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Purpose: Apoptosis, which is crucial in preeclampsia (PE), affects trophoblast survival and placental function. We used transcrip-
tomics and single-cell RNA sequencing (scRNA-seq) to explore apoptosis-related genes (ARGs) and their cellular mechanisms as 
potential PE biomarkers.
Patients and Methods: All the data included in this study were sourced from public databases. We used scRNA-seq and differential 
expression analysis, combined with five algorithms from the CytoHubba plugin, to identify ARGs as PE biomarkers. These were 
integrated into diagnostic nomograms. Mechanistic studies involved enrichment analysis and immune profiling. Biomarker expression 
was examined at the single-cell level, and verified in clinical samples by RT-qPCR.
Results: Cluster of Differentiation 44 (CD44), Macrophage migration inhibitory factor (MIF), PIK3R1, and Toll-like receptor 4 
(TLR4) were identified as PE biomarkers. CD44 and TLR4 were down-regulated, while MIF and PIK3R1 were up-regulated. When 
integrated into the diagnostic nomogram, they showed clinical utility and affected cell functions. In the immune profile of PE, 
monocytes decreased, resting NK cells increased, and the activities of APC, checkpoint, T-cell co-stimulation, and MHC class 
I pathways reduced. ScRNA-seq identified 11 cell types, 10 of which were significantly different. Endothelial cell communication with 
other cell types decreased, while the interaction between common myeloid progenitors (CMP) and villous cytotrophoblasts (VCT) 
enhanced. The expression levels of CD44, MIF, and PIK3R1 in VCT were significantly different and key to PE. Their decrease in early 
PE and increase in late PE reflected the placenta’s adaptation to adverse pregnancy conditions.
Conclusion: Four ARGs, CD44, MIF, PIK3R1, and TLR4, identified through comprehensive analyses, served as significant 
biomarkers for PE and offered insights into PE’s cellular mechanisms of PE, providing valuable references for further research.
Keywords: preeclampsia, apoptosis, biomarkers, single-cell RNA sequencing, villous cytotrophoblast cells

Introduction
Preeclampsia (PE) is a pregnancy-specific complication mainly characterized by high blood pressure and proteinuria after 
20 weeks of pregnancy. The global incidence of PE is approximately 2–8%, with higher rates in certain high-risk groups, 
such as women with first-time pregnancies, older age, multiple pregnancies, or a family history of PE.1 This disease not 
only poses a serious threat to the health of pregnant women, but can also lead to intrauterine growth restriction of the 
fetus, iatrogenic premature delivery, and even endangers the life of the mother and fetus in severe cases.2 The clinical 
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manifestations of PE range from mild hypertension and proteinuria to severe renal dysfunction, liver dysfunction, 
retinopathy, and neurological complications, which vary in severity and speed of progression, and pose challenges for 
clinical diagnosis and management. Although previous studies have shown that PE may be related to genetics, immune 
system disorders, vascular endothelial dysfunction, and other factors, the specific pathogenesis of PE is not fully 
understood, there is still a lack of effective early prediction methods, and early termination of pregnancy is the only 
effective treatment is early termination of pregnancy.3 Therefore, early diagnosis and effective intervention based on 
pathogenesis are key to improving pregnancy outcomes in PE.

Apoptosis is a form of programmed cell death and is a widespread biological process. It encompasses related 
mechanisms such as phagocytosis, which is crucial for the clearance of apoptotic cells.4 Additionally, several other 
processes are closely related to apoptosis. Programmed necrosis (a regulated form of necrosis), pyroptosis (inflammation- 
related),5 autophagy (a self-degradation process that maintains intracellular homeostasis),6 and ferroptosis (an iron- 
dependent form of cell death)7 may all play significant roles in diseases such as preeclampsia.8 Apoptosis can help 
remove cells that are damaged or no longer required, thereby protecting the organism from potential pathological 
changes.9 Apoptosis plays a key role in the PE10 cells PE is a pregnancy complication that is closely related to abnormal 
placental function. The main placental cell types include villous cytotrophoblasts (VCT), syncytiotrophoblasts (SCT), 
and extravillous trophoblasts (EVT). These cells maintain normal placental functions through continuous differentiation 
and renewal. Studies have shown that the rate of placental cell apoptosis is abnormal in patients with PE, which may be 
related to insufficient blood flow and oxygen supply to the placenta.11,12 In the context of PE, apoptosis of VCT and EVT 
cells may increase, while apoptosis of SCT cells may decrease, and this unbalanced apoptotic activity may lead to 
placental dysfunction, which in turn affects the entire course of pregnancy.13,14

During a normal pregnancy, the apoptosis of placental cells is in a dynamic balance to maintain the normal 
development and function of the placenta. However, this balance is disrupted in patients with preeclampsia. Factors 
such as oxidative stress, inflammatory responses, and placental ischemia and hypoxia can induce abnormal activation of 
the apoptosis pathways in placental cells.15 For example, excessive reactive oxygen species (ROS) can damage 
intracellular DNA, proteins, and lipids, thereby activating endogenous apoptosis pathways, promoting the occurrence 
of caspase cascade reactions, and ultimately leading to cell apoptosis.16 Additionally, the abnormal elevation of 

Graphical Abstract

https://doi.org/10.2147/JIR.S507660                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 4786

Liu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



inflammatory factors such as tumor necrosis factor-alpha (TNF-α) can activate death receptors on the cell surface through 
exogenous apoptosis pathways, triggering cell apoptosis.17 This abnormal apoptosis further disrupts the structure and 
function of the placenta, leading to abnormal placental vascular remodeling and decreased trophoblast invasion ability, 
ultimately resulting in a series of clinical symptoms of preeclampsia.17 Current research has identified various potential 
biomarkers associated with preeclampsia. In addition to the apoptosis-related genes (ARGs) focused on in this study, 
placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) have also garnered attention.18 PlGF is 
a cytokine that promotes angiogenesis, and its levels are typically significantly reduced in patients with preeclampsia, 
which is closely related to placental vascular dysplasia.19 sFlt-1 is an anti-angiogenic factor that is highly expressed in 
patients with preeclampsia; it can bind to angiogenic factors like PlGF, blocking their biological activity and leading to 
an imbalance in angiogenesis, which is one of the important molecular mechanisms of preeclampsia.20 In terms of 
molecular regulatory mechanisms, there exists a complex interaction network among these biomarkers. For instance, 
certain genes within ARGs may influence the expression of PlGF and sFlt-1 by regulating intracellular signaling 
pathways, thereby affecting placental vascular generation and function. Currently, commonly used clinical diagnostic 
methods include measuring the levels of related biomarkers in the blood of pregnant women and ultrasound examinations 
to assess the condition of the placenta and fetus.21 However, these methods have certain limitations; therefore, in-depth 
exploration of new diagnostic biomarkers and molecular regulatory mechanisms is of great significance for improving the 
accuracy of early diagnosis of preeclampsia.

Although apoptosis plays an important role in the occurrence and development of PE, the specific molecular 
mechanism remains unclear, prompting researchers to explore the specific biological role of apoptosis in PE and its 
molecular mechanisms with a view to finding possible therapeutic targets to improve pregnancy outcomes. In summary, 
the study of apoptosis in PE not only contributes to our understanding of the nature of this complex pathological state but 
may also provide key information for the development of new prevention and treatment strategies.

