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Abstract: Receptors coupled with G proteins (GPCRs) are expressed in large numbers in multiple systems, such as endocrine, 
cardiovascular, digestive, immune, and reproductive systems. As an important signal transduction mediator, in recent years, the 
research on GPCRs has become more and more in-depth. Many articles have verified that in the gastrointestinal, reproductive, and 
urinary systems, GPCRs are contributed to the development and occurrence of cancerous tumors and have been associated with the 
infiltration of malignant tumors and metastasis. Currently, in clinical practice, GPCRs become the target of action for about 30% of 
drugs. However, it should be noted that there are still over 100 GPCRs collectively referred to as orphan GPCRs (OGPCRs) due to the 
lack of corresponding ligands. Despite the lack of known ligands, research in animals and experiments has proved that numerous 
OGPCRs regulate crucial physiological functions and are intriguing and undeveloped targets for therapeutics. GPR137 is a member of 
OGPCRS, which promotes carcinogenesis and progression of cancers, and its expression is elevated in various malignant tumor 
tissues. Additionally, GPR137 has been shown to play a role in promoting tumorigenesis and metastasis in colorectal, gastric, 
hepatocellular, ovarian and prostate cancers. Knockdown of the GPR137 leads to cell cycle arrest within cancer cells, effectively 
inhibiting their proliferation and colony-forming ability while promoting apoptosis. This highlights its potential therapeutic signifi-
cance as a target for numerous cancers. 
Keywords: malignant tumors, G protein-coupled receptor, GPR137, molecular targeting treatment

Introduction
Malignant tumors are considered a serious public health threat and are the leading cause of death worldwide.1,2 Based on 
estimates of cancer incidence and mortality rates compiled by the International Agency for Research on Cancer (IARC) 
in GLOBOCAN 2022, roughly 20 million people were diagnosed with malignant tumors and almost 9.7 million died of 
malignant tumors globally in the year 2022.3 There is evidence that the “history” of malignant tumors goes back a million 
years, and that cellular organisms have been afflicted by the disease for nearly 200 million years.4 Malignant tumors 
differ from infectious diseases and diseases of the immune system. The pathogenesis of malignant tumors is character-
ized by uncontrolled cell proliferation and growth. Tumor cells undergo genetic damage while proliferating indefinitely, 
spreading widely and invading surrounding tissues, resulting in the loss of normal physiological and regulatory 
functions.4 With advancements in modern medicine, cell and molecular studies have delved deeper into various 
molecules or proteins that have been employed for diagnosing and treating numerous types of malignant tumors.5 

Consequently, humanity no longer remains powerless against malignant tumors. For example, the assessment of HER2 at 
the diagnosis of invasive breast cancer has helped to instruct therapeutic decisions.6,7 Similarly, the development in 
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aiming at the epidermal growth factor receptor (EGFR) with erlotinib and gefitinib has greatly enhanced the therapeutic 
efficiency associated with non-small cell lung carcinoma.8–10 Despite these advances, there are still insufficient molecular 
markers in clinical use, resulting in high morbidity and mortality from malignant tumors. Consequently, malignant 
tumors continue to pose a significant challenge that the medical community is unable to overcome in the short term.5,11 

Therefore, novel molecular markers are urgently needed to enhance preventive detection and early intervention strategies 
for patients with malignant tumors, ultimately improving their cure and survival rates.

GPR137 is a novel G protein-coupled receptor identified by homology screening and is highly homologous to 
prostate-specific odorant orphan G protein-coupled receptor (PSGR).12,13 It has been more than 20 years since GPR137 
was discovered, and the research on its function has become more and more detailed. GPR137 has the function of 
regulating the localization and activity of Rag and mTORC1 and is involved in a variety of important physiological 
processes in the human body.14 Previous studies have confirmed that GPR137 is overexpressed in many types of 
malignant tumors and promotes tumor cell proliferation, invasion and metastasis.15 According to the latest studies on 
GPR137, it was reported that GPR137 showed high expression in ovarian cancer, and anisomycin could target-drive 
miR-134-3p and promote elevated expression of miR-134-3p, thus down-regulating the expression of GPR137 and 
downstream related proteins. After the downregulation of GPR137 and downstream proteins, the activity of ovarian 
cancer stem cells (HuOCSCs) was significantly inhibited, reducing the proliferation, migration and tumorigenicity of 
HuOCSCs.16 GPR137, as a member of the G protein-coupled receptor family, is also involved in the proliferation and 
differentiation of human epithelial cells and plays an important role in the biology of epidermal stem cells.17 GPR137, as 
a key receptor, mediates the signaling of a variety of metabolites, which enables the cells to sense extracellular signals 
and adapt to changes in the environment that maintain tissue homeostasis.18

