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Abstract: Glycosylation, a fundamental biochemical process, entails the covalent attachment of sugar molecules to proteins, DNA, or 
RNA. Beginning with an overview of the pathophysiological features of asthma, this review proceeds to elucidate various facets of 
glycosylation in asthma pathology, specifically in T2 high asthma and Th17-mediated responses. We examined glycosylation’s 
involvement in regulating airway inflammation, encompassing the modulation of pro-inflammatory cytokine release such as IL-4, 
IL-5, and IL-13, key components of T2 inflammation, as well as its significance in modulating immune cell functionality, notably 
T cells and dendritic cells. Moreover, we explored glycosylation’s impact on airway remodeling processes, including its regulation of 
airway smooth muscle cell proliferation and migration. Addressing molecular mechanisms, this review delved into several glycosyla-
tion modifications of proteins and genes implicated in asthma pathogenesis, including IgE, IL-4 receptor, TGF-β, and the regulation of 
select glycosylation enzymes. Additionally, the review highlights the role of Th17 cells in T2 high asthma and their modulation 
through glycosylation. We underscored future research imperatives, including biomarker discovery, therapeutic realization, and the 
potential utility of glycosylation modifications in asthma prevention and management. In short, this review provides an in-depth 
analysis of the critical role of glycosylation in the pathogenesis of T2 high asthma and Th17 responses. 
Keywords: glycosylation, asthma, airway inflammation, airway remodeling, immunity

Introduction
Asthma stands as a multifaceted respiratory disorder with a complex pathogenesis characterized by chronic airway inflammation, 
hyperresponsiveness, and remodeling.1 Over the years, extensive research has shed light on various molecular mechanisms 
underlying its etiology and progression. Among these mechanisms, glycosylation emerges as a fundamental biochemical process 
that has garnered increasing attention for its significant implications in asthma pathophysiology.2–4

Glycosylation, the covalent attachment of sugar molecules to proteins, serves as a pivotal post-translational modification 
crucial for cellular signaling, recognition.5 It is integral to numerous biological processes such as protein folding, stability, 
transport, molecular recognition, cell adhesion, ligand binding, and signal transduction.6 Furthermore, it modulates protein 
interactions and influences the immunogenicity of protein. Glycosylation represents one of the most ancient and complex 
forms of post-translational modification, encompassing both N-linked and O-linked glycosylation, which collectively 
influence over 50% of characterized proteins.7 N-glycosylation is conferred upon the side chain of asparagine (Asn) residues, 
whereas O-glycosylation occurs on serine (Ser), threonine (Thr), or tyrosine (Tyr) residues. (Figure 1)

The process of glycosylation involves the participation of several enzymes, including glycosyltransferases, glycosi-
dases, and glycosylation modifying enzymes. Glycosyltransferases, such as β-1,4-galactosyltransferase (B4GALT) and α- 
1,3-galactosyltransferase (A3GALT2),8,9 serve as pivotal regulatory factors responsible for transferring sugar moieties to 
recipient molecules. Glycosidases, exemplified by glucosidase (GLUC), are responsible for removing glycosylation 
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modifications by cleaving glucosidic bonds. Additionally, certain enzymes, like glycosyltransferases and glycosidases, 
modulate the structure and properties of glycosylation modifications.10 Beyond enzymes directly implicated in glycosy-
lation, genes encoding auxiliary factors, regulatory elements, and substrates pertinent to glycosylation exist.11 Examples 
include Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase 1 (MGAT1)12 and UDP- 
glucuronosyltransferase (UGT),13 whose regulation also influences the process and outcome of glycosylation.

Recent studies have highlighted the intricate role of glycosylation in asthma development and progression, implicat-
ing it in key pathological processes underlying the disease.14 This review embarks on a comprehensive exploration of the 
intricate interplay between glycosylation and asthma pathogenesis. It begins with an overview of the pathophysiological 
features characterizing asthma, laying the foundation for a detailed examination of glycosylation’s multifaceted con-
tributions to the disease process. Specifically, we delved into glycosylation’s regulatory effects on airway inflammation, 
encompassing its modulation of pro-inflammatory cytokine release, such as interleukin-4 (IL-4), IL-5, and IL-13, as well 
as its influence on immune cell functionality, particularly T cells and macrophages. Additionally, the review elucidates 