Recent studies have identified several biomarkers associated with preeclampsia. For example, CD93, a marker related 
to phagocytosis, has been shown to be associated with preeclampsia.22 CD93 is involved in various cell signaling 
pathways. It can interact with various ligands and receptors on the cell surface, affecting processes such as cell adhesion 
and migration.23 In the context of apoptosis and immune response, CD93 may regulate the clearance of apoptotic cells by 
immune cells, and its abnormal expression in preeclampsia may disrupt the normal balance of placental cell renewal and 
immune regulation, thereby promoting the development of the disease.24 In addition to CD93, other potential biomarkers 
for the diagnosis of preeclampsia have been studied, such as TRA4, PROCR, and TXNIP, which were identified by Li 
Weiwen et al through bioinformatics and machine learning methods as potential PE biomarkers.25 These continuously 
discovered biomarkers deepen our understanding of the pathogenesis of preeclampsia. Furthermore, apoptosis is closely 
related to oxidative stress, which is also associated with the development of preeclampsia.26 Xanthine oxidase is an 
enzyme involved in the generation of reactive oxygen species (ROS) during oxidative stress.27 The serum uric acid to 
serum creatinine ratio, as an indirect marker of xanthine oxidase activity, has been shown to be related to the 
development of preeclampsia.28 Elevated levels of xanthine oxidase and abnormal serum uric acid to serum creatinine 
ratios may lead to increased oxidative stress in the placenta, triggering placental cell apoptosis, disrupting normal 
placental function, and ultimately promoting the occurrence and development of preeclampsia.29 Thus, research on 
apoptosis in preeclampsia not only helps us understand the nature of this complex pathological state but may also provide 
key information for developing new prevention and treatment strategies.

Based on transcriptome and single-cell RNA sequencing (scRNA-seq) data in public databases, this study explored 
the potential diagnostic biomarkers and molecular regulatory mechanisms of PE through apoptosis-related genes using 
bioinformatics to provide new ideas for the clinical diagnosis, prevention, and treatment of PE.

Materials and Methods
Data Source
Two transcriptome datasets related to PE and a single-cell RNA sequencing (scRNA-seq) dataset were obtained from the 
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds). The GSE43942 dataset, based on the 
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GPL10191 platform using a chip sequencing method, served as the training set for this study and included placental 
tissue samples from 5 PE patients and 7 normal individuals.30 The clinical information table of the GSE43942 dataset 
was shown in the Table S1. The GSE25906 dataset, utilized as the validation set, was based on the GPL6102 platform 
with chip sequencing, featuring placental tissue samples from 23 patients with PE and 37 normal individuals.31 The 
clinical information table of the GSE25906 dataset was shown in the Table S2. The scRNA-seq dataset GSE173193, 
based on the GPL24676 platform with high-throughput sequencing, included placental tissue samples from 2 PE patients 
and 2 normal individuals.32,33 The clinical information table of the GSE173193 dataset was shown in the Table S3. In 
addition, 680 apoptosis-related genes (ARGs) were extracted for analysis from a previously published article for 
analysis.34

ScRNA-Seq Analysis
To enhance our understanding of PE at the cellular level, we used the Seurat package (v 5.0.1)35 to perform 
a comprehensive analysis of the scRNA-seq data in the GSE173193 dataset. Strict quality control (QC) measures were 
implemented on the scRNA-seq data to exclude low-quality data that might have been caused by cell damage or library 
preparation defects. To filter the single-cell sequencing data, the data was first integrated. GSM5261695 and 
GSM5261696 were used as the control group, and GSM5261699 and GSM5261700 were used as the disease group. 
After being read by read10X, the data was converted into a Seurat object. During the reading process, cells with fewer 
than 100 genes and genes covered by fewer than 3 cells were filtered out. The PercentageFeatureSet function in the 
“Seurat” R package was used to calculate the “nCount/nFeature-RNA” and “percent.Mt” of the samples for data quality 
control. The “Mt” of the samples was calculated by the percentage feature set function. Next, the percentages of the 
number of genes (nfeature), the number of cells (ncount), and the number of mitochondrial sequencing reads (Mt) in each 
sample were calculated. Meanwhile, cells with more than 20% mitochondrial genes were filtered out. Cells with the 
number of intracellular genes less than or equal to 100 and greater than or equal to 10,000 were removed, and genes with 
count numbers less than or equal to 100 and greater than or equal to 30,000 were also removed, so as to exclude the cases 
of multi-cell bodies or some cells with poor quality or in a dying state. The 24,100 cells and 22,891 genes that met the 
screening criteria were used for subsequent analysis. Subsequently, the data were normalized using the NormalizeData 
function, and the top 2500 highly variable genes were selected for downstream analysis using the FindVariableFeatures 
function based on the relationship between mean and variance. The results were visualized by applying the LabelPoints 
function, which highlighted the top ten genes with the greatest variation. The data were further normalized using the 
ScaleData function, and an elbow plot was created to determine the appropriate principal components (PCs) for further 
analysis. Utilizing the standard Seurat workflow, Uniform Manifold Approximation and Projection (UMAP) was 
employed to perform clustering analysis on dimensionality-reduced cells, with the resolution set at 0.5. After obtaining 
cell clusters through clustering, marker genes were identified from the GSE173193 dataset according to the reference12 

used in this study. Based on these markers, cell annotation was conducted by classifying cells that exhibited high 
specificity for gene expression within clusters. For clusters lacking marker genes, annotations were supplemented using 
singleR (v 2.0.0),36 with the threshold set at a quantile of 0.7. Under these circumstances, cell types specific to this study 
were annotated and a histogram was created to display the proportions of different cell types in the PE and control 
samples.

Differential Expression Analysis
When conducting differential expression analysis, since a large number of genes were simultaneously tested, in order to 
avoid an excessive number of false-positive results due to multiple testing, we adopted a strict statistical correction 
method. Specifically, we used the Benjamini-Hochberg method to control the False Discovery Rate (FDR).37 This 
method sorted all the P-values of the tests and calculated the corrected q-values based on the sorting results to ensure that 
the proportion of false discoveries during the entire testing process was maintained at a reasonable level. In actual 
operation, we took the corrected q-value as one of the important bases for judging the differential expression of genes. 
Only when the q-value was less than the pre-set threshold (such as 0.05) was the differential expression of the gene 
considered to be statistically significant.38 Subsequently, differential expression analysis was performed. Initially, within 
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the GSE173193 dataset, differences between the PE and control samples across various cell types were compared using 
the Wilcoxon test, and box plots were used for visualization. Cell types showing significant differences in abundance 
between samples were defined as differential cells for subsequent analysis (P < 0.05). In addition, in the GSE173193 
dataset, the FindMarkers function was used to screen for differentially expressed genes (DEGs) within differential cells 
between PE and control samples, with thresholds set at |log2Fold Change (FC)| ≥ 0.5, adj. P < 0.05, and ptc > 0.1, defined 
as DEGs1, and a Manhattan plot was created for visualization. In the training set, differential expression analysis was 
performed using the limma package (v 3.54.0)39 to identify DEGs between PE and control samples, with the thresholds 
|log2FC| > 0.5 and P < 0.05, defined as DEGs2. For more intuitive observation of gene differences, volcano plot and 
heatmap were generated using ggplot2 (v 3.4.1)40 and ComplexHeatmap (v 2.15.1),41 respectively, where the volcano 
plot displayed the top 10 up- and down-regulated genes sorted by log2FC.

Identification and Enrichment Analysis of Differentially Expressed ARGs (DE-ARGs)
Previously identified DEGs1, DEGs2, and ARGs were intersected using the VennDiagram package (v 1.7.1),42 resulting 
in the identification of DE ARGs. These DE-ARGs were then subjected to Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses to explore their biological functions and signaling pathways. This 
process was performed using the clusterProfiler package (v. 4.2.2),43 with a significance level of P < 0.05. The GO terms 
included three categories: biological processes (BP), molecular functions (MF), and cellular components (CC). To 
explore the protein-level interactions of DE-ARGs, these genes were input into the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (https://string-db.org) with a confidence score threshold of > 0.15 for selection. 
The resulting protein-protein interaction (PPI) network was visualized using the Cytoscape software (v. 3.5.2).44

Recognition and Expression Assessment of Biomarkers
In the training set, using the constructed PPI network, five algorithms from the CytoHubba plugin in Cytoscape software 
were employed: degree, MCC (Maximal Clique Centrality), DMNC (Density of Maximum Neighborhood Component), 
MNC (Maximum Neighborhood Component), and EPC (edge-percolated component) were employed. Each algorithm 
was used to identify the top 9 genes based on their respective scores. The intersection of these genes across all the 
algorithms yielded a set of hub genes, and Venn diagrams were generated using the VennDiagram package for visual 
representation. The expression of hub genes in the PE and control samples was verified using both training and validation 
datasets. Genes exhibiting consistent expression trends and significant differences between the two datasets were defined 
as biomarkers for subsequent analyses (P < 0.05).