Overall, GPR137 can function as an important signaling receptor in multiple organs and systems in the human body. 
Abnormalities in GPR137 metabolism may lead to a variety of diseases such as inflammation, hereditary disorders and 
even malignant tumors. The aim of this article is to review the development and significance of GPR137 in malignant 
tumors, offering potential targets for future treatment of patients with malignant tumors, and providing theoretical 
underpinning for the realization of more personalized and effective treatment strategies.

Structure and Function of GPR137
In terms of cell surface molecules, G protein-coupled receptors (GPCRs) are the most prevalent group and have an 
impact on signaling for numerous physiological and pathological functions.19 This family comprises more than 800 
individuals, each consisting of seven transmembrane alpha-helical segments linked to a common structural component by 
an extracellular and intracellular circuit.20 A variety of ligands (agonists) can activate G protein-coupled receptors, 
including single photons, ions, amino acids, small organic molecules, lipids, peptides, and entire proteins as extracellular 
signals.20 After the ligand binds, conformational change takes place in the GPCR, leading to the stimulation of specific 
heterotrimeric G proteins, which initiates cytoplasmic signaling networks and triggers multiple cellular responses21,22 

(Figure 1). Extensive research has demonstrated widespread expression of GPCRs in endocrine, cardiovascular, gastro-
intestinal, immune, and reproductive systems,23 with implications in the development of malignant tumors across 
multiple organ systems24–42 (Table 1). With the deepening of research in this field, cancer cells are observed to replicate 
autonomously while evading immune detection by exploiting the regular physiological function of GPCRs. In addition, 
they enhance oxygen and nutrient supply, promoting invasion and metastasis.13,21 In addition, the research confirmed that 
many human viruses contain open reading frames encoding GPCRs. These GPCRs may have been hijacked by these 
viruses from host cells, and the viruses can take advantage of the replication of the GPCR family to mutate key structural 
motifs that are constitutively active and induce tumorigenesis.25 For example, Epstein–Barr virus, which can encode a G 
protein-coupled receptor called BILF1. The receptor can upregulate NFκB activity and blocks protein kinase A (PKA) 
activity, which in turn affects chemokine receptor expression, leading to the development of a number of diseases 
associated with EBV, such as nasopharyngeal carcinoma, mononucleosis, and Burkitt’s lymphoma.43,44 Therefore, there 
is a widespread belief that GPCRs are a key factor leading to the proliferation and spread of cancerous growth. The 
identification of ligands and corresponding known receptors of most GPCRs has facilitated their clinical application.45 It 
is estimated that nearly over 30% of effective drugs are currently available on the market are designed to contribute to 
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these receptors46,47 (Table 2). For example, the drug dulaglutide performs as a stimulator for the receptor of glucagon- 
like peptide-1 (GLP-1), which can initiate GLP-1 receptors on the cell surface by stimulating G-protein signaling, 
thereby inducing adenylyl cyclase activity.48 This treatment effectively decreases the levels of blood glucose in 

Figure 1 Ligand-activated GPCRs signal transduction.

Table 1 GPCRs in Cancers

Receptor Cancers Ligand Function References

CXCR4 Breast cancer SDF1 Metastasis; angiogenesis [26]

Small-cell lung cancer Growth; metastasis [27]

Head and neck cancer Metastasis [28]

GRPR Head and neck cancer GRP Growth; survival [29]

Small-cell lung cancer Growth [30, 31]

Pancreatic cancer Growth [32]

CCK1; CCK2 Pancreatic cancer CCK Growth [31]

Small-cell lung cancer Growth; survival [31]

LPA1 Colon cancer LPA Growth [33]

Ovarian cancer Growth; metastasis; angiogenesis [34, 35]

Prostate cancer Growth; invasion [36]

EP receptors Non-small-cell lung cancer PGE2 Growth; metastasis; angiogenesis [37]

Colon cancer Survival [38]

MC1R Melanoma MSH Sensitivity to UV-induced DNA damage [39, 40]