Figure 1 The mechanisms of N-linked glycosylation and O-linked glycosylation (By Figdraw). The process of N-linked glycosylation commences with the synthesis of a lipid- 
linked oligosaccharide, achieved by linking an oligosaccharide precursor from the cytoplasmic surface of the endoplasmic reticulum to a dolichol. One GlcNAc and five 
mannose residues are sequentially transferred from UDP-GlcNAc and GDP-mannose to the substrate through a multienzyme complex involving three mannosyltransferases, 
resulting in the formation of Man5GlcNAc2-P-Dol. Subsequently, under the action of invertase, these oligosaccharides are translocated across the endoplasmic reticulum 
membrane and undergo four rounds of mannosylation within the endoplasmic reticulum lumen to yield Man9GlcNAc2-P-Dol. The oligosaccharide moiety is then transferred 
to a newly synthesized protein containing an Asn-X-Ser/Thr sequence, catalyzed by oligosaccharyl transferase. N-glycosidic bonds are established between the terminal 
carbon atom of GlcNAc and the nitrogen atom on the asparagine side chain of this protein, thereby synthesizing N-glycosidic linkages. Furthermore, N-glycoproteins that 
undergo endoplasmic reticulum quality control exit from the endoplasmic reticulum, enter into Golgi apparatus for further modifications leading to complex N-glycoproteins 
destined for transport to cell membranes. O-linked glycosylation (referring to O-GalNAc glycosylation) is initiated by the enzymatic addition of GalNAc to polypeptides, 
a process catalyzed by N-acetylgalactosaminyltransferase. Under the influence of N-acetylgalactosaminyltransferase, GalNAc residues are transferred from uridine dipho-
sphate GalNAc to serine and threonine side chains. A single GalNAc residue is linked to the α-hydroxyl group of serine or threonine via an α-O-glycosidic bond, resulting in 
the formation of the Tn antigen, which is subsequently extended by various glycosyltransferases into more complex O-glycan structures. Furthermore, Tn can be elaborated 
into four principal O-GalNAc cores as well as four rare variants: Core 1, Core 2, Core 3, and Core 4.
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glycosylation’s impact on airway remodeling processes, highlighting its role in regulating airway smooth muscle cell 
proliferation and migration. Addressing molecular mechanisms, it explores various glycosylation modifications of 
proteins and genes implicated in asthma pathogenesis, including transforming growth factor-beta (TGF-β), immunoglo-
bulin E (IgE), and interleukins.

Main
TGF-β Glycosylation and Asthma
TGF-β plays a dual role in the pathogenesis of asthma. It serves a crucial role in regulating allergic inflammation by 
inhibiting the activation of Th2 cells and promoting the generation of regulatory T cells (Treg cells), thereby aiding in the 
alleviation of airway inflammation and allergic reactions. However, under conditions of prolonged exposure to allergens 
or stimuli, TGF-β may also contribute to structural changes in the airways, such as airway remodeling and fibrosis, 
exacerbating the clinical symptoms of asthma.15

TGF-β possesses multiple glycosylation sites.16,17 In renal epithelial cells, core fucosylation, a form of glycosylation 
involving the addition of fucose to specific glycan structures on proteins, has been identified as essential for the proper 
functioning of both TGF-βRII and ALK5 (Receptors). Inhibition of core fucosylation using α1,6-fucosyltransferase (Fut8) 
small interfering RNA significantly decreased the phosphorylation of Smad2/3 proteins, leading to the inactivation of the 
TGF-β/Smad2/3 signaling pathway and resulting attenuation of epithelial-to-mesenchymal transition (EMT).18 In a mouse 
model of renal interstitial fibrosis, knockdown of Fut8 results in loss of core fucosylation on TRβI and inhibition of the 
TGF-β1/Smad2/3 pathway.19 Furthermore, Fut8 knockout mice exhibit significant inhibition of TGF-β1 receptor activation, 
whereas Fut8 knock-in can rescue the level of Smad2 phosphorylation, suggesting reactivation of the TGF-β signal.

Additionally, N-acetylglucosaminyltransferase-V (GnT-V) has been shown to influence TGF-β signal activation. 
Knockout of GnT-V reduces the polysaccharide branching of β-1,6-GlcNAc catalyzed by GnT-V on TGF-β receptors 
TβRI and TβRII, thereby inhibiting TGF-β1/Smad3 signal transduction.20 In lung cancer cells A549, GnT-V inhibits 
EMT of lung cancer cells by suppressing TGF-β1/Smad signal transduction in a GnT-V activity-dependent manner.21 The 
GalNAc-type O-glycosylation induced by peptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) can also regulate 
TGF-β signal transduction.22 In breast cancer, ppGalNAc-T4 regulates TGF-β1 signal transduction by catalyzing 
O-GalNAcylation of TβRII at the Ser31 site and TβRI, subsequently attenuating the dimerization of TβRI and TβRII, 
thus inhibiting the TGF-β1 signal in human breast cancer cells.23 Furthermore, in gastric cancer and glioma, it has been 
confirmed that ppGalNAc-Ts can inhibit the TGF-β signal.24,25 The knockdown of α-2,3-sialyltransferase 1 (ST3Gal1) 
also has neem shown to inhibit the TGF-β1 signal.26 Given the crucial role of TGF-β in asthma, it is imperative to further 
validate whether the TGF-β glycosylation regulatory mechanisms observed in other disease models hold true in asthma 
models. Exploring whether these glycosylation-related genes can serve as therapeutic targets for asthma is necessary.

