval lo_ci up_ci or or_lci95 or_uci95

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000162923

MR Egger 4 0.402607645 0.543884005 0.536255099 −0.663405005 1.468620296 1.495719924 0.515094446 4.34323862

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id: 
ieu-b-4980

|| id:eqtl- 
a-ENSG00000162923

Weighted 
median

4 0.228465052 0.115652054 0.048216905 0.001787026 0.455143078 1.256669606 1.001788624 1.576398914

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000162923

Inverse 

variance 
weighted

4 0.211240664 0.098273229 0.031592887 0.018625134 0.403856193 1.235209589 1.018799664 1.497588567

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000162923

Simple 

mode

4 0.131588997 0.156783192 0.462911133 −0.17570606 0.438884054 1.140639417 0.838864523 1.550975448

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000162923

Weighted 

mode

4 0.261414757 0.142361664 0.163644028 −0.017614105 0.540443618 1.298766226 0.982540117 1.716768283

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000072401

MR Egger 9 0.000563746 0.044415723 0.990227301 −0.086491071 0.087618563 1.000563905 0.917143738 1.091571677

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id: 
ieu-b-4980

|| id:eqtl- 
a-ENSG00000072401

Weighted 
median

9 −0.044432565 0.025523283 0.081707415 −0.094458199 0.005593069 0.956540103 0.909865767 1.00560874

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000072401

Inverse 

variance 
weighted

9 −0.059133441 0.028167588 0.035786641 −0.114341914 −0.003924967 0.942580982 0.891952933 0.996082725

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000072401

Simple 

mode

9 −0.029498495 0.053257745 0.594798245 −0.133883675 0.074886686 0.970932339 0.874691807 1.077762018

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000072401

Weighted 

mode

9 −0.048813983 0.025668829 0.093724574 −0.099124887 0.001496922 0.952358268 0.905629599 1.001498043

Notes: Based on the IVW method, the significance of the two exposure factors eqtl-a-ENSG00000162923 and eqtl-a-ENSG00000072401 and Sepsis has a significant pval < 0.05, which indicates that eqtl-a-ENSG00000162923 and eqtl- 
a-ENSG00000072401 and Sepsis have a causal relationship. The OR value takes 1 as the dividing line, greater than 1 is the risk factor, less than 1 is the protective factor, from the table, we can see that eqtl-a-ENSG00000162923 is the risk 
factor of Sepsis, and eqtl-a-ENSG00000072401 is the protective factor of Sepsis.
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WDR26 and UBE2D1 had the Strongest Interaction with RANBP10
In terms of the likelihood for the biomarkers to distinguish sepsis from normal samples, the ROC curve illustrated that 
WDR26 and UBE2D1 provide precise distinction between sepsis and normal samples (AUC>0.7) in the training and 
validation sets (Figure 4A and B). Subsequently, neural network model was further constructed (Figure 4C). Confusion 
matrix and ROC curve outcomes indicated that the ANN model held a strong diagnostic power (Figure 4D and E). 
Possible functions and pathways of the biomarkers were further elaborated. The enrichment analysis results of GSEA 
pointed out that UBE2D1 was significantly enriched in 54 pathways such as ‘ubiquitin-mediated protein hydrolysis’ 

Figure 3 WDR26 was a risk factor and UBE2D1 was a protective factor. 
Notes: (A) Scatterplot of Mendelian randomization analysis, where a positive slope of the line indicates a risk factor and a negative slope of the line indicates a safety factor. 
(B) Forest plot of Mendelian randomization analysis, eqtl-a-ENSG00000162923 is to the right of the parameter line for risk factors and eqtl-a-ENSG00000072401 is to the 
left of the parameter line for protective factors. (C) Funnel plot of Mendelian randomization analysis, 2 genes are almost symmetrical based on IVW method. (D) Mendelian 
randomization analysis of the line Leave-one-out analysis is shown.

Table 2 The Heterogeneity Test

Gene id.Exposure id. 
outcome

Outcome Exposure Method Q Q_df Q_pval

WDR26 eqtl- 

a-ENSG00000162923

ieu- 

b-4980

Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000162923

Inverse 

variance 

weighted

0.669073241 3 0.880452981

UBE2D1 eqtl- 

a-ENSG00000072401

ieu- 

b-4980

Sepsis || id: 

ieu-b-4980

|| id:eqtl- 

a-ENSG00000072401

Inverse 

variance 

weighted

13.10731649 8 0.108210146

Notes: The heterogeneity test was conducted, if the P-value analysed by the heterogeneity test was less than 0.05, it indicated that heterogeneity existed; as shown in 
Table 2, the Q_pval of eqtl-a-ENSG00000162923 and eqtl-a-ENSG00000072401 was greater than 0.05, indicating that there was no heterogeneity.
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(Figure 4F). WDR26 was significantly enriched in 40 pathways like ‘ribosome’ (P<0.05) (Figure 4G). Eventually, the 
GeneMANIA network revealed that 20 genes, such as GID8, were interconnected with WDR26 and UBE2D1, with the 
strongest interaction being with the RANBP10. These genes may predict signalling pathways such as ubiquitin-like 
protein binding enzyme activity (Figure 4H).