Smoothened Basal-cell carcinoma Sonic hedgehog Growth [41, 42]
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individuals diagnosed with type 2 diabetes by minimizing the risk of hypoglycemia, weight gain, increased blood 
pressure, and cardiovascular events.49 Another example, Vorapaxar, a substance that can object the activity of protease- 
activated receptor-1 (PAR-1) that effectively affects the thrombin-induced aggregation of platelets as well as platelets 
aggregation induced by the thrombin receptor agonist peptide (TRAP).50 As an antiplatelet agent, it can be utilized to 
mitigate the recurrence of thrombotic cardiovascular events following myocardial infarction or peripheral arterial 
disease.51

However, there are still a number of GPCRs whose ligands have not been ascertained yet, and they are collectively 
described as orphan GPCRs (OGPCRs).52 According to animal models and related studies, a large number of OGPCRs 
have been shown to control vital physiological functions, making them therapeutic targets with potential for further 
development.53,54 A growing number of research has shown that OGPCR is also thematically linked to the growth and 
movement of malignant cells.54 For instance, abnormal expressions of GPR49 have been detected in primary tumors of 
the colon and ovaries in humans.55 Additionally, GPR55 has also been associated with the progression of various cancers 
such as cholangiocarcinoma, breast cancer, prostate cancer, ovarian cancer, and glioblastoma.56

GPR137 is a gene coding orphan GPCRs localized to 11cen-q13.1.57 Gene GPR137 encodes a cytoplasmic poly-
peptide with four transmembrane regions. In the GPR137 protein, both the N- and the C-termini contain signaling 
peptides.57,58 It was discovered that GPR137 was expressed in the human hippocampus at first,59 and subsequent studies 
have found it to be widely and extensively distributed in a range of organs and tissues such as the nervous, reproductive, 
endocrine and digestive systems.23 Compared with other G protein-coupled receptors, GPR137 is a relatively novel 
receptor protein. It is located on the lysosomal membrane and has the function of signal transduction across the 
lysosomal membrane.60 It is involved in the regulation of Rag and mTORC1 localization and activity,14 and the 
dysfunction of TORC1 signaling pathway can cause the occurrence of many diseases, including cancer, neurodegenera-
tion, diabetes and so on.61,62 It appears from these findings that GPR137 may contribute greatly to diverse physiological 
activities.63 A review of prior research has confirmed that GPR137 is contributed to the growth of carcinogenic cells 
across different types of cancer, including colorectal cancer,64 gastric cancer,63 hepatocellular carcinoma,12 bladder 
cancer,65 prostate cancer,58 medulloblastoma,66 and malignant glioma.21 The inhibition of the expression of GPR137 can 
effectively stabilize tumor cells by suppressing their proliferation and colony-forming abilities. In addition, an important 
function of GPR137 is to promote the reproduction, dissemination, and infiltration of tumor cells, and it could be possibly 
used in cancer treatments.

Aberrant Expression of GPR137 in Malignant Tumors
Numerous studies have illustrated that the expression of GPR137 in tumor tissue is exceptional compared to nearby 
healthy tissue (Table 3). The presence of GPR137 in plasma or cancer tissues was ascertained by reverse transcription 
polymerase chain reaction (RT-PCR). The overexpression of GPR137 has been found in various different types of cancer, 
including hepatocellular carcinoma,12 renal carcinoma,67 prostate carcinoma,58 ovarian carcinoma,15 colorectal 

Table 2 New Molecular Entities Acting via GPCRs Approved by the FDA in Recent years

Substance Brand Name Indications Targets Approval Year

Dulaglutide Trulicity Type 2 diabetes GLP1R 2014

Vorapaxar Zontivity Cardiovascular risk reduction PAR1 2014

Olodaterol Striverdi respimat COPD ADRB2 2014

Cariprazine Vraylar Schizophrenia and bipolar disorder DRD3, DRD2 2015

Selexipag Uptravi Pulmonary hypertension PI2R 2015

Pimavanserin Nuplazid Parkinson disease psychosis 5HT2A 2016

Naldemedine Symproic Opioid-induced constipation OPRM 2017
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carcinoma,64 and gastric carcinoma.63 Elevated levels of GPR137 expression have been affirmed in different types of 
cancerous tissues, suggesting its involvement in the pathogenesis of these malignancies.