Glycosylation of Interleukin and Asthma
In addition to TGF-β, various interleukins play significant roles in the pathogenesis of asthma. For instance, IL-4 and IL- 
13 are pivotal regulatory factors in asthma inflammation, promoting the differentiation and activation of Th2 cells and 
participating in asthma regulation. Existing research indicates that several interleukins are also regulated by glycosyla-
tion. For example, in the vascular system of C57 mice, studies by Migurz et al suggest that O-GlcNAc modification 
appears to regulate the IL-10 signaling pathway, disrupting the physiological effects of IL-10.27 Research by Jennifer 
et al suggests that MMP-9 effectively cleaves human IL-7 within the exposed loop between α helices C and D, and this 
process is delayed by glycosylation at the IL-7 N-terminus. Glycosylation and disulfide bonds, as two post-translational 
modifications, influence the bioavailability of IL-7 in the human species.28 Furthermore, interleukins can also influence 
glycosylation. Hiroko et al discovered that IL-22-mediated host N-glycosylation may be impaired in patients with 
ulcerative colitis (UC), making UC-HMA mice more susceptible to CDI. This suggests that IL-22-mediated host 
glycosylation promotes the growth of commensal bacteria competing for nutritional niches with Clostridioides 
difficile.29 Sina et al investigated the impact of glycosylation on the functionality of the IL-12 family and identified 
glycosylation sites within human IL-12 family subunits, which are modified upon secretion. Among the IL-12 family 
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cytokines, glycosylation only affects the secretion of the IL-35 cytokine.30 Furthermore, glycosylation has varying effects 
on the functionality of IL-12 family cytokines, with IL-27 being the most significantly affected. In T cells, J. Mancilla 
et al reported the presence of receptors for IL-1. The extracellular portions of these receptors contain N-glycosylation 
chains, ie, glycosylation modifications. Researchers treated these T cells with four different plant lectins and glycosidases 
and found that some lectins could inhibit IL-1-induced proliferation of cells and block IL-1 binding, suggesting that 
glycosylation modifications may play an important role in the binding and function of IL-1 receptors.31 Chitinase 3-like-1 
(Chi3l1) and IL-13 are ligands for interleukin-13 receptor alpha 2 (IL-13Rα2). The binding of the former activates 
mitogen-activated protein kinase, AKT, and Wnt/β-catenin signaling pathways, playing important roles in innate and 
adaptive immunity, cell apoptosis, oxidative damage, allergic inflammation, tumor metastasis, wound healing, fibrosis, 
and repair in the lungs. Conversely, the binding of the latter primarily acts as a decoy, attenuating the effects of IL-13.32 

When N-glycosylation sites mutate, the binding of Chi3l1 to IL-13Rα2 increases, while reduced N-glycosylation 
enhances the binding and signaling of Chi3l1-IL-13Rα2. The binding of IL-13 to IL-13Rα2 depends on four 
N-glycosylation sites of IL-13Rα2, and reduced N-glycosylation of IL-13Rα2 decreases the IL-13-IL-13Rα2 binding. 
Chi3l1 inhibits N-glycosylation, while IL-13 stimulates N-glycosylation. These findings suggest that N-glycosylation is 
a crucial determinant of the binding of Chi3l1 and IL-13 to IL-13Rα2 and highlight the ability of Chi3l1 and IL-13 to 
modulate N-glycosylation machinery, thereby enhancing their respective bindings. This evidence indicates that glyco-
sylation can directly regulate the structure and function of cytokines (release, binding ability to ligands, subsequent 
downstream signal intensity and can also regulate cytokine expression at the transcriptional level by influencing upstream 
signals (such as Wnt, AKT).

Glycosylation of IgE and Asthma
IgE plays a crucial role in asthma. IgE is generated by B cells under the influence of IL-4 and IL-13 secreted by Th2 
cells, and binds to high-affinity IgE receptors (FcεRI) on the surface of mast cells and eosinophils.33 Upon re-exposure to 
allergens, IgE binds to them, activating these cells and releasing inflammatory mediators such as histamine and 
leukotrienes, leading to bronchoconstriction, increased mucus secretion, airway inflammation, and airway remodeling, 
exacerbating asthma symptoms. IgE is a heavily glycosylated monomeric antibody with seven N-linked glycosylation 
sites distributed across the four constant domains of the heavy chain. N394 is a conserved glycosylation site with 
oligomannose glycans, while N383 is unoccupied, and the other five sites (N140, N168, N218, N265, N371) are occupied 
by complex biantennary glycans.34,35 Preliminary studies suggest that glycosylation of IgE is crucial for FcεRI binding 
and effector function.36 However, subsequent research has found that non-glycosylated IgE produced in Escherichia coli 
can also bind to FcεRI and trigger effector function, suggesting that glycosylation may not be essential.37 Nevertheless, 
studies combining in vitro experiments, cell studies, and mouse models indicate that IgE glycosylation does indeed play 
a significant role. A point mutation N384Q in mouse IgE (mIgE), equivalent to human N383Q, abolished its binding to 
FcεRI in both ear mast cells and cell experiments, similar results were observed when using PNGaseF enzyme to remove 
all N-glycosylation from mIgE. These findings suggest that mIgE N384 glycosylation is necessary for initiating allergic 
reactions. Additionally, circular dichroism results show that removal of N-linked glycans alters the secondary structure of 
IgE, preventing its binding to FcεRI. These results highlight the role of glycosylation in binding to high-affinity 
receptors, similar to the role of IgG glycosylation in binding to FcγRI. This also suggests that IgE produced in 
Escherichia coli may adopt a conformation different from glycosylated IgE during folding, hence still able to bind to 
FcεRI. Specific IgE glycosylation patterns in allergic and atopic populations have been studied. Interestingly, despite both 
groups having similar levels of mannose, galactose, and bisecting GlcNAc in complex biantennary glycans, differences 
exist in terminal fucose and sialylation. Atopic IgE is enriched in terminal fucose, while sialylation increases in allergic 
IgE. Functional experiments demonstrate that degranulation of mast cells increases with peanut allergic IgE sensitization 
compared to atopic IgE. The importance of IgE sialylation is further confirmed by passive cutaneous anaphylaxis models, 
where sialylated IgE induces greater allergic reactions than non-sialylated IgE. These new findings underscore an 
intriguing contrast in antibody sialylation effects: while IgG sialylation is associated with anti-inflammatory activity, 
IgE sialylation appears to exacerbate allergic reactions.38
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In addition, leukotrienes, prostaglandins, histamine, Toll-like receptors (TLRs), and endothelin-1 play crucial roles in 
the pathogenesis and exacerbation of asthma. These inflammatory mediators, released by mast cells, eosinophils, and 
other inflammatory cells, impact airway inflammation, bronchoconstriction, and mucus secretion through various path-
ways, exacerbating asthma symptoms.39 The glycosylation status of these inflammatory mediators may influence their 
biological activity and modes of interaction. Glycosylation could modulate the binding affinity of these mediators to their 
receptors, affecting their distribution and clearance rates, thus impacting the extent of airway inflammation and 
bronchoconstriction.40–42 Therefore, further research into the glycosylation status of these inflammatory mediators can 
enhance our understanding of their roles in asthma pathophysiology, providing new targets and strategies for asthma 
treatment. Table 1 Summarized key molecules regulated by glycosylation in asthma pathogenesis.