Construction of a Nomogram Through Biomarkers
To maximize the diagnostic value of biomarkers for PE, the rms package (v. 6.5–1)45 was used to construct the 
nomogram. Within this nomogram, a scoring system was devised based on the expression levels of biomarkers in the 
training set, with each factor assigned a specific score. The cumulative sum of the scores for various factors represents 
the total number of points. Based on the total points, the probability of a PE diagnosis was predicted, with higher scores 
indicating a greater likelihood of PE. Furthermore, a calibration curve was plotted to perform the Hosmer-Lemeshow 
(HL) test, a critical diagnostic for the predictive accuracy of the nomogram, and a p-value greater than 0.05, from the HL 
test, indicated that the predicted values did not significantly deviate from the actual values, thus passing the test. The 
ggDCA package (v 1.2) (https://www.rdocumentation.org/packages/ggDCA/versions/1.1) was used to conduct decision 
curve analysis (DCA) to assess the clinical utility of the nomogram.

Gene Set Enrichment Analysis (GSEA) of Biomarkers
After identifying the biomarkers, we conducted a series of analyses to characterize their functionality. To uncover the 
biological functions and pathways linked to biomarkers, the “h.hallmark.v7.4. symbols.gmt” from the Gene Set 
Enrichment Analysis (GSEA) database (http://www.broadinstitute.org/gsea/index.jsp) was selected as the reference 
gene set. Spearman correlation coefficients were calculated between each biomarker and all other genes in the training 
set, ranking the genes in descending order based on these coefficients to identify the related genes for each biomarker. 
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Subsequent GSEA for each biomarker, conducted via the clusterProfiler package, considered results with P < 0.05 as 
significantly enriched. The top five enriched pathways were visualized using the enrichment plot package (v. 1.18.3).46

Functional and Annotation Analysis
Variations caused by genetic and non-genetic diseases can be explored through the association between genotypes and 
phenotypes.47 The human genome contains hundreds of single-nucleotide variations (SNVs), many of which are known 
to cause diseases.48 Approximately 21% of the amino acid variations lead to missense mutations at different protein sites, 
known as post-translational modifications, which can result in diseases.49 Consequently, to understand the SNV profiles 
of biomarkers, the ActiveDriverDB online tool (https://activedriverdb.org/) was used for SNV analysis of biomarkers.

Additionally, analysis was performed to evaluate the functional similarity of biomarkers using the GOSemSim 
package (v.2.27.2).50 The required GO annotation data for human species across the BP, CC, and MF aspects were 
constructed using GOSemSim. Semantic similarities were calculated using the mgeneSim function. Thereafter, the 
geometric mean of these similarities across all categories was computed to derive a final score to evaluate the overall 
functional impact of the biomarkers across the three GO domains.

GeneMANIA (http://www.genemania.org/) was used to predict genes functionally related to biomarkers, and a co- 
expression network of the top 20 interacting genes and their associated functions was visualized.

Physicochemical properties of proteins reflect the fundamental characteristics of an organism.51 To understand the 
physicochemical properties of the biomarkers, the amino acid sequences were retrieved from UniProt (https://www. 
uniprot.org/). Basic information on the protein-coding genes (biomarkers), including amino acid composition, molecular 
weight, protein half-life, and calculated parameters, such as the protein instability index and theoretical isoelectric point, 
was analyzed using the ProtParam tool (https://web.expasy.org/protparam/).

Immune Infiltration and Pathway Analyses
Immune infiltration assays were performed to explore variations in the immune environment between patients with PE 
and healthy controls. Specifically, the CIBERSORT algorithm (v 1.03)52 was used to estimate the abundance of 22 
immune cell types30 in each sample of the training set. Samples were filtered based on reliability, excluding those with 
zero expression and removing samples with P > 0.05. Further analysis was performed to examine the distribution of these 
immune cells in PE versus control samples, with a significance threshold of P < 0.05. Spearman correlation analysis was 
conducted using the psych package (v 2.2.9)53 to identify potential relationships between significantly different immune 
cells and biomarkers (|cor| > 0.3 and P < 0.05).

In addition, 13 immune-related pathways previously identified in the literature54 were explored to assess the 
differences in pathway activity between patients with PE and control samples in the training set. The single-sample 
GSEA (ssGSEA) algorithm within the GSVA package (v 1.42.0)55 was used to calculate single-sample scores for these 
immune-related pathways, allowing for a comparison of immune-related pathway scores between the PE and control 
samples (P < 0.05). Further analysis was conducted using the psych package to perform Spearman correlation analysis 
between these differentially immune-related pathways and biomarkers (|cor| > 0.3 and P < 0.05).

Construction of Regulatory Network
Further analyses were performed to elucidate the molecular regulatory mechanisms that affect these biomarkers. Using 
the multiMiR package (v 1.18.0),56 miRNAs associated with biomarkers were predicted using default settings (predicted. 
cutoff and predicted.cutoff.type=“p”, selecting the top 20%). Key miRNAs were consistently predicted across five 
databases: DIANA-microT (http://www.microrna.gr/microT), ElMMo (http://www.mirz.unibas.ch/ElMMo3/), 
miRecords (http://c1.accurascience.com/miRecords/), TargetScan (http://www.targetscan.org/) and miRDB (http://www. 
mirdb.org/). Subsequent predictions of potential lncRNA interactions with these miRNAs were performed using the 
starBase (https://starbase.sysu.edu.cn/) and miRNet (https://www.mirnet.ca/) platforms. In starBase, a threshold of 
pancancerNum > 4 was used to filter the data, retaining only those lncRNAs that were consistently predicted by both 
databases to have interactive relationships. Using this information, an lncRNA-miRNA-mRNA regulatory network was 
constructed using the Cytoscape software. Similarly, the ENCODE database (https://www.encodeproject.org/) within 
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miRNet was used to identify transcription factor (TFs)-targeting biomarkers and a TF-mRNA network was constructed 
using Cytoscape software.

Drug Prediction and Molecular Docking Analyses
In this study, potential drug-targeting biomarkers were identified using the enrichR package (v. 3.1)57 from the Drug 
SIGnatures database (DSigDB) (http://dsigdb.tanlab.org/DSigDBv1.0/). Results with an adj.P < 0.05, were considered 
statistically significant and potential drugs, and the top 10 drugs, based on scoring, were selected for visualization. In 
addition, the relationship between differential immune cells obtained from immune infiltration analysis and biomarkers 
was incorporated into an interaction network of drugs, biomarkers, and immune cells using Cytoscape software, which 
facilitated the understanding of the interactions among drugs, immune cells, and biomarkers.

To understand the stereochemical properties of the biomarkers, AlphaFold v2.0 (https://alphafold.ebi.ac.uk/) was 
employed as an artificial intelligence tool to predict the 3D structures of the biomarkers. The amino acid sequences of these 
biomarkers were downloaded from the UniProt-KB database (http://www.uniprot.org/) and the local distance difference test 
(LDDT) scores from the AlphaFold database were used to assess the stereochemical performance of these 3D models. To 
further explore the role of biomarkers in drug therapy, the molecular structures of drugs and protein 3D structures were 
downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and Protein Data Bank (PDB) (http://www.rcsb.org/) 
databases, respectively. CB-Dock2 was used for the molecular docking of drugs against biomarkers to obtain the binding 
energies. It is generally accepted that the more stable the ligand-receptor conformation, the lower the required binding energy, 
with energies ≤ −5 kcal/mol considered indicative of strong binding affinity. Drugs with the highest 2D conformation scores 
were selected for molecular docking, with visualization conducted using PyMOL software (v. 3.1.1).58

Cell Enrichment and Communication Analyses
Among the previously annotated cell types, a series of analyses were conducted to explore the cellular mechanisms of PE 
across all samples in GSE173193. Applying the ReactomeGSA package (v 1.12.0),59 functional enrichment was 
performed on each of the identified differential cells from the prior differential analysis to explore their biological 
pathways, with the top 20 pathways displayed. Subsequently, with support from the celltalker package (v 0.0.7.9000),60 

PE and control samples were distinguished within the training set to conduct cell communication analysis. This involves 
detecting the expression and pairing of receptors and ligands within these cell types, with the aim of inferring interactions 
between different cells.