Knockdown of GPR137 Inhibits Cell Cycle and the Proliferation of Cancer 
Cells
Regulating cell cycle is one function of GPR137, and the inhibition of GPR137 can lead to a halt in the cell cycle 
progression, thereby refraining cancer cells from multiplying and growing.12,13,15,58 The process of cell division 
contributes to the progression of cancer, and the precise segregation of chromosomes during mitosis and unimpeded 
cell proliferation are critical events throughout the cell life cycle.68,69 Cancer cells are characterized by their ability to 
evade normal lifespan limitations and exhibit aberrant proliferation.70 In studies of hepatocellular carcinoma,12 pancreatic 
cancer,13 and ovarian cancer,15 repressing the function of the GPR137 was observed to cause significant cell cycle 
sluggishness in these cancer cells. Due to this arrest, G0/G1 emerged from S phase and remained in G0/G1 for some 
time, thereby inducing cellular regression and inhibiting cancer cell growth. Irregular progression of cell cycle is the 
basic mechanism of tumorigenesis,69 so regulators of cell cycle mechanism can be used in cancer treatment as potential 
targets for molecular therapy.71 Although it is still unknown how GPR137 governs the cell cycle, it has been shown that 
silencing the GPR137 gene inhibits cell cycle progression, limits cancer cell proliferation, and ultimately results in cancer 
cell apoptosis. These findings highlight GPR137 as an optimistic target of therapeutic intervention for modulating tumor 
cell cycle dynamics.

GPR137b Mediates M2 Macrophage Polarization Involved in Cancer 
Progression
GPR137b (TM7SF1), a widely studied isoform of GPR137, is a tissue-specific intact membrane protein localized to 
lysosomes, which is hypothesized to have the capacity for signal transduction across lysosomal membranes.60 Activation 

Table 3 The Biological Activity of GPR137 in Various Types of Cancer

Cancer Cell Lines Cell 
Expression

Downregulation of GPR137 
Expression in vitro

Pathway References

Colorectal 
cancer

HCT116, RKO, SW116, SW480, 

SW620, HT-29

↑ Growth↓, Invasion↓, Colony formation 

ability↓, Cell cycle arrest

[64]

Ovarian cancer SKOV3, CAOV-3, COC1, 

OVCAR3

↑ Growth↓, Invasion↓, Colony formation 

ability↓, Cell cycle arrest, Apoptosis↑
P13K/AKT [15]

Hepatocellular 
carcinoma

HePG2, Bel7404, Bel7402, SK- 

HEP-1, Hep3B, SMMC-7721

↑ Proliferation↓, Colony formation 

ability↓, Cell cycle arrest, Apoptosis↑
[12]

Pancreatic 
cancer

BXP-3, PAN-1 ↑ Proliferation↓, Colony formation 

ability↓, Cell cycle arrest, Apoptosis↑
PARP, 

Caspase3

[13]

Gastric cancer GES-1, SGC-7901, AGS ↑ Invasion↓, Migration↓, Colony formation 

ability↓
Hippo 

signaling

[63]

Medulloblastoma Daoy ↑ Proliferation↓, Colony formation 

ability↓, Cell cycle arrest, Apoptosis↑
[66]

Prostate cancer PC-3, DU145, LN-cap ↑ Proliferation↓, Colony formation 

ability↓, Cell cycle arrest

Snail1, Slug, 

E-cadherin

[58]

Malignant glioma U251, A172, U373, U-87MG, 

U-118MG

↑ Proliferation↓, Colony formation 

ability↓, Cell cycle arrest

[21]

Renal cancer Caki-1, 786–0, ACHN, Osrc2, 

A498, 769-P

↑ Proliferation↓, Migration↓, Invasion↓ ALKBH1 [67]

OncoTargets and Therapy 2025:18                                                                                                 https://doi.org/10.2147/OTT.S511943                                                                                                                                                                                                                                                                                                                                                                                                    549

Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



of GPR137b by various ligands (including ions, amino acids, fatty acids and hormones) leads to its interaction with 
effectors, which triggers a series of reactions in the downstream pathway.60,72 Activated GPR137b performs a variety of 
lysosomal functions such as autophagy, product degradation, and nutrient transport. Zohirul Islam et al73 discovered that 
GPR137b exhibits abundant expression in the cell line RAW264 from mouse macrophage and confirms its involvement 
in the IL-4-mediated assimilation of M2 macrophages by means of the PI3K/Akt pathway.74,75 M2-polarized macro-
phages, often referred to as tumor-associated macrophages (TAMs), contribute greatly to the enhancement of cellular 
proliferation, infiltration, metastasis and formation of new blood vessels in cancer cells,76 and are considered as an 
important aspect of the immune system that infiltrates tumors.77 Relevant research has shown that TAMs are not only 
suitable for facilitating tumor cell initiation and metastasis but they can also restrict the immune system and aggrandize 
tumor angiogenesis.78 Furthermore, the infiltration of TAMs in the tumor microenvironment has been consistently linked 
to unfavorable prognosis in various cancer types.79,80 By mediating M2 macrophage polarization through specific 
mechanisms, GPR137b has the potential to be targeted for preventive and therapeutic interventions in controlling cancer 
development and progression.

Advances in the Study of GPR137 in Malignant Tumors
Colorectal Cancer
Lukas Franz Mager et al81 demonstrated that the ESRP1-GPR137 axis is involved in intestinal pathogenesis. Literature 
supports ESRP1 as a tumor suppressor82, with documented functionality in cancers of the head and neck83 and 
pancreatic.84 In their experiments, Mager affirmed that reduced intensity of ESRP1 activity led to gut barrier disruption, 
which increased susceptibility to inflammatory bowel disease and caused more severe cancers in transgenic mice with 
lower ESRP1 expression. In addition, ESRP1 has an inhibitory effect on tumor proliferation in colorectal cancer cells, 
and thus its absence is a poor prognostic factor for this type of cancer.85 Meanwhile, ESRP1 regulates an additional gene 
encoding the protein GPR137, which promotes signal transduction in epithelial cells. Altered ESRP1 levels result in 
elevated GPR137 protein levels, impacting the signaling function of this protein and causing disturbances in the activity 
of intestinal epithelial cells. The cellular isoforms of GPR137 are greatly associated with maintaining the intestines in 
balance, mainly by regulating intestinal epithelial cell function, particularly from the Wnt/-catenin pathway regulation.86 

In their experiments, Zhang et al64 demonstrated that GPR137 exhibited high expression intensities in various cells of 
colorectal cancer. Knockdown of this protein in colon cancer cells significantly inhibited cancer cell growth, inducing 
cell cycle arrest at the G0/G1 phase. In addition, the study found differences in the proportion of expression of the 
specific GPR137 subtype, which is dependent on ESRP1 and can be used as a potential indicator of survival outcomes 
among colorectal cancer patients, between intestinal tumors and normal tissues.

Gastric Cancer
Gastric cancer ranks among the top five cancers worldwide, exhibiting the third highest mortality rate globally and 
a notably high incidence in Asia.87 Although the incidence of the disease has declined recently,88 an absence of specific 
symptoms or diagnostic markers in the early stages prevents timely detection, resulting in many patients being diagnosed 
at a later stage with limited improvement in prognosis and quality of life.89 Therefore, there is an urgent need for in-depth 
clinical studies on the pathogenesis of gastric cancer, as well as developing new biomarkers for early detection and 
improved survival rates. Notably, the existing literature has confirmed the correlation between elevated GPR137 
expression levels and the cancer of the stomach.90 Lin et al63 demonstrated experimentally that GPR137 showed high 
expression levels in gastric cancer and increased AGS cell malignancy by inhibiting Hippo signaling activity, as well as 
conducting transcriptome analysis of regulatory genes. Furthermore, they revealed that in vitro up-regulation of GPR137 
expression significantly enhances gastric cancer AGS cells proliferate, migrate, invade, form colonies, and grow as 
xenografts. Conversely, specific knockdown of GPR137 using targeted methods resulted in opposite effects. The 
researchers further elucidated the mechanism of action of GPR137 and found that it disrupts the association between 
MST and LATS by regulating the Hippo signaling pathway (Figure 2), particularly by binding to MST kinase. This 
disruption subsequently triggers YAP/TAZ-mediated transactivation of downstream target genes, ultimately leading to 
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malignant enhancement of cancer cells.91 In summary, these observations highlight the involvement of GPR137 in gastric 
cancer carcinogenesis and metastatic invasion while suggesting its utilization potential as an emerging tumor biomarker 
for gastric cancer. Targeting GPR137 could offer a promising therapeutic approach for gastric cancer treatment.