Table 3 The Horizontal Pleiotropy Test

Gene id.Exposure id.Outcome Outcome Exposure Egger_Intercept se pval

WDR26 eqtl-a-ENSG00000162923 ieu-b-4980 Sepsis || id:ieu-b-4980 || id:eqtl-a-ENSG00000162923 −0.015455355 0.043202664 0.754763641

UBE2D1 eqtl-a-ENSG00000072401 ieu-b-4980 Sepsis || id:ieu-b-4980 || id:eqtl-a-ENSG00000072401 −0.024293227 0.014776936 0.144176406

Notes: Horizontal pleiotropy test was performed Horizontal pleiotropy: P-values for both exposure factors were greater than 0.05, indicating that no horizontal pleiotropy 
existed.

Figure 4 WDR26 and UBE2D1 had the strongest interaction with RANBP10. 
Notes: (A) ROC curve of the biomarker in the GSE28750 dataset. (B) ROC curve of biomarker in GSE95233 dataset. (C) Artificial neural network diagnostic model. 
(D and E) Evaluation of the artificial neural network diagnostic model (validation set). (F) Enrichment analysis of UBE2D1. (G) Enrichment analysis of WDR26. (H) 
Genemina.
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Amounts of 9 Immune Cells Were Significant Discrepancies Between Sepsis and 
Normal
Immune cell infiltration analysis offers valuable guidance in predicting disease course and response to treatment. The 
relative ratio of 22 immune cell types was visualised in Figure 5A, and among 9 immune cells such as B cells memory 
and Macrophages M0, there were significant discrepancies between sepsis and normal group (P<0.05) (Figure 5B). 
Furthermore, the correlation between different immune cells exhibited that T cells CD8 were negatively correlated with 

Figure 5 Amounts of 9 immune cells were significant discrepancies between sepsis and normal. 
Notes: (A) Immune cell percentage stacked plot. (B) Immune cell percentage box plot. (C) Differential immune cell correlation analysis. (D) Correlation analysis of 
biomarkers with differential immune cells. (E) Diagram of ceRNA regulatory network. (F) Expression analysis of candidate biomarkers in the training set. (G) Expression 
analysis of candidate biomarkers in the validation set.*: P < 0.05, **: P < 0.01, ***: P < 0.001, ****P < 0.0001.
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Macrophages M0, Macrophages M1, Neutrophils and Plasma cells (P<0.05). It was positively correlated with B cells 
memory and NK cells resting (P<0.05) (Figure 5C). Figure 5D illustrated that WDR26 was negatively associated with 
Plasma cells (P<0.01), nevertheless, it was positively correlated with T cells CD4 naive and T cells CD8 (P<0.05). 
UBE2D1 was positively correlated with T cells CD4 naive (P<0.05). Afterwards, ceRNA network facilitated the 
investigation of gene functions and their regulation mechanism at a broader level. The network displayed that 
UBE2D1 interacted with miRNAs including hsa-miR-106b-5p and lncRNAs such as AGAP11, whereas WDR26 
interacted with miRNAs like hsa-miR-30E-5p and lncRNAs such as IER3-AS1 (Figure 5E). Regarding the expression 
of biomarkers, it was apparent that the expression levels of UBE2D1 and WDR26 were significantly higher in sepsis than 
the normal group (P<0.05) (Figure 5F–G).

The Expression of UBE2D1 Was Considerably Higher in the Model Group
It was apparent that the control mice had no distinct changes in their lungs, while the model mice had lung damage 
(Figure 6A). Western blotting and qRT-PCR were conducted to detect the protein and mRNA expression of the 
biomarkers in the model and control groups. The results demonstrated that the expression of UBE2D1 was considerably 
higher in the model group than in the control, whereas the expression of WDR26 was remarkably lower in the model 
group (P < 0.05) (Figure 6B–D).

Discussion
Sepsis results from a dysregulated host response to infection. Timely recognition and diagnosis of sepsis are consistently 
associated with better prognosis. Numerous bioinformatics studies have explored sepsis-associated signaling pathways 
and molecular dysregulation mechanisms, identifying several biomarkers. However, investigations into the mechanisms 
and biomarkers related to ubiquitination during sepsis remain limited.