Glycosylation Regulates Asthma by Influencing Immune Cell Activation
The activation of immune cells plays a pivotal role in the pathophysiology of asthma. When asthma patients are exposed 
to triggering factors such as allergens or infections, immune cells such as T cells and eosinophils are activated and release 
inflammatory mediators such as IL-4, IL-5, and IL-13. These inflammatory mediators promote airway mucosal edema, 
excessive mucus secretion, and smooth muscle contraction, leading to airway narrowing and exacerbation of asthma 
symptoms. Glycosylation influences immune cell activation by regulating the structure and function of cell surface 
receptors. Glycosylation modifications affect the binding affinity of immune cell surface receptors to ligands, thereby 
modulating the activation of signaling pathways. Additionally, glycosylation can also affect the distribution and stability 
of receptors, influencing their availability on the cell surface. Taking T cells as an example, glycosylation influences the 
affinity between T cell receptor complexes and major histocompatibility complex (MHC), thereby regulating T cell 
activation and maturation.43,44 Studies have shown that glycosylation of membrane receptors (for example, CD4, CD8, 
and T cell receptors) can modify the affinity for interactions with MHC.45 Furthermore, sialylation located at α2-3 
positions on CD8 coreceptor O-glycan reduces the affinity for MHC class I molecules, playing a crucial role in negative 
selection. Glycosylation also participates in the control of T cell differentiation Glycosylation reduction in CD25 has 
been shown to prevent T cell differentiation into Th1, Th2, and Treg-induced phenotypes, while promoting Th17 cell 
differentiation.46 Sialylation affects certain protein interactions during Treg cell differentiation, such as the interaction 
between CD69 and the S100A8/S100A9 complex.47 Removal of sialic acid by sialidase treatment in activated CD4 
T cells inhibits the binding between these proteins and reduces Treg cell differentiation. Additionally, treatment with 

Table 1 Glycosylation of Key Molecules in Asthma Pathogenesis

Glycosylation Condition Potential Roles in Inflammation and Asthma Reference

TGF-β Core fucosylation on TGF-βRII and ALK5 

(Receptors)

TGF-β plays a crucial role in allergic inflammation by regulating Th2 cell 

activation and promoting regulatory T cell generation, aiding in alleviating 

airway inflammation and allergic reactions. Prolonged exposure to allergens 
or stimuli may lead to structural changes in the airways, such as airway 

remodeling and fibrosis, exacerbating asthma symptoms

[22–26]

IL-10 O-GlcNAc (O-linked 

N-acetylglucosamine) modification

O-GlcNAc modification regulates signaling, affecting the physiological effects 

of IL-10.

[27]

IL-7 N-terminal glycosylation Glycosylation delays the cleavage of IL-7 by MMP-9, thereby influencing its 

biological activity.

[28]

IL-12 Multiple N-glycosylation sites on p35 and 

p40 subunits

Glycosylation affects the secretion and function of IL-12 family cytokines, 

particularly IL-35 and IL-27.

[30]

IL-1R N-glycosylation N-glycosylation modifications influence IL-1-induced T cell proliferation and 

receptor binding.

[31]

IgE N-glycosylation at multiple sites (N140, 

N168, N218, N265, N371, N383, N394)

Multiple glycosylation sites on IgE influence its binding to FcεRI and effector 

function, constituting an integral part of allergic responses.