Identification of Key Cell and Pseudo-Time Analysis
Biomarkers were examined for their expression differences in differential cells between PE and control samples. Violin 
plots were used for visualization, identifying cells with significant expression differences in most biomarkers as key cells. 
Further analysis illustrated the distribution of biomarkers across the different cell types.

To investigate the developmental trajectory and evolution of key cells, the cells were initially subjected to dimen-
sionality reduction and clustering to identify cellular subtypes. Subsequently, the monocle package (v 2.26.0)61 was 
employed to conduct a pseudo-time series analysis using 2500 highly variable genes across both the PE and control 
samples. In addition, temporal changes in biomarker expression within key cells were monitored.

Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)
Placental tissues from six patients (three in the control group and three in the preeclampsia group) were collected after 
delivery at the First People’s Hospital of Yunnan Province. Informed consent was obtained from all participants. This 
study was approved by the Ethics Committee of First People’s Hospital of Yunnan Province (approval number: 221). The 
RNA extracted from each sample was quantified using 1 mL of triazole reagent and 300 µL of chloroform, the 
concentration of which was quantified using a nanophotometer N50. cDNA was reverse-transcribed using the first- 
strand cDNA of SweScript. Synthetic Kit (Service Biology, Wuhan, China). RT-qPCR amplification was performed for 
40 cycles using a CFX96 real-time fluorescent quantitative PCR instrument (Bio-Rad, Hercules, California, USA). The 
PCR cycle consisted of 1 min of pre-denaturation at 95°C, 20s of denaturation at 95°C, 20s of annealing at 58°C, and 30s 
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of extension at 72°C. During RT-qPCR analysis, each reaction mixture contained 3 µL CDN A,5 microliters µL 2x 
Universal Blue SYBR GreengPCR master mixture, 1 µL forward primer, and 1 µL reverse primer. The sequence 
information for the four gene primers is in Table 1.

Statistical Analysis
All analyses were performed using R software (v 4.2). Differences between the groups were analyzed using the Wilcoxon 
test. Statistical significance was defined as P < 0.05, with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
indicating increasing levels of significance, and ns denotes non-significant (P > 0.05).

Results
Annotation of 11 highly Specific Cell Types
For the GSE173193 dataset, the results before and after quality control are illustrated in Figure S1A and B, 
revealing that 24,100 cells and 22,891 genes met the criteria. From these, 2500 highly variable genes were selected 
for downstream analysis (Figure S1C). Subsequently, stability was achieved after the first 20 PCs; hence, the top 20 
PCs were selected for further analysis (Figure S1D and E). Based on this, UMAP clustering identified 21 cell 
clusters, and their distribution in PE and control samples is displayed (Figure 1A and B). The bubble plot showed 
a high specificity for marker genes, leading to the cells being named based on these markers (Figure 1C). 
Ultimately, 11 cell types were annotated: granulocytes, villous cytotrophoblasts (VCT), macrophages, myelocytes, 
extravillous trophoblasts (EVT), T/NK cells, monocytes, syncytiotrophoblasts (SCT), common myeloid progenitors 
(CMP), endothelial cells, and erythroblasts (Figure 1D). Histograms displayed the proportions of these cell types in 
PE and control samples, clearly showing that VCT was more prevalent in PE samples, whereas granulocytes were 
more abundant in the control samples (Figure 1E).

Recognition and Functional Characterization of DE-ARGs
In the GSE173193 dataset, differences between the PE and control samples were compared across 11 cell types, revealing 
significant variations in 10 cell types (P < 0.05), excluding macrophages (P > 0.05), which were defined as differential cells 
(Figure 2A). Further analysis of 10 differential cells identified 5577 DEGs between PE and control samples. After removing 
duplicates, 3674 unique DEGs1 were identified, with 790 genes upregulated and 2884 downregulated in the PE samples 
(Figure 2B). Similarly, in the transcriptome dataset (training set), 1882 DEGs2 were identified between PE and control samples, 
with 810 genes upregulated and 1072 downregulated in the PE samples (Figure 2C and D). Subsequently, an intersection of 
3674 DEGs1, 1882 DEGs2, and 680 ARGs was obtained, yielding 28 DE-ARGs (Figure 2E), which were further included in 
the enrichment analysis. This analysis identified 779 GO entries, comprising 673 BP, 26 CC, and 80 MF, including “regulation 
of the apoptotic signaling pathway”, “intrinsic apoptotic signaling pathway”, “extrinsic apoptotic signaling pathway via death 
domain receptors”, “negative regulation of the apoptotic signaling pathway”, “intrinsic apoptotic signaling pathway in response 
to DNA damage”, “NAD+ nucleosidase activity”, and “vesicle lumen” (Figure 2F). Additionally, 56 KEGG pathways were 

Table 1 Sequence Information Table for the Four 
Gene Primers

Gene Primers Sequence Information

CD44-F CCAGAAGGAACAGTGGTTTGGC

CD44-R ACTGTCCTCTGGGCTTGGTGTT

TLR4-F CCCTGAGGCATTTAGGCAGCTA
TLR4-R AGGTAGAGAGGTGGCTTAGGCT

MIF-F AGAACCGCTCCTACAGCAAGCT

MIF-R GGAGTTGTTCCAGCCCACATTG
PIK3R1-F CGCCTCTTCTTATCAAGCTCGTG

PIK3R1-R GAAGCTGTCGTAATTCTGCCAGG
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Figure 1 Annotation maps for 11 highly specific cell types. (A) 21 samples UMAP cell taxon clustering, Different colors represent different cell populations. (B) PE and 
control grouping UMAP cell taxon clustering. (C) Bubble plots of marker genes in different cellular taxa, darker colors represent higher gene expression. (D) Clustering map 
of 11 maker genes. (E) Histogram of the percentage of 11 cell types between PE and control groups: different colors represent different cell types.
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identified, such as the “AGE-RAGE signaling pathway in diabetic complications”, “apoptosis”, “chagas disease”, “focal 
adhesion”, and “lipid and atherosclerosis” (Figure 2G). These enrichment results, involving cell death, signaling pathway 
regulation, and extracellular interactions, revealed the potential processes through which DE ARGs affected PE.

Figure 2 Identification and Functional Characterization Map of DE-ARGs. (A) 11 Differential boxplots of cell types. “ns” represented not significant, “*” represented p < 0.05, 
“***” represented p < 0.001, and “****” represented p < 0.0001. (B) Differential Gene Manhattan Map: Red dots represent up-regulated genes and green dots represent down- 
regulated genes; the 5 genes with the most significant difference between up- and down-regulation show the gene names. (C) Volcano plot of gene expression in PE and control 
samples, red represents high expression, blue represents low expression, and the shade of the color reflects the amount of expression. (D) Heat map distribution of PE and control 
samples, the top section is a heatmap of the expression density of up- and down-regulated differential genes in the samples, showing the lines of the five quartiles and the mean; the 
bottom section is a heatmap of the expression of the differential genes. (E) Wayne diagrams between DEG1, DEG2 and ARGs. (F) GO enrichment results: the horizontal axis is the 
number of genes enriched to any one pathway, and the vertical axis is the name of the GO-enriched entry. (G) KEGG enrichment results: gray dots indicate genes, yellow dots 
indicate different pathway names, and different colored lines represent pathways that genes are enriched into.
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Incorporating Biomarkers CD44, MIF, PIK3R1, and TLR4 into a Nomogram
Based on the 28 DE-ARGs, a PPI network with 22 nodes and 38 edges was constructed, where JUN, TLR4, CD44, and 
ICAM1 had the highest degrees (Figure 3A). Further analysis was conducted using 5 different algorithms from the 
CytoHubba plugin. As DMNC only scored the top nine genes, we selected the top nine genes from each algorithm and 
identified their intersection, resulting in nine hub genes: CD44, ICAM1, JUN, MIF, PARP1, PIK3R1, SERPINE1, 
THBS1, and TLR4 (Figure 3B). These nine hub genes were included in the expression level analyses, which clearly 
revealed consistent expression trends and significant intergroup differences in both the training and validation datasets for 
CD44, MIF, PIK3R1, and TLR4 (P < 0.05) (Figure 3C and D). Notably, CD44 and TLR4 were expressed at significantly 
lower levels in the PE samples (P < 0.05), whereas MIF and PIK3R1 were expressed at higher levels (P < 0.05). These 
four genes were identified as potential biomarkers in this study.