Figure 6 The expression of UBE2D1/WDR26 in the model group. 
Notes: (A) Lung tissues of model and control mice. (B and C) Detection of biomarker proteins in the model and control groups by Western blotting. (D) Detection of 
biomarker mRNA expression in the model and control groups by qRT-PCR. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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In this study, we first screened sepsis-related DEGs in the GSE28750 dataset and constructed a WGCNA co- 
expression network. Subsequently, DEGs, module genes, and UbRGs were intersected to identify differential UbRGs 
for further analysis. Spearman correlation, KEGG enrichment, and GO enrichment analyses were performed to explore 
their potential roles in sepsis. Notably, few GO terms or KEGG pathways associated with ubiquitination were high-
lighted, including GO regulation of protein catabolic processes, KEGG pathways in “ubiquitin-mediated proteolysis”, 
“autophagy”, and “protein processing in the endoplasmic reticulum”. Next, we integrated 90 eQTL data of differential 
UbRGs obtained from the IEU OpenGWAS database into the MR analysis, identifying two sepsis ubiquitination-related 
biomarkers, WDR26 and UBE2D1. Subsequently, we performed ROC curve, ANN, and expression analyses of these 
biomarkers using the training set GSE28750 and validation set GSE95233 and revealed that WDR26 and UBE2D1 were 
highly expressed in sepsis patients than that of healthy controls (Human samples in the database). Furthermore, these 
biomarkers exhibited strong discriminative and diagnostic performance in distinguishing sepsis samples from control 
samples.

UBE2D1 (ubiquitin-conjugating enzyme E2D1) is a member of the E2 ubiquitin-conjugating enzyme family that 
plays a critical role in the degradation of dysfunctional or aged proteins. Proteins with E2 ubiquitinase activity have been 
reported to modulate LPS-induced macrophage polarization toward an M2 phenotype by regulating the molecular switch 
that governs the LPS-induced endocytosis of TLR4 and the subsequent transition from MyD88 to TRIF-dependent 
signaling24 Furthermore, Wang25 identified UBE2D1 as a potential biomarker for diabetes-associated sepsis through 
bioinformatic analysis, and animal experiments indicated that UBE2D1 expression was significantly upregulated, 
consistent with our experimental findings. These studies suggest that UBE2D1 plays a critical role in the regulation of 
sepsis-related signaling pathways.

WDR26 is a relatively novel human gene identified through bioinformatics during the screening of human cardiac 
developmental candidate genes. Studies have demonstrated that deletion of the WDR26 gene and overexpression or 
underexpression of the protein, regulates apoptosis, autophagy, metastasis, and other biological process. WDR26 also 
plays a crucial roles in signal transduction and transcriptional regulation.26–28 For instance, Liu29 demonstrated that 
WDR26 overexpression remarkably activates the Nrf2/HO-1 axis, where Nrf2 serves is a key transcriptional regulator of 
antioxidant and cytoprotective pathways. Similarly, Feng26 reported that WDR26 promotes hypoxia-induced autophagy 
in hypoxic H9c2 cells, and further studies revealed that WDR26 enhances the mitochondrial membrane potential, that 
subsequently increases Parkin translocation to the mitochondria and increases the ubiquitylation of mitochondrial 
proteins during hypoxia in H9c2 cells. The regulation of autophagy and mitochondrial function is believed to play an 
important role in sepsis, and by regulating both of them, the damage of sepsis to human organs can be alleviated to 
a certain extent30 The above study shows that WDR26 can affect autophagy and mitochondrial function, which suggests 
that WDR26 can play a role in sepsis through autophagy and other pathways. Our study links WDR26 to sepsis, which to 
some extent bridges the gap between WDR26 and sepsis in this direction and also provides new perspectives on the 
treatment of sepsis.

In the current study, we also performed GSEA enrichment analysis of UBE2D1 and WDR26, in which UBE2D1 was 
enriched to 54 pathways and WDR26 was enriched to 40 pathways, both are associated with the ‘ubiquitin-mediated 
protein hydrolysis’ pathway. Ubiquitin-mediated protein degradation is one of the important protein degradation 
mechanisms in cells and is widely involved in a variety of cell biological processes, including cell cycle regulation, 
signaling, DNA repair, immune response and quality control. The main steps of the ubiquitin-proteasome system protein 
degradation pathway can be divided into the following four steps: the carboxyl group of the glycine end of ubiquitin is 
attached to the sulfhydryl group of ubiquitin-activating enzyme E1; E1 delivers activated ubiquitin to the ubiquitin- 
conjugating enzyme E2 through the process of cross esterification; ubiquitin-conjugating enzyme E3 attaches ubiquitin 
bound to E2 to target proteins and releases E2, forming a specific ubiquitinated proteins; the ubiquitinated proteins are 
recognized and bound by specific proteasomes, and eventually proteolysis is catalyzed by proteases into short peptides or 
amino acids. Through ubiquitin-mediated protein degradation, cells can regulate the expression level and functional 
status of different proteins in response to different biological processes. Several E3 ubiquitin ligases have been identified 
to play important roles in the development of sepsis.