[34,35]
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glucosamine in mice reduces CD25 glycosylation, preventing differentiation into Th1 cells, increasing the survival rate of 
islet transplants in diabetic mice, and exacerbating the severity of experimental autoimmune encephalomyelitis.46 

Galectins in T cells also play a role in regulating processes such as activation, differentiation, and apoptosis. It has 
been reported that galectin-1 stimulates T cell apoptosis by recognizing CD43.48 Another ligand for galectin-1 is 
glycoprotein CD45, which must express core 2 to trigger apoptosis signals.49 These studies indicate that receptor 
glycosylation plays a pivotal role in modulating T cell function. Treg cells play important roles in the pathogenesis 
and development of asthma. The activation and secretion of cytokines by T cells, especially Th2 cells, directly contribute 
to the development of allergic inflammation in asthma, leading to airway mucosal inflammation and allergic reactions. In 
contrast, Treg cells act as regulatory immune cells that normally suppress allergic inflammatory responses, alleviate 
airway inflammation and allergic reactions, and exert a protective effect. However, in asthma patients, the number and 
function of Treg cells are abnormal, leading to immune imbalance, uncontrolled allergic inflammatory responses, and 
exacerbation of asthma. Therefore, receptor expression on cell membranes is likely to influence asthma progression by 
affecting T cell activation functions and Treg cell differentiation.

Macrophages also play a crucial role in asthma. They participate in regulating airway inflammation, antigen 
presentation, airway remodeling, immune response modulation, and pathogen clearance. Macrophages directly influence 
the pathogenesis and progression of asthma through the release of inflammatory mediators, modulation of T cell function, 
and pathogen clearance. Moreover, the two forms of macrophages (M1 and M2) play critical roles in immune 
polarization.50 Upon activation, macrophages experience metabolic shifts that drive their differentiation into either an 
inflammatory or fibrotic phenotype, orchestrated by the mammalian target of rapamycin-hypoxia-inducible factor 1α 
(mTOR-Hif1α) pathway.51 In the M1-like pro-inflammatory state, activation of the mTOR-Hif1α axis results in 
upregulated GLUT1 expression, enhanced glucose uptake, increased glycolysis, and the stimulation of synthetic meta-
bolic pathways like the pentose phosphate pathway, all of which support sustained inflammation.52 In contrast, in the M2 
state, these pathways are suppressed, with mitochondrial metabolism taking precedence through oxidative phosphoryla-
tion and fatty acid oxidation.53 Crucially, these metabolic alterations also influence the glycosylation process, which 
functions both as an effector and regulator of immune metabolic changes in macrophages. The interplay between 
metabolism and glycosylation is especially apparent in protein O-GlcNAcylation. In this process, O-GlcNAc, derived 
from the hexosamine biosynthetic pathway (HBP), is attached to serine or threonine residues on cellular proteins. Such 
modification exhibits significant dynamism, being facilitated by the OGT enzyme and reversed by the OGA enzyme.54 

The function of O-GlcNAcylation in macrophage polarization is intricate and occasionally paradoxical. Certain inves-
tigations propose that O-GlcNAcylation bolsters the M1-like phenotype by altering and activating crucial pro- 
inflammatory transcription factors. Conversely, additional studies suggest diminished HBP activity and protein 
O-GlcNAcylation in macrophages treated with LPS.55 In the same study, the immune response and necroptosis are 
enhanced by inhibiting protein O-GlcNAcylation through OGT enzyme deficiency. This is accomplished by reducing 
O-GlcNAcylation of RIPK3 and inhibiting its interaction with RIPK1.55 Consistent with this, OGT enzyme deficiency 
drives macrophages towards the M1-like phenotype.56 Of note, heightened levels of O-GlcNAcylation are detected in 
macrophages exhibiting an M2-like phenotype.57 This can be attributed to increased availability of HBP substrates, 
including acetyl-CoA and glutamine, which enhance through enhanced glutamine breakdown and increased glutamine 
uptake in M2-like macrophages.

Additionally, the glycosylation processes within airway epithelial cells involve several key molecules, whose 
glycosylation states directly influence the pathophysiological mechanisms of the disease.58 Mucins such as MUC5AC 
and MUC5B are major secretory mucins present in airway epithelial cells.59,60 Glycosylation of these mucins increases 
their viscosity and elasticity, leading to excessive mucus secretion and airway obstruction in asthma patients.2,61 The 
expression and glycosylation levels of MUC5AC and MUC5B are significantly elevated in the airway epithelial cells of 
asthma patients.60 This excessive mucus secretion can trap and accumulate more allergens and pathogens, further 
exacerbating airway inflammation and narrowing. E-cadherin is crucial for tight junctions between airway epithelial 
cells, and its glycosylation affects cell adhesion and barrier function.62 Normally, E-cadherin helps maintain the integrity 
of the epithelial barrier, preventing the invasion of external pathogens and allergens.63 However, in asthma, abnormal 
glycosylation of E-cadherin can compromise barrier function, allowing more pathogenic factors to penetrate the epithelial 
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barrier, triggering, and worsening inflammatory responses.64,65 Toll-like receptor 4 (TLR4) is expressed in airway 
epithelial cells and recognizes pathogen-associated molecular patterns (PAMPs).66 The glycosylation of TLR4 is critical 
for receptor stability and signal transduction.67 In asthma, the glycosylation state of TLR4 regulates the response of 
airway epithelial cells to environmental allergens and pathogens.68 Excessive TLR4 activation can lead to overproduction 
of inflammatory mediators, exacerbating airway inflammation and remodeling. MUC1 is a transmembrane mucin on the 
surface of airway epithelial cells, and its glycosylation status affects its ability to protect epithelial cells from pathogen 
invasion.69 Altered glycosylation of MUC1 may play a role in the pathogenesis of asthma, influencing inflammation and 
immune responses.3 Glycosylation of MUC1 can modulate its interactions with pathogens and its clearance efficiency.70 