Hepatocellular Carcinoma and Pancreatic Cancer
Hepatocellular carcinoma is a heterogeneous disease that still leads to the top five deadliest cancers, with a rising 
incidence each year.43 The prognosis of hepatocellular carcinoma is unfavorable, as only 10–20% of patients can undergo 
complete resection through surgical intervention. In stages II and III, the median survival rate stands at a mere 1.6–3.5 
months.92 With the advent of targeted therapies, more and more molecules are being used for cancer treatment, and the 
widespread expression of GPR137 in the digestive system has garnered significant interest from multiple researchers. To 
investigate the roles and functions of GPR137 in hepatocarcinogenesis and progression, Shao et al12 conducted knock-
down experiments targeting GPR137 in two cell lines of hepatocellular carcinoma, HepG2 and Bel7404. The findings 
demonstrated that hepatocellular carcinoma cells were inhibited in their ability to proliferate and form colonies after the 
downregulation of GPR137. In addition, flow cytometry analyses manifested that knocking down GPR137 by lentivirus 
significantly increased cell proliferation in the G0/G1 and G2/M phases. In contrast, cell proliferation in the S phase is 
considerably decreased. These findings indicate that knockdown of GPR137 can arrest cell cycle progression at the G0/ 
G1 phase, preventing entry into S phase and leading to tumor cell cycle arrest. This subsequently triggers apoptosis, 
ultimately inhibiting cell proliferation. The experimental results showed that GPR137 could function as an oncogene and 
inspire cell proliferation in hepatocellular carcinoma, thus promoting hepatocarcinogenesis. Cui et al13 conducted 
a similar experiment to investigate how GPR137 affects pancreatic cancer. Using a lentivirus system, they knocked 
down GPR137 in two types of pancreatic cancer cell lines (BXPC-3 and PANC-1). When GPR137 was inhibited, a clear 
diminution in the growth and ability of cancer cells to form colonies was observed. Analyses by flow cytometry indicated 
that downregulation of GPR137 caused the arrest of the cell cycle in the sub-G1 phase and substantially increased 
apoptosis rate. Knocking down GPR137 resulted in activation of apoptosis and arrest of cell cycle through PARP 
fragmentation and up-regulation of Caspase3 expression levels, as confirmed by Western blotting. Conversely, 

Figure 2 GPR137 regulates Lats and YAPTAZ activity in the HIPPO pathway.
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overexpression of GPR137 mediated by lentivirus in PANC-1 cells promoted cellular proliferation. These experimental 
findings collectively underscore an integral part of the regulatory process of GPR137 in controlling the growth and 
apoptosis of cancer cells, thereby suggesting that it is a potential oncogene in cancers such as hepatocellular carcinoma 
and pancreatic cancer.

Ovarian Cancer
The reproductive system cancer is a significant contributor to mortality due to cancer among women, because of its lack 
of specificity, most patients with ovarian cancer are diagnosed at an advanced stage.93 Current treatment modalities for 
ovarian cancer encompass surgical intervention, radiation therapy, and chemotherapy.94 Despite this, it is still important 
to point out, after surgery many patients will relapse or become resistant to chemotherapy drugs.95,96 Therefore, 
identifying effective therapeutic targets has become a prominent focus with expertise in ovarian cancer treatment. 
Zhang et al15 devised a series of studies to elucidate the function of GPR137 in regulating the development of ovarian 
cancer and spread to other parts of the body. They investigated the gene expression of GPR137 in ovarian cancer tissue 
samples and demonstrated its high expression levels in clinical samples. Subsequently, they performed knockdown 
experiments targeting the GPR137 gene in two cell lines of this tumor, SKOV3 and OVCAR3. In the results, it was found 
that in SKOV3 and OVCAR3 cells, knocking down GPR137 caused different degrees of limitations of cell activity, 
migration ability and invasion. Flow cytometry analysis further revealed that the number of cells in the G2/M phase 
decreased substantially and an increase in the population of cells in the S phase after knocking down GPR137 in SKOV3 
cells. In summary, these observations suggest that the knockdown of GPR137 effectively reduces the cell proliferation 
rate and clone-forming ability and inhibits xenograft tumor formation from SKOV3 and OVCAR3 cells. Additionally, the 
researchers observed the occurrence of transition from epithelium to mesenchyme (EMT) in NC or cells lacking 
GPR137. The findings demonstrated that following the knockout of GPR137 in SKOV3 and OVCAR3 cells, mesench-
ymal markers Snail, N-cadherin, and Vimentin expression continuously declined, while it was found that epithelial 
marker E-cadherin was expressed at higher levels. An immunofluorescence analysis targeting Vimentin confirmed 
a strong staining takes place in the cytoplasm and nucleus of SKOV3 cells that have been treated with NC, and cells 
treated with shRNA exhibited reduced intensity and lower levels of Vimentin expression. Conversely, E-calmodulin 
expression increased in shRNA-treated cells but was barely detectable in NC-treated cells. Based on these results, it 
appears that the knockdown of the GPR137 gene led to a reversal of EMT. Furthermore, an investigation into the 
signaling pathway associated with GPR137 gene action revealed its promotion of PI3K/AKT activation within the 
population of individuals with ovarian cancer. Thus, it is suggested the PI3K/AKT pathway may represent a potential 
mechanism by which GPR137 functions the development of reproductive system cancer. These findings offer novel 
insights into potential strategies aimed at preventing and treating ovarian cancer.