31
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Innate and adaptive immune systems play a pivotal in the progression of sepsis. In this study, nine immune cell types 
were identified to be of significant value in patients with sepsis using the CIBERSORT algorithm. During the early stages 
of sepsis, neutrophil and monocyte macrophage levels are elevated. This phenomenon is believed to be primarily 
attributed to delayed neutrophil and monocyte-macrophage apoptosis and the release of immature neutrophils. 
Although their numbers do not decline, significant functional changes occur within these immune cell types. As sepsis 
progresses, excessive apoptosis of neutrophils and monocyte-macrophages leads to immunosuppression, increasing the 
risk of secondary infections or death32 Lymphocyte apoptosis is a key factor in the development of the immunosup-
pressed phase of sepsis33 B cells play a crucial immunomodulatory role in the circulation by presenting antigens to 
T cells and differentiating into plasma cells that produce tissue-specific antibodies. B-cell dysfunction, a hallmark of 
sepsis, impairs in the ability of B cells to produce antibodies and to efficiently clear pathogens. A study reported that 
B-cell-deficient mice exhibit a diminished inflammatory response to bacterial sepsis34 T cells are essential for maintain-
ing immune function, promoting health, and preventing disease. They primarily differentiate into CD4+ and CD8+ T cell 
subsets. Sepsis remarkably reduces CD4 T cells numbers, and most patients recover pre-sepsis levels of CD4 T cells 
within a month, a failure to restore adequate numbers of immunoreactive CD4 T cells is associated with a poor prognosis, 
particularly in older adults35 CD8+ T cells are the primary responders to viral infection, and effector CD8+ T cells secrete 
pro-inflammatory cytokines, such as IFN-γ and TNF, to inhibit viral replication. They also express various chemokines to 
recruit other inflammatory cells to sites of infection36 We further analyzed the association between the ubiquitination- 
related genes WDR26, UBE2D1 and key immune cell populations. WDR26 exhibited a significant negative correlation 
with plasma cells and a significant positive correlation with naive T cells CD4+ T cells and CD8+ T cells, and UBE2D1 
demonstrated a significant positive correlation with naive CD4+ T cells. These findings suggest that they regulate the 
onset and progression of sepsis by modulating sepsis immune mechanisms.

To validate the expression of these two key genes in sepsis, we constructed a mouse model of sepsis. Analysis of 
genes expression levels in this model revealed downregulation of WDR26 and upregulation of UBE2D1 compared to that 
of the NC group. However, this finding is inconsistent with the bioinformatics analysis, that was performed by comparing 
biomarkers expression in sepsis and control samples from both the training and validation sets. The analysis revealed that 
the expression levels of both WDR26 and UBE2D1 were upregulated in the blood samples of patients with sepsis. 
A potential explanation for this may be the notable differences between human and mice transcriptomes, despite their 
genetic similarities.37

Our study has several strengths. First, this is the first study to explore the causal effect of ubiquitination-related genes 
on sepsis risk using MR analysis, the results of MR analysis may be more plausible than those of traditional observa-
tional studies because they minimize bias from confounding factors and reverse causation. These identified causal 
relationships provide candidate target genes for future mechanistic studies. However, this study has certain limitations 
that warrant consideration. Although we validated the association between WDR26, UBE2D1 and sepsis using RT-qPCR 
and Western blotting, experimental and clinical validation in a larger sample sizes is needed to increase the robustness 
and reliability of our conclusions. In addition, during the validation process, we found that the bioinformatics analysis 
showed that the expression levels of UBE2D1 and WDR26 were significantly higher in sepsis than in the normal group. 
Based on the results of this stable study, UBE2D1 and WDR26 can be considered in the future as potential assays to 
further investigate their role in the course of sepsis treatment, and prognostic assessment. However, the results of animal 
experiments differed from the bioinformatics results. We conclude that although animal models are able to mimic some 
of the features of sepsis, they cannot fully reproduce the complexity of human sepsis. In addition, physiological 
differences between humans and animals may lead to different gene expression patterns. The results suggest that we 
should include more clinical samples for experimental studies in the future. On this basis, we need to explore more 
deeply how UBE2D1 and WDR26 specifically affect sepsis, and further elucidation of their mechanisms of action will 
help us to promote their application in the clinic more quickly! Additionally, direct mechanistic studies supporting our 
results are lacking. To elucidate the relationship between ubiquitination genes and sepsis, further studies are needed to 
investigate their effects on the immune system, pathogens, and disease-susceptibility pathways.
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Conclusion
In this study, we performed bioinformatics analyses and validation experiments to identify WDR26 and UBE2D1 as 
potential biomarkers for sepsis. These findings offer valuable insights and directions for the development of targeted 
therapeutic strategies for sepsis. However, further validation through comprehensive experimental and clinical studies are 
required.
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