In asthma patients, MUC1 may be less effective at clearing pathogens, leading to persistent inflammation and allergic 
reactions. Integrins are transmembrane receptors involved in cell-cell and cell-matrix adhesion. Glycosylation of 
integrins in airway epithelial cells can influence cell adhesion and migration functions.71 In the inflammatory response 
of asthma, abnormal glycosylation of integrins can enhance interactions between airway epithelial cells and inflammatory 
cells such as eosinophils and mast cells, promoting the accumulation and activation of these inflammatory cells in the 
airways, thereby exacerbating inflammation and tissue damage. Additionally, N-acetylglucosaminyltransferases (GnTs) 
are key enzymes in the glycosylation process, involved in the synthesis and modification of N-glycans.72 In airway 
epithelial cells, abnormal expression, and activity of GnTs can affect the structure and function of glycoproteins, 
impacting the pathophysiology of asthma.73 Changes in GnT activity can alter the glycosylation states of various 
membrane and secreted proteins, affecting their function and stability. For instance, overactivity of GnTs may lead to 
hyperglycosylation of mucins,74,75 increasing mucus secretion and the risk of airway obstruction. Table 2 presented 
a summary of the impact of glycosylation on immune cells and epithelial cells in the pathophysiology of asthma. Figure 2

Table 2 Glycosylation Influence on Immune Cells in Asthma Pathophysiology

Cell Types Glycosylation Sites Potential Roles in Inflammation and Asthma Reference

T cells CD4, CD8, T cell receptors - Glycosylation influences the affinity between T cell receptor complexes and 

major histocompatibility complex (MHC), regulating T cell activation and 

maturation. 
- Sialylation at α2-3 positions on CD8 coreceptor O-glycan reduces the affinity 

for MHC class I molecules, crucial in negative selection.

[45,48]

CD25 - Glycosylation reduction in CD25 prevents T cell differentiation into Th1, 

Th2, and Treg-induced phenotypes while promoting Th17 cell differentiation.

[46]

CD69, S100A8/S100A9 complex - Sialylation affects protein interactions during Treg cell differentiation, such as 

the interaction between CD69 and the S100A8/S100A9 complex.

[47]

Galectin-1, CD43, CD45 - Galectin-1 stimulates T cell apoptosis by recognizing CD43. 

- Glycoprotein CD45 must express core 2 to trigger apoptosis signals.

[49]

Macrophages GLUT1 - Inflammatory macrophages upregulate GLUT1 expression, enhancing glucose 

uptake and glycolysis, supporting sustained inflammation.

[52]

O-GlcNAcylation - O-GlcNAcylation influences macrophage polarization, with potential roles in 

both the M1-like and M2-like phenotypes. 

- Enhanced O-GlcNAcylation may bolster the M1-like phenotype by activating 
pro-inflammatory transcription factors.

[54]

(Continued)
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Discussion
Here, we emphasize the critical role of glycosylation of various molecules, including cytokines, interleukins, and 
interferons, in the onset and progression of asthma. Asthma is a heterogeneous disease, encompassing multiple 
phenotypes, such as T2 high asthma, obesity-related asthma, and other less understood subtypes. In addition to immune 
modulation, epithelial injury plays a pivotal role in asthma pathogenesis. The airway epithelium, a pseudo-stratified 
columnar structure, resists external stimuli through structural integrity, mucosal cilia clearance and innate immune 
barriers. Serving as both a physical and immunological barrier, damage to the airway epithelium increases permeability, 
facilitating allergen entry and immune activation. Compromised epithelial integrity enhances the release of pro- 
inflammatory cytokines such as TSLP, IL-25, and IL-33, which further promote Th2-driven inflammation.