Medulloblastoma
There has been evidence that GPR137 is expressed in the nervous system, indicating that as part of the nervous system, it 
takes part in a wide range of processes linked to physiological and pathological changes. According to the evidence 
provided by Zong et al,21 proliferation of glioma cells is regulated by GPR137, and the inhibition of GPR137 expression 
leads to reduced colony growth and proliferation. Wang et al66 probed the roles and responsibilities of GPR137 in 
medulloblastoma by employing knockdown techniques in medulloblastoma cell line of Daoy cells. The experimental 
findings demonstrated that silencing GPR137 considerably inhibited cell proliferation and colony formation in Daoy 
cells. Based on flow cytometry, when GPR137 expression was knocked down, the percentage of cells in the G0/G1 phase 
increased, while the proportion of cells in the S phase exhibited a significant decrease. Moreover, there was a notable 
elevation in sub-G1 phase cells indicative of apoptotic cells following GPR137 knockdown in Daoy cells. Upon double 
staining with annexin V-APC/7-AAD, silencing GPR137 gene expression led to robust pro-apoptotic effects in Daoy 
cells. Therefore, we suggest that inhibition of GPR137 gene expression may hinder medulloblastoma cell growth and 
survival by reversing cell cycle progression and inducing arrest in the G0/G1 phase and enhancing apoptosis.
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Other Malignancies
Moreover, GPR137 has been extensively investigated across various cancer types. For instance, an increasing expression 
of ALKBH1 (AlkB homologue 1) was ascertained in renal cancer tissues, which was associated with the expression of 
GPR137.67 Based on earlier research, the aberrant expression of ALKBH1 has been linked to various malignant tumors 
such as gastric cancer,97 hepatocellular carcinoma,98 lung cancer99 and head and neck cancer.100 According to the study 
by Li et al, elevated ALKBH1 expression is involved with malignant features of renal cancer cells, including enhanced 
cell proliferation, migratory and invasion movements. Investigations of mechanisms further revealed that ALKBH1 
regulates the expression of GPR137 through m6A-dependent mRNA demethylation. Specifically, ALKBH1 reduces the 
m6A level of GPR137 in renal cancer cells, which resulted in upregulation of GPR137 mRNA and protein levels, and 
thus enhanced the physiological activities of renal carcinoma cells. Conversely, the inhibition of GPR137 effectively 
attenuated the ALKBH1-induced malignant transformation in renal cancer cells. Another example is the study of 
GPR137 within the neural system by Kensuke Iwahara et al, which showed that down-regulation of the GPR137 gene 
promotes Neuro2a cell proliferation and impedes the process of neuronal differentiation. These results indicate that 
GPR137 has a substantial impact on regulating neuronal differentiation and the cessation of cell cycle in nerve cells.101 

The authors speculate that the differential effects of GPR137 observed between tumors and neuronal cells may stem from 
differences in GPR137-mediated signaling pathways. Ren et al58 researched the function of GPR137 in prostate cancer. 
According to the demonstration, the level of GPR137 expression is elevated in prostate cancer tissues, and by targeted 
silencing the GPR137 gene, prostate cancer PC-3 and DU145 cells are efficaciously prevented from proliferating and 
colonizing, inducing a halt in the cell cycle at the G0/G1 phase. Suppression of GPR137 gene expression in prostate 
cancer cells caused a downregulation of snail1 and slug, while an upregulation of E-cadherin, which inhibits the 
migration and invasion of prostate cancer cells. The results highlight the oncogenic function of GPR137 in prostate 
cancer pathogenesis, indicating its potential to be a therapeutic target for advanced diseases.