Subsequent analysis integrated these biomarkers into a nomogram to maximize their diagnostic value for PE 
(Figure 3E). The calibration curve compared the predicted probabilities of the nomogram with the observed actual 
probabilities (Figure 3F). The P-value of the HL test was 0.489, indicating no significant difference between the predicted 
and actual values, and the mean absolute error (MAE) was 0.037, suggesting a minimal error between the actual and 
predicted risk of disease. This demonstrates the high accuracy of the nomogram in predicting the risk of illness in the 
sample. DCA also indicated that the nomogram’s net benefit was higher than those of the positive and negative controls, 
providing greater net benefits than the use of any single biomarker alone, thereby exhibiting substantial clinical utility 
(Figure 3G).

Investigating the Potential Functions and Involved Signaling Pathways of Biomarkers
GSEA was performed on biomarkers to explore enriched signaling pathways. The results revealed that CD44, MIF, 
PIK3R1, and TLR4 were enriched in 24, 14, 30, and 10 hallmark pathways, respectively (Figure 4A–D). In particular, 
they were commonly enriched in the “epithelial mesenchymal transition” pathway. CD44, MIF, and PIK3R1 were jointly 
enriched in “E2F targets”; CD44, PIK3R1, and TLR4 were commonly found in “MYC targets V1”; and CD44 and TLR4 
were both enriched in “oxidative phosphorylation”. These pathways are closely related to the regulation of cellular 
functions and pathological states, suggesting the mechanisms by which these biomarkers might influence the develop-
ment and progression of PE.

Further research on SNVs of biomarkers revealed significant findings. In CD44, 65.9% of the sequences were 
predicted to be disordered, indicating that these regions lacked a fixed three-dimensional structure and might have 
played a crucial role in regulating protein function and protein-protein interactions (Figure 4E). The mutations affected 
various aspects, including direct effects, network rewiring, motif changes, and proximal and distal associations, which 
could have altered how the protein interacted with other molecules, thereby changing signal transduction pathways and 
cellular functions. The sites were related to acetylation, methylation, succinylation, SUMOylation, ubiquitination, 
glycosylation, and phosphorylation, all of which could affect the activity, stability, interaction partners, and cellular 
localization of the protein. Similar results were observed for other biomarkers, with 0.0%, 10.08%, and 5.48% of the 
sequences in MIF, PIK3R1, and TLR4, respectively, predicted to be disordered, reflecting potential differences in their 
cellular functions and stabilities (Figure 4F–H). These results suggest that the sequences and functions of these 
biomarkers are regulated by various molecular mechanisms and that SNVs can significantly alter their functions.

Friends analysis evaluated the functional similarity among biomarkers, indicating that the four genes shared certain 
similarities, with TLR4 showing the highest overall functional similarity (scores > 0.5) (Figure 4I). GeneMANIA 
provides a co-expression network for these biomarkers, in which physical interactions are the most prevalent 
(77.64%), followed by co-expression effects (8.01%). These genes were collectively involved in functions such as 
“response to molecule of bacterial origin”, “cellular response to molecule of bacterial origin”, “positive regulation of 
tumor necrosis factor superfamily cytokine production”, “positive regulation of cell activation”, “regulation of phospha-
tidylinositol 3-kinase signaling”, “cellular response to biotic stimulus”, and “positive regulation of leukocyte activation” 
(Figure 4J). The physicochemical properties of these biomarkers are listed (Table 2). For example, CD44 has the formula 
C1719H2701N487O563S18 with a molecular weight of 39,775.36, consisting of 362 amino acids, a theoretical 

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S507660                                                                                                                                                                                                                                                                                                                                                                                                   4795

Liu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Figure 3 Selection, expression and validation of biomarkers. (A) PPI network of 28 DE-ARGs, the size of the dots represents the number of cells of that type, and the 
thickness of the lines represents the strength of communication between the corresponding cell groups. (B) 5 Algorithms Top10 Gene Intersection. (C) Boxplot of 
biomarkers expression in GSE43942. The blue and red represented the “control” group and the “PE” group, respectively. “*” represented p < 0.05, and “**” represented p < 
0.01. (D) Boxplot of biomarkers expression in GSE25906. “ns” represented not significant, “**” represented p < 0.01, and “***” represented p < 0.001. (E) The column-line 
diagram model of Biomarker. (F) Calibration curves for line diagram models: the horizontal coordinates of the calibration curve for the column-line diagram model indicate 
the probability of illness predicted by the nomogram, and the vertical coordinates indicate the actual probability of illness. (G) DCA Decision Curve: the horizontal 
coordinate is the threshold probability and the vertical coordinate is the net benefit rate after benefits minus drawbacks.
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Figure 4 Potential functions of biomarkers and associated signaling pathways. (A) CD44 enrichment analysis, (B) MIF enrichment analysis, (C) PIK3R1 enrichment analysis, 
(D) TLR4 enrichment analysis. Each fold represents a pathway with lines marking the genes located in the gene set. Analysis of (E) CD-44, (F) MIF, (G) PIK3R1, (H) TLR4 
single nucleotide variants. (I) Functional similarity analysis of biomarkers. (J) Biomarker GGI Network: different colored lines represent different interactions, and different 
color blocks represent the different functional roles involved.
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isoelectric point (pI) of 5.38, an aliphatic index of 72.46, a grand average of hydropathicity (GRAVY) of 0.449, an 
estimated protein half-life of 30 h, and an instability index of 32.11.

Differential Immune Cell Infiltration and Pathway Activation in PE
Subsequent analysis aimed to explore the differences in the immune microenvironment composition between patients 
with PE and healthy individuals, initially showing the infiltration abundance of 22 immune cells in both types of samples 
within the training set (Figure 5A), with box plots further visualizing these disparities (Figure 5B). The results revealed 
significant differences in the two immune cells between the PE and control samples (P < 0.05). Monocytes had 
significantly less infiltration in PE patients (P < 0.05), while resting NK cells exhibited a higher infiltration abundance 
(P < 0.05). In addition, biomarkers showed varying degrees of correlation with these differentially infiltrated immune 
cells, with PIK3R1 displaying the highest negative correlation with monocytes (cor = −0.615 and P< 0.05) and TLR4 
showing the highest positive correlation with resting NK cells (cor = 0.650, P< 0.05) (Figure 5C). These results suggest 
differences in the composition of immune cells within the immune microenvironment between PE patients and healthy 
individuals. The two identified immune cells might play roles in the pathogenesis of PE, and the identified biomarkers 
could potentially represent the immune microenvironment of patients with PE, which is crucial for their management.

After completing the immune infiltration analysis, we further explored the differences in 13 immune-related pathways 
between patients with PE and healthy individuals in the training set. This has allowed for a deeper understanding of the 
pathogenesis of PE, revealing how these cells interact at the molecular level, affect disease progression, and identify 
potential therapeutic targets. The results showed that all four significantly different immune-related pathways, APC co- 
stimulation, checkpoint, T cell co-stimulation, and MHC class I, had notably lower scores in the PE samples (P < 0.05) 
(Figure 5D). This suggests that immune regulation in patients might be suppressed in some key pathways that are 
typically associated with immune activation and antigen presentation. The biomarkers also showed strong correlations 
with these pathways; for example, the correlation between MIF and checkpoints was as high as −0.804 (P < 0.01), and 
TLR4 had the strongest positive correlation with MHC class I (cor = 0.867 and P < 0.001) (Figure 5E). The reduced 
activity of these pathways could be a key factor in the development of PE, and the association between these pathways 
and biomarkers could provide potential targets for the development of targeted therapies for PE.