Viral, allergic, and environmental factors play significant roles in disrupting the airway epithelial barrier, contributing to 
the pathogenesis and exacerbation of asthma.76–78 Viral infections, particularly with rhinovirus, respiratory syncytial virus, 
influenza virus, parainfluenza virus, adenovirus, and coronavirus, bind to specific receptors on airway epithelial cells, leading 
to internalization, replication, and activation of innate immune responses.79 In asthma, impaired interferon responses and 
compromised barrier function result in increased viral replication and pro-inflammatory cytokine release, further disrupting 
epithelial cell-cell contacts. For instance, rhinovirus disrupts tight junction (TJ) integrity by causing the loss of ZO-1, with 
more pronounced effects in asthmatic-derived epithelial cultures.80 Additionally, the immune response induced by virus may 
amplify the overall inflammatory load in the upper and subcutaneous tissues, and the resulting deep tissue inflammation 
further destroys the epithelial barrier.81 Allergens such as the main house dust mite (HDM) allergen Der P1, which contains 
proteolytic activity, can directly destroy TJ or indirectly destroy them by activating protease activated receptor 2 (PAR-2).82 

Environmental factors, including ozone, cigarette smoke, and particulate matter, further impair epithelial integrity. Smoking 
disrupts epithelial junctions directly and indirectly through Th17-mediated inflammation and IL-17 secretion.83 Pollutants like 
particulate matter and ozone degrade TJ proteins and reduce epithelial resistance, while household cleaning products, 
including laundry detergents, disrupt TJ, contributing to asthma development and worsening.84,85

Glycosylation influences epithelial repair mechanisms, and aberrant glycosylation of mucins and adhesion molecules 
may exacerbate airway damage and remodeling. 86 TGF-β plays a dual role in asthma, exerting both positive effects on 
regulating allergic inflammation and negative effects on airway structural changes.87,88 Notably, the glycosylation status 
of TGF-β may modulate this process, raising the question: does the glycosylation of TGF-β change at different stages of 

Table 2 (Continued). 

Cell Types Glycosylation Sites Potential Roles in Inflammation and Asthma Reference

Airway 

Epithelial 
Cells

MUC5AC/MUC5B (Mucins) Increase in viscosity and elasticity of mucus secretion, leading to airway 

obstruction; Elevated expression and glycosylation levels in asthma patients.

[60]

E-cadherin Abnormal glycosylation compromises barrier function, allowing penetration of 

allergens and pathogens, exacerbating inflammation.

[63]

MUC1 Altered glycosylation may influence inflammation and immune responses; 

Reduced efficiency in pathogen clearance, leading to persistent inflammation 
and allergic reactions.

[64,65]

Toll-like Receptor 4 (TLR4) Regulates response to environmental allergens and pathogens; Excessive 
activation exacerbates inflammation and remodeling.

[68]

Integrins Abnormal glycosylation enhances interactions with inflammatory cells, 
promoting accumulation and activation, exacerbating inflammation and tissue 

damage.

[72]

N-Acetylglucosaminyltransferases 

(GnTs)

Altered expression/activity affects glycoprotein structure/function, impacting 

asthma pathophysiology; Overactivity may lead to hyperglycosylation, 

increasing mucus secretion and airway obstruction.

[72]
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asthma, and how does this alteration affect its regulatory role in airway inflammation and structure? Furthermore, the 
article also mentions the roles of other interleukins such as IL-10, IL-7, and their potential regulation by glycosylation in 
asthma. These discussions provide new insights into understanding the pathogenesis of asthma.

Chronic inflammation serves as the fundamental link between obesity and asthma.89 With the increasing prevalence 
of obesity, obesity-related asthma has emerged as a significant and increasingly common phenotype of the disease. 
Unlike traditional asthma, obesity-related asthma typically presents with a non-T2 phenotype characterized by chronic 
low-grade systemic inflammation, insulin resistance and altered metabolic pathways.90 Patients with this subtype often 
have a more severe disease course and a reduced response to conventional asthma therapies compared to their non-obese 
counterparts.91 While the precise inflammatory mechanisms underlying obesity-related asthma remain incompletely 

Figure 2 Glycosylation regulates asthma by influencing immune cell activation (By Figdraw). Glycosylation plays a crucial role in modulating the functionality of immune cells, 
influencing their roles in immune responses and inflammation processes. In macrophages, glycosylation of GLUT1 likely regulates glucose uptake, thereby impacting cellular 
metabolic status and activity. Additionally, O-GlcNAcylation participates in the regulation of pivotal signaling pathways such as NF-κB and Akt, affecting the production and 
secretion of cytokines, consequently influencing the polarization state and functions of macrophages. Moreover, glycosylation also exerts significant effects on the 
functionality of CD4+ and CD8+ T cells. For CD4+ T cells, glycosylation modifications may influence the binding of CD25 to its ligand IL-2, thereby modulating signal 
transduction and T cell activation. Simultaneously, modulation of the stability and function of CD69 and the S100A8/S100A9 complex by glycosylation can impact T cell 
activation and pro-inflammatory responses. These glycosylation modifications have critical implications for the activation, proliferation, and function of CD4+ T cells and 
naïve T cells, consequently influencing their roles in immune responses. In regulating the antigen recognition and activation processes of CD8+ T cells, glycosylation also plays 
a pivotal role. For instance, glycosylation of the CD8+ co-receptor may regulate its binding efficiency and specificity to MHC-I/peptide complexes. Furthermore, glycosylation 
modifications of Galectin-1, CD43, and CD45 may affect cell-cell interactions and signal transduction, consequently influencing the activation and effector functions of CD8+ 