Discussion
The G protein-coupled receptor family is the largest family of cell surface molecules involved in signaling identified to 
date. The family has a large number of members, accounting for more than 2% of the total number of genes encoded in 
the human genome.25 These receptors are involved in the regulation of many key physiological functions, such as 
contraction and diastole of smooth and cardiac muscle, neurotransmitter release and blood pressure regulation.102 

Smoothened, for example, is a member of the G protein-coupled receptor (GPCR) frizzled (FzD) class. Smoothened 
has an extracellular cysteine-rich domain (CRD), which is involved in the regulation of the Hedgehog signaling 
pathway.103 Similarly, GPCRs are expressed in proliferating cells versus differentiated mitotic cells and are involved 
in important physiological processes such as embryogenesis, normal cell growth, angiogenesis and tissue repair and 
remodeling.104,105 Overexpression of GPCRs can lead to disruption of physiological processes and thus cause diseases 
such as inflammation and even tumors.106,107 In fact, numerous basic studies have confirmed that many GPCRs are 
overexpressed in various types of cancers.107 When GPCRs are activated by ligands, tumor cells will hijack their normal 
physiological functions, proliferate autonomously, evade immune detection, and thus invade surrounding tissues and 
organs or undergo distant metastasis. GPCRs are also targets of key mediators of inflammation,25 and Marco De 
Giovanni108 found that the G protein-coupled receptor, GPR35, is up-regulated in activated neutrophils and can act as 
a pro-migratory and pro-adhesion receptor in mobilized neutrophils, thus promoting inflammation. GPR35 is upregulated 
in activated neutrophils and can function as a pro-migratory and pro-adhesion receptor in mobilized neutrophils to 
promote neutrophil recruitment to inflammatory sites.

As a member of GPCRs, GPR137 has been increasingly studied in recent years. In this paper, we reviewed the 
progress of GPR137 in malignant tumors, which are overexpressed in various types of malignant tumors, such as 
hepatocellular carcinoma and pancreatic cancer.12,13 Knockdown of GPR137 expression by shRNA can effectively 
inhibit tumor cell proliferation, migration, and invasion, and significantly increase the rate of apoptosis of tumor cells. 
However, there are still serious shortcomings in the current research on GPR137. Firstly, GPR137 has a trans-lysosomal 
membrane signaling function,60 which can regulate the localization and activity of Rag and mTORC1,14 and it should be 
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involved in the occurrence of neurodegeneration, diabetes mellitus, and many other diseases.61,62 However, the current 
research on this gene is mostly limited to malignant tumors, and its mechanism of action in various malignant tumors has 
not been confirmed. Secondly, most of the studies on this gene still remain at the level of in vitro cellular experiments, 
without further in vivo experiments and clinical trials. As a next step, we should strengthen the research on GPR137, 
verify the specific signaling pathway of GPR137 in inflammation or malignant tumors through a series of basic 
experimental techniques, establish in vivo experimental models, and carry out clinical trials or drug tests at an early 
date, so as to use the results of the research in the clinic and serve the clinic.

Conclusion
Malignant tumors have long been a major concern for human well-being and survival. While the concept of prevention 
and modern medical technologies have helped people avoid suffering and death from certain types of cancer, effective 
diagnostic and therapeutic options are still needed for those who already have the disease. GPR137, a ubiquitously 
expressed orphan GPCR gene, has shown encouraging discoveries in a variety of cancer studies, and may be a potential 
therapeutic target. Future studies should focus on the molecular mechanisms of GPR137 in tumors or other diseases, 
especially the downstream signaling pathways (eg, PI3K/AKT, MAPK, etc.) that it regulates. Screening proteins 
interacting with GPR137 to reveal its functional network in cells. Explore the regulatory role of miRNAs, lncRNAs 
and other non-coding RNAs on GPR137 and monitor the dynamic changes of GPR137 expression in disease progression 
and assess its potential as a marker for dynamic monitoring. Early screening or design of small molecule inhibitors or 
agonists targeting GPR137 and use the research results targeting GPR137 in the clinic to provide patients with more 
effective and safer individualized therapeutic strategies.
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