Revealing the Potential Molecular Regulatory Mechanisms of Biomarkers
Four miRNAs consistently predicted across five databases (DIANA-microT, ElMMo, miRecords, TargetScan, and 
miRDB) were identified as key miRNAs, whereas 16 lncRNAs consistently predicted in two other databases (starBase 
and miRNet) were identified as key lncRNAs. Based on this, an lncRNA-miRNA-mRNA regulatory network was 
constructed consisting of 21 nodes and 45 edges (Figure 6A). Therefore, PIK3R1 was the only mRNA with intersecting 
miRNA results, and lncRNAs such as NEAT1, OIP5-AS1, GAS5, and DNAAF4-CCPG1 may simultaneously regulate 
PIK3R1 through hsa-mir-29a-3p, hsa-mir-29b-3p, hsa-mir-29c-3p, and hsa-mir-221-3p.

We constructed a TF mRNA network to further elucidate the potential regulatory mechanisms of these biomarkers. In 
this network, 67 TFs were predicted to be associated with three biomarkers, comprising 70 nodes and 75 edges 

Table 2 Physical and Chemical Properties of the Biomarkers

Gene Property TLR4 PIK3R1 MIF CD44

Formula C4334H6734N1122O1246S37 C3715H5840N1018O1143S17 C553H866N152O163S7 C1719H2701N487O563S18

Molecular Weight 95680.13 83598.39 12476.3 39775.36

Number of amino acids 839 724 115 362

Theoretical pI 5.88 5.84 7.73 5.38

Aliphatic index 101.86 81.48 87.39 72.46

Grand average of hydropathicity 0.033 0.716 0.002 0.449

Estimated protein half life 30h 30h 30h 30h

Instability index 43.05 48.89 34.21 32.11
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Figure 5 Differential immune cell infiltration and pathway activation in PE. (A) Map of immune-infiltrating cell abundance, different colors represent different immune cells. (B) Box 
plot of immune cell differences between PE and control groups, horizontal coordinates indicate immune cells and vertical coordinates indicate immune cell immunity scores in the 
samples; red indicates the control group and blue indicates the PE control group. “ns” represented not significant, and “*” represented p < 0.05. (C) Heatmap of Differential Immune 
Cell-Biomarker Correlation: * denotes significance, numbers represent correlation coefficients, absolute value of correlation coefficients <0.3 is null. “*” represented p < 0.05, and 
“****” represented p < 0.0001. (D) Comparative box plots of immune pathway differences. “ns” represented not significant, “*” represented p < 0.05, and “**” represented p < 0.01. 
(E) Heatmap of biomarkers correlating with immune pathways. “ns” represented not significant, “*” represented p < 0.05, “**” represented p < 0.01, and “***” represented p < 0.001.
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(Figure 6B). TFs such as MXD3 and ZNF71 may co-regulate MIF and PIK3R1, whereas PHF8, SAP30, KDM5B, 
CBFB, and WRNIP1 may co-regulate MIF and CD44, and TARDBP may co-regulate CD44 and PIK3R1.

Exploring the Structure and Function of Drug Targets Associated with Biomarkers
In DsigDB, 312 potential drug targets identified from biomarkers were visualized, selecting the top 10 ranked drugs, 
including arsenic, fluorescein isothiocyanate (FITC), isoflavone, heparitin, Healing, acetaldehyde, indomethacin sodium, 

Figure 6 The potential molecular regulatory mechanisms of biomarkers. (A) Biomarker-mRNA-lncRNA network: red is biomarker, green is miRNA and blue is lncRNA. (B) 
Biomarker-TF Network, red is biomarkers, blue is TF. (C) TOP10 Drug prediction network: biomarkers in red, Top 10 drugs in blue. (D) Drug-Biomarker-Immune cell 
prediction networks: green is an immune cell with differences. (E) TLR4 and (F) CD44 Molecular Docking: the left image is global, the right image is localized.
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nandrolone phenpropionate, lorazepam, and 9001-31-4. A network comprising 14 nodes and 22 edges was constructed 
with ARSENIC targeting 4r biomarkers (Figure 6C). Moreover, the previously identified differential immune cells 
(monocytes and resting NK cells) were integrated to construct a network comprising 16 nodes and 26 edges, featuring 
interaction pairs such as isoflavone-TLR4-monocytes (Figure 6D). This suggests that isoflavone may influence monocyte 
function through TLR4, potentially affecting immune regulation and inflammatory responses. Subsequent analysis 
revealed structural models of the proteins corresponding to the biomarkers (Figure S2A–D). Notably, the overall color 
of the MIF model was blue, with a predicted LDDT score greater than 90, indicating that its predicted structure closely 
resembled the actual structure. Furthermore, the highest-scoring 2D conformations among the aforementioned drugs were 
selected for molecular docking, and both CD44 and TLR4 were docked using FITC. Specifically, the binding energy 
between CD44 and FITC was −8.1 kcal/mol, with residues such as ARG-29, SER-58, PHE-56, THR-133, and ASP-134 
forming hydrogen bonds with FITC (Figure 6E). Similarly, the binding energy between TLR4 and FITC was −8.0 kcal/ 
mol, with residues SER-126 and GLY-124 forming hydrogen bonds with FITC (Figure 6F).

Probing Cellular Communication and Biological Functions Under PE Conditions
Following transcriptomic analysis, an understanding of the expression patterns and functions of the biomarkers was 
obtained. To further explore the heterogeneity of these processes at the cellular level, biomarker expression profiles were 
analyzed from a single-cell perspective to explore unique expression patterns across different cell types. This approach 
aimed to further understand the mechanisms of PE at the cellular level using the scRNA-seq dataset (GSE173193).

Initially, enrichment analysis of ten different cell types revealed the main biological functions of these cells. These 
cells were enriched in pathways such as “regulation of thyroid hormone activity”, “hydroxycarboxylic acid-binding 
receptors”, “mitochondrial uncoupling”, “proton-coupled neutral amino acids”, and “classical antibody-mediated com-
plement activation” (Figure S3A–J). These pathways play crucial roles in maintaining internal homeostasis and in 
responding to various physiological and pathological conditions.

Further analysis of cellular communication, displaying the number and weight of interactions among the 11 cell types 
under control and PE conditions, clearly showed a reduction in both metrics under PE conditions (Figure 7A and B). This 
suggests that signal transmission and interactions between cells may have been suppressed in PE, potentially affecting 
cellular function and overall tissue coordination. In particular, under PE conditions, endothelial cells, EVT, granulocytes, 
monocytes, myelocytes, and SCT exhibited reduced communication. These cell types play crucial roles in maintaining 
vascular stability, immune defense, and placental function, and their impaired communication can be linked to functional 
disruptions, thus playing a significant role in the pathogenesis of PE. However, the increased communication number and 
weight observed in CMP and VCT might reflect an activation or compensatory response under PE conditions. This 
increase in communication could have been a response to the reduction in other cellular interactions, aiming to maintain 
normal placental and hematological functions. Additionally, the bubble plot under PE conditions illustrated ligand- 
receptor interactions between these cell types, indicating a level of signaling and interaction and suggesting that these 
receptors and ligands play key roles in regulating cell behavior, maintaining tissue functions, and responding to 
environmental changes (Figure 7C).