T cells. Additionally, regarding airway epithelial cells, glycosylation of mucins (such as MUC5AC and MUC5B) and E-cadherin contributes to protecting the airway surface 
from external stimuli and facilitating mucus clearance. Glycosylation mediated by integrins regulates the interaction between the extracellular matrix and intracellular 
structures, influencing cell migration and adhesion. These glycosylation modifications significantly impact the functionality of airway epithelial cells and contribute to the 
pathogenesis of asthma, offering novel avenues for asthma research and potential therapeutic targets.
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understood, the association between weight loss and improved asthma control is well established.92 Although research in 
this area is limited, glycosylation modification - known to play a critical role in inflammatory responses and metabolic 
dysfunction - may significantly influence the progression of this subtype of asthma. Glycosylation of various immune 
mediators and airway proteins could potentially contribute to disease pathogenesis. Further investigation is warranted to 
elucidate how glycosylation mechanisms interact with obesity-induced inflammation to modulate asthma outcomes. Such 
research could provide valuable insights into targeted therapeutic strategies for the treatment of obesity-related asthma.

Another focus is on the critical role of IgE in asthma and the impact of its glycosylation on binding to receptors and effector 
functions. While past studies suggest that non-glycosylated IgE can bind to receptors and trigger effector functions, recent 
research indicates that glycosylation remains necessary for this process.93 This raises an intriguing question: does the 
glycosylation status of IgE change with the development of asthma, and how does this alteration affect its affinity for binding 
to receptors and effector functions? Exploring these questions can enhance our understanding of the role of IgE in the 
pathogenesis of asthma. Glycosylation modifications can affect the binding affinity of immune cell surface receptors to 
ligands, thereby modulating the activation of signaling pathways, which is crucial for the activation and maturation of immune 
cells such as T cells. Additionally, we need to consider not only the glycosylation of IgE but also the impact of glycosylation of 
other inflammatory mediators on the onset and exacerbation of asthma. Inflammatory mediators play essential roles in the 
pathophysiology of asthma, including leukotrienes, prostaglandins, histamine, TLRs, and endothelin-1, directly affecting the 
severity of asthma by regulating airway inflammation, bronchoconstriction, and mucus secretion.

Glycosylation modifications also participate in the regulation of T cell differentiation, affecting the generation and 
function of Th1, Th2, and Treg cells.94 Of note is the role of glycosylation in Treg cells. Treg cells can suppress allergic 
inflammatory responses under normal circumstances, thereby alleviating airway inflammation and allergic reactions, 
exerting a protective effect against asthma. However, in asthma patients, abnormal numbers, and functions of Treg cells 
lead to immune imbalance, uncontrolled allergic inflammatory responses, and worsened asthma conditions.95 Therefore, 
changes in glycosylation status may result in abnormal Treg cell function, thereby influencing the development and 
progression of asthma. Glycosylation plays a critical role in the activation of macrophages, directly influencing the onset 
and progression of asthma. Macrophages are pivotal in asthma’s pathophysiology, with their activation status crucial for 
regulating airway inflammation, antigen presentation, airway remodeling, immune response modulation, and pathogen 
clearance. Glycosylation impacts macrophage function and activation through various mechanisms. It modulates the 
binding affinity of macrophage surface receptors to ligands, affecting signaling pathway activation levels.96 

Glycosylation also influences intracellular signaling pathway activation and participates in regulating macrophage 
metabolism, impacting cellular energy and immune metabolism balance.

In addition to asthma, glycosylation processes also play a significant role in other immune-related diseases, such as 
allergic rhinitis. The molecular interplay in allergic rhinitis could be similarly influenced by glycosylation modifications, 
affecting key immune cells and mediators involved in the disease. Recent studies, including Berghi O et al’s work on the 
relationship between Chemokine Ligand 3 (CCL3) and allergic rhinitis,97 highlight how altered glycosylation may 
impact immune responses, contributing to the pathophysiology of this condition. Understanding these processes in the 
context of allergic rhinitis offers exciting possibilities for developing new therapeutic strategies aimed at modulating 
glycosylation pathways to manage both asthma and allergic rhinitis more effectively.

In summary, glycosylation plays a multifaceted role in the onset and progression of asthma, influencing various 
molecules such as cytokines, interleukins, interferons, and IgE. The glycosylation status of molecules like TGF-β and IgE 
can modulate their functions and interactions, affecting airway inflammation and structural changes in asthma. 
Additionally, glycosylation modifications impact immune cell surface receptors’ binding affinity to ligands, thus 
regulating signaling pathways crucial for immune cell activation and maturation, including T cells and macrophages. 
Moreover, glycosylation affects T cell differentiation, particularly in Treg cells, which play a vital role in immune 
balance and allergic inflammation suppression. Understanding the complex interplay between glycosylation and immune 
responses, including macrophage activation, provides valuable insights into asthma pathogenesis and offers potential 
therapeutic targets for managing asthma effectively. Finally, understanding the role of glycosylation in obesity-related 
asthma and other non-T2 phenotypes provides a more comprehensive understanding of asthma’s pathophysiology, 
offering potential therapeutic targets for more personalized asthma treatments.
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