Identifying VCT as the Key Cell
VCT, EVT, and SCT are crucial components of the placenta. Dysfunction of these cells leads to abnormal development 
and malfunction of the placenta, which are key factors in the development of PE(12). Consequently, this study focused on 
the expression of biomarkers within these trophoblast layers, selecting cells exhibiting significant differences in 
biomarker expression as the key cells for further analysis. The results indicated that while only MIF and TLR4 
expression differences were observed in EVT (P < 0.05), and MIF was the only biomarker differentiated in SCT (P < 
0.05), significant differences in the expression of CD44, MIF, and PIK3R1 were found in VCT, all of which were also 
highly expressed under PE conditions (P < 0.05) (Figure 8A). Normally, VCT can differentiate into SCT; however, this 
process may have been disrupted during PE, thereby affecting placental function and maternal health. Thus, VCT was 
chosen as the key cell type for the subsequent pseudo-time analysis.
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Additionally, the distribution of biomarkers across all 11 cell types was visualized, revealing that CD44 and TLR4 
were predominantly found in granulocytes, whereas PIK3R1 was mostly present in macrophages (Figure 8B). 
Interestingly, an increase in MIF expression was observed in the VCT, EVT, and SCT under PE conditions 
(Figure 8C). As MIF regulates inflammatory and immune responses, its increased expression may reflect the placental 
cells’ reaction to abnormal pregnancy conditions. The upregulation of MIF may represent a biological response aimed at 
combating placental dysfunction and systemic inflammation caused by PE. In the future, modulation of MIF activity may 
offer a pathway to enhance placental function and improve pregnancy outcomes.

Differential Developmental Dynamics of VCT
Pseudo-time analysis was performed to determine the developmental trajectory of VCT. For this purpose, the VCT was 
re-clustered, identifying 13 distinct groups and 5 different stages of differentiation (Figure 9A). During the early 
(stage 1) and middle (stages 2 and 3) stages of VCT development, the number of cells was higher, whereas in the later 
stages (stages 4 and 5), the number of cells significantly decreased (Figure 9B and C). This decline could be attributed 
to the shift in VCT function from active proliferation and differentiation in the early and middle stages, which laid the 
foundation for placental maturation and development, to more specialized functions such as nutrient transfer and 
hormone synthesis in the later stages. A bifurcation in VCT development was noted as it progressed from the middle to 
later stages, differentiating into clusters 1, 5, and 9 (Figure 9D). This bifurcation typically indicates that a single-cell 

Figure 7 Cellular communication analysis. (A) Networks of interactions between cell types (times). (B) Network of interactions between cell types (strength). (C) PE and 
control cell pairing with ligand receptors of other cells.
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population begins to diverge into different cellular states or fates at this developmental point, highlighting the 
emergence of heterogeneity within the original cell population, which is substantial enough to steer cells along diverse 
trajectories.

Moreover, compared with the control, there was a notable decrease in the number of VCT in the early stages under PE 
conditions and an increase in the later stages, suggesting that PE might affect the normal growth and differentiation 
processes of placental cells (Figure 9E). The change in cell numbers could reflect the adaptive response of the placenta to 
an adverse pregnancy environment. The reduction in early stage VCT may have been due to insufficient oxygen and 
nutrient supply associated with PE, affecting the initial establishment and functional development of the placenta. 
Conversely, the increase in VCT numbers in the later stages could have been a compensatory response by the placenta 
to enhance its transport capabilities to support ongoing fetal development.

The expression levels of these biomarkers during VCT differentiation were monitored (Figure 9F). As VCT matured, 
CD44 showed an initial increase, followed by a decrease in expression; MIF exhibited a consistent upward trend, and 
PIK3R1 consistently decreased. No significant changes in TLR4 expression were observed.

Figure 8 Identification of biomarkers. (A) The violin map of CD44, MIF, PIK3R1, TLR4 expression in differential cells. “NS” represented not significant, “*” represented p < 0.05, 
and “***” represented p < 0.001. (B) Distribution of biomarkers. (C) Distribution of biomarkers according to subgroups: red color represents the distribution of biomarkers, the 
left panel is the control group and the right panel is the PE group.
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Figure 9 Proposed time-series trajectory analysis. (A) Critical cell clustering results. (B) Difference in cell differentiation time (VCT), dark blue indicates an early stage of 
differentiation, while light blue indicates a later stage of differentiation. This can be used as a starting point for subsequent analysis. (C) Classes Occupied by Cell 
Differentiation (VCT), the different colors represent the taxa occupied by the cells. (D) Stages of Cell Differentiation (VCT), different colors represent different groups, 13 
groups in total. (E) Cell differentiation in different samples. (F) Changes in the expression of biomarkers during differentiation of key cells.

https://doi.org/10.2147/JIR.S507660                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 4804

Liu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Differential Expression of Biomarkers in PE and Controls
RT-qPCR results showed that the expression of CD44, TLR4, and MIF was upregulated in the PE group, while the 
expression of PIK3R1 was down-regulated (Figure 10).

Discussion
PE is one of the main causes of maternal death and perinatal mortality; however, the specific mechanism remains unclear, 
and there is still a lack of effective prediction and intervention measures.62 Apoptosis is a form of programmed cell death 
and an important mechanism for maintaining tissue homeostasis. However, abnormal apoptosis of placental trophoblastic 
cells may lead to the occurrence of PE.11 Through single-cell transcriptome technology to study apoptosis-related genes, 
in-depth exploration of potential biomarkers of PE revealed its potential mechanism of action, which has important 
clinical significance in improving the early diagnosis and effective management of PE.

In this study, all the data were sourced from public databases. Through the application of scRNA-seq analysis and 
differential expression analysis, coupled with five algorithms from the CytoHubba plugin, along with expression level 
analysis, four ARGs (CD44, MIF, PIK3R1, and TLR4) were identified as biomarkers for PE at the single-cell level. They 
were mainly associated with immunomodulatory-related pathways, with CD44 and TLR4 downregulation, and MIF and 
PIK3R1 showed increased expression in PE.

CD44 is a cell-surface glycoprotein that plays an important role in various biological processes, including inflam-
matory responses, tumorigenesis, and wound healing. It is considered one of the markers of cancer stem cells and is 
closely related to the aggressiveness and ability of tumors to metastasize, what’s more CD44 leads to the development of 
colorectal cancer by inducing apoptosis.63,64 Placental trophoblasts are similar to tumor cells in that they have strong 
proliferative, migratory, and invasive abilities. Study has shown that increased CD44 positive expression was observed in 
maternal decidua cells and fibroblast cells close to the root villi.65 Another study showed that the FKBPL-CD44 pathway 
appears to play a central role in the pathogenesis of PE and has potential for early diagnostic and therapeutic purposes in 
PE.66 Taken together with previous studies, we hypothesized that CD44 may also play a role in PE apoptosis.

Macrophage Migration Inhibitory Factor (MIF) is a widely expressed cytokine that has pro-inflammatory effects, 
inhibits macrophage migration, and plays an important role in regulating immune responses, inflammatory responses and 
autoimmune disease.67 In recent years, MIF has also been found to play a key role in a variety of pathological states such 
as tumorigenesis, metabolic diseases, and cardiovascular diseases.68 It has been found that MIF is involved in the 
apoptotic pathway, and in a lipid metabolism disorder model, inhibition of the MIF pathway can reduce apoptosis of 
pancreatic islet β-cells and alleviate diabetes mellitus, whereas MIF inhibitors can also have a very good inhibitory effect 
on apoptosis in nasopharyngeal carcinoma.69,70 A previous study showed that MIF levels were significantly increased in 
the maternal peripheral blood of the PE group.71 Similarly, we found that the expression of MIF in PE placental tissue 
samples was significantly higher than that in normal samples. It has been suggested that MIF can be used to regulate the 
inflammatory response of macrophages in the immune environment of PE and influence apoptosis.

Figure 10 The RT-qPCR results plots for D44, MIF, PIK3R1, and TLR4 genes. “ns” represented not significant, and “*” represented p < 0.05.
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The protein encoded by PIK3R1 is a regulatory subunits of phosphatidylinositol 3-kinase (PI3K), that regulates cell 
growth and differentiation.72 One study showed that, as an aging-related gene in PE, PIK3R1 may be related to different 
immune characteristics.73 PIK3R1 is involved in the regulation of endometrial cell apoptosis.74 Similar to our findings, 
another study revealed that PIK3R1 is the hub network and a key gene of PE, and needs more attention in future PE 
studies.75

Toll-like Receptor 4 (TLR4) is a member of the Toll-like receptor family and is mainly expressed in immune cells, 
such as macrophages and dendritic cells. TLR4 activates the immune response by recognizing foreign pathogens and 
endogenous signaling molecules.76 It plays a key role in the recognition of bacterial infections, the initiation of 
inflammatory responses, and immune regulation. Abnormal activation of TLR4 is associated with the development of 
multiple inflammatory, autoimmune, and chronic degenerative diseases.77 TLR4 is directly involved in the regulation of 
apoptosis.78 A previous study showed that, in early onset PE, the expression of TLR4 in the placental tissue was 
significantly higher, and the severity of PE was correlated with the degree of damage to the placental villi,79 which is 
similar to our qPCR results.

All the above studies have reflected the key role of these four biomarkers in PE apoptosis. Subsequently, the present 
study integrated biomarkers to establish a nomogram for predicting PE, which showed good predictive ability and was 
superior to that of a single biomarker. This demonstrates the great potential of these biomarkers in clinical decision- 
making and is expected to provide new opportunities for the clinical diagnosis and treatment of PE.

To further explore the potential mechanisms of biomarkers in the development of PE, this study used GSEA 
enrichment analysis and found that four biomarkers were co-enriched in epithelial mesenchymal transition (EMT). 
EMT is a biological process in which epithelial cells lose their intercellular adhesion and polarity and gain the ability to 
migrate, invade, and transform into mesenchymal cells.80 This process is critical for embryonic development, tissue 
remodeling, and cancer metastasis.81 In PE, EMT may be involved in placental formation and remodeling of the cell 
layer, especially in the invasion and migration of extra-villous trophoblastic cells (EVTs), which are essential for 
anchoring and functioning of the normal placenta. Abnormal EMT activity may lead to placental insufficiency and is 
associated with PE development of PE.82 Therefore, inhibition of EMT can reduce the abnormal activity of PE cells. 
However, the regulation of EMT by these biomarkers in PE remains unclear and an in-depth understanding of their 
regulatory mechanisms is of great significance for the treatment of PE.

Breakdown of maternal-fetal immune tolerance is one of the key etiologic factors in PE.83 The present study also 
found that there were two different types of immune cells between the two groups: monocytes and resting NK cells. In 
fetal circulation, dominant monocyte intermediate subsets and increased inflammatory subsets are observed in PE 
compared to those in normal pregnancy.84,85 In addition, NK Cell activation has been characterized and is known to 
play major causative roles in the maternal inflammatory response in PE.86,87 In addition, the activity of APC co- 
stimulation, Checkpoint, T cell co-stimulation, and MHC class I pathways was reduced in the PE group, indicating 
immunosuppression in patients with PE. Immune checkpoints are molecules in the immune system that control and 
regulate the activity of immune cells by inhibiting signaling and regulating the immune response, thereby helping to 
maintain the immune system to attack pathogens while avoiding damage to normal tissue.88 Because of immune 
dysfunction in PE, immune checkpoint inhibitors are emerging as new therapeutic tools for PE, where CD44 and 
T cell co-stimulation can effectively improve the immune efficiency of vaccines.89,90 MHC I and TLR4 play important 
roles in endogenous antigen presentation and recognition of exogenous pathogens. Both synergistically participate in the 
immune response while avoiding excessive damage to the host tissues.91 Based on the differential immune cells and 
different immune pathways in PE, it has been suggested that targeted biomarkers can be used to regulate the immune 
infiltration of PE and that T cell co-stimulation or MHC class I expression can be regulated by biomarkers to enhance the 
immune response of PE. This study aimed to provide new immunotherapy for the clinical treatment of PE and to improve 
the outcomes of PE.

TLR4 predicts drug isoflavones. Isoflavones are natural plant compounds whose biological activity is mainly related 
to estrogen receptors and plays an important biological role in cancer, cardiovascular disease, oxidative stress, and other 
diseases through TRL4.92 Puerarin (Pue) is an isoflavone that is derived from puerarin. Pue can improve trophoblast 
movement by inhibiting the PE-related inflammatory response, and is speculated to have a potential therapeutic effect on 
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PE.93 This study established a drug-biomarker-immune cell regulatory network that provides a broader vision for PE 
immunotherapy.

PE is a complex condition that affects pregnancy and involves multiple cell types including VCT, these includeVCT 
SCT, and EVT. These cell types play key roles in the formation and function of placenta.94–96 Single-cell analyses 
confirmed the importance of these three cell types. Finally, in the RT-qPCR experiments, all three biorepresentations 
showed the opposite trend, except for MIF, which showed the same expression trend as that in the dataset. Combined 
with single-cell analysis, this study also found that biomarkers showed dynamic expression in VCT cells. Taken together 
with previous studies, we speculate that this may be due to the period in which the current PE samples were collected, as 
well as the number of samples, and that more samples will need to be collected in the future for in-depth validation and 
study of biomarkers.

Although the nomogram constructed in this study shows great potential in predicting preeclampsia (PE), further in- 
depth exploration is needed on how to integrate it into the existing clinical workflow. Currently, there are many 
limitations in the early prediction methods for PE in clinical practice, such as poor accuracy and insufficient 
specificity,97 which makes the early and accurate diagnosis of PE and timely intervention challenging. From 
a practical application perspective, integrating the nomogram into the clinical workflow first requires addressing the 
issue of data acquisition. The use of the nomogram relies on accurate and comprehensive clinical data, including patients’ 
basic information, medical history, and laboratory test indicators. Clinicians need to ensure that they can efficiently and 
accurately collect these data during daily diagnosis and treatment and input them into the nomogram model.98 For 
example, the electronic medical record system can be optimized to automatically extract and integrate relevant data and 
directly connect to the nomogram prediction model, reducing errors and time costs caused by manual operations.99 In 
terms of overcoming the shortcomings of existing early prediction methods, the nomogram has unique advantages. It 
comprehensively considers the expression levels of multiple biomarkers related to PE (such as CD44, MIF, PIK3R1, and 
TLR4), providing more comprehensive and accurate predictive information compared to the detection of a single 
indicator.100 However, in practical application, the reliability and stability of the nomogram in different populations 
and clinical environments still need to be further verified. Multi-center, large-sample clinical studies can be conducted to 
collect data from patients in different regions and races, evaluate the predictive efficacy of the nomogram, and optimize 
and adjust the model based on the results.101 In addition, the acceptance of the nomogram by doctors and patients also 
needs to be considered in clinical application. Doctors should be trained and patients should be well informed.102 In 
conclusion, although the nomogram provides a new tool for the early prediction of PE, its wide application in clinical 
practice still requires in-depth research and practical exploration in aspects such as data acquisition, model validation, 
doctor training, and patient education.

Through single-cell transcriptome sequencing and bioinformatics analysis, four ARGs (CD44, MIF, PIK3R1, and 
TLR4) were identified as biomarkers, and the same expression trend was observed in the dataset and PE clinical samples. 
These biomarkers are involved in immune infiltration, oxidative phosphorylation, and other processes in PE and are 
expected to become potential markers of PE. However, clinical applications require more data support from samples. The 
effects of these key genes on PE were further studied in animal and cell experiments.

Conclusion
PE is a hypertensive multisystem disorder that causes significant fetal-maternal mortality and morbidity worldwide. 
Apoptosis occurs in PE and is associated with immune cells and pathways. According to the present study, four ARGs, 
CD44, MIF, PIK3R1, and TLR4, offer new insights into PE’s cellular mechanisms of PE and may serve as potential 
biomarkers for PE. This study opens new avenues for future research on PE’s pathogenesis of PE and treatment options. 
Nevertheless, this study has some limitations. The sample size used in the current research is relatively small, making it 
difficult to cover the genetic, physiological, and environmental differences among individuals, which limits the general-
izability of the research conclusions and affects the accuracy and stability of the nomogram model predictions. Future 
research will be conducted on a large scale, multi-center, and will include different patient populations; in-depth 
functional studies will be carried out using in vitro cell experiments and in vivo animal models; the interactions between 
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these genes and other related factors of PE will be explored in depth to gain a more comprehensive understanding of the 
disease mechanism, aiding in the development of more effective treatment strategies.
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