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Background: This study aimed to establish an immune-glycolysis-related prognostic signature (IGRPS) to predict hepatocellular 
carcinoma (HCC) outcomes. Additionally, it explored the role of this signature in the tumor immune microenvironment (TIME), 
glycolytic pathways, and immunotherapy.
Methods: We analyzed RNA-seq, single-cell sequencing, and immune- and glycolysis-related gene datasets from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Using weighted gene co-expression network analysis (WGCNA), 
F-test, and Cox regression, we identified key survival-related immune and glycolytic genes (SRIGRGs) and developed an IGRPS 
through multivariate Cox regression. The IGRPS’s predictive performance was validated in training and validation cohorts using 
Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, and a prognostic nomogram. Its correlation with 
TIME and its ability to predict immunotherapy outcomes were also assessed. In vitro experiments were conducted to analyze the 
expression and function of IGRPS genes in HCC.
Results: Thirteen SRIGRGs were identified for constructing the IGRPS. Patients with low-risk scores had significantly longer survival 
times. The area under the curve (AUC) for ROC curves was over 0.73 for training and 0.7 for validation cohorts, with C-indices of 
0.721 and 0.79, respectively. IGRPS was confirmed as an independent prognostic indicator. Patients in the low-risk group showed 
better responses to combined anti-CTLA4 and anti-PD-1 therapies. In vitro experiments indicated that PRKAG1 and B3GAT3 were 
upregulated, enhancing glycolysis and promoting HCC cell proliferation and migration.
Conclusion: The IGRPS, based on immune- and glycolysis-related genes, effectively predicted prognosis and immunotherapy 
responses in HCC patients.
Keywords: HCC, glycolysis, tumor immune microenvironment, prognostic, immunotherapy

Introduction
Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related mortality, contributing to approxi-
mately 8.3% of all cancer deaths globally.1 In recent years, advancements in alternative therapies and immunotherapy 
have brought hope for improving the prognosis of HCC patients. For instance, metabolic reprogramming and targeted 
inhibition of key signaling pathways have emerged as potential strategies to overcome treatment resistance and enhance 
survival rates.2 Immunotherapy, particularly immune checkpoint inhibitors (ICIs) such as anti-PD-1 and anti-CTLA-4, 
has transformed the treatment landscape for HCC by enhancing anti-tumor immune responses.3 However, the prognosis 
for HCC remains bleak, particularly for patients in advanced stages, where the median survival is less than 1 year.4 This 
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grim outlook underscores the urgent need for reliable prognostic biomarkers to more accurately predict clinical outcomes, 
enable personalized treatment approaches, and ultimately improve patient survival rates.

One of the defining characteristics of tumors, including HCC, is an increase in glycolysis, heightened lactate 
production, and disruption of the tumor immune microenvironment (TIME). Tumor cells often exhibit elevated glycolytic 
activity, relying heavily on glycolysis for energy production even in the presence of oxygen, a phenomenon known as the 
Warburg effect.5 This metabolic shift results in the generation of substantial amounts of lactic acid, which accumulates 
and leads to the acidification of the TIME. Such acidification creates a conducive environment for tumor cells to evade 
immune detection and attack.6 In recent years, research has increasingly focused on regulating TIME by manipulating 
glycolysis and enhancing lactate production, positioning this as a promising area for developing novel therapeutic 
strategies. Studies have shown that the overexpression of key glycolytic enzymes (HK2, PKM2, and LDHA) in HCC 
is closely associated with tumor malignancy and poor prognosis.7 Immunosuppressive cells, including tumor-associated 
macrophages (TAMs), regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs), extensively infiltrate 
the HCC microenvironment. They suppress anti-tumor immune responses by secreting immunosuppressive cytokines 
(TGF-β, IL-10) and expressing immune checkpoint molecules (PD-L1).8 Additionally, lactate produced by HCC cells 
through glycolysis can drive the M2 polarization of TAMs by activating the MCT-HIF1-α pathway, or directly inhibit the 
function of cytotoxic T cells (CTLs) and natural killer (NK) cells, further weakening the immune system’s anti-tumor 
capabilities.9 A diagram was plotted to illustrate the recognized pathways related to immunity and glycolysis in HCC 
(Supplementary Figure 1). Nonetheless, the complex biochemical and molecular mechanisms governing the Warburg 
effect within the TIME of HCC demand further investigation into immune- and glycolysis-related genes.

In this study, the characteristic gene set of HCC was identified using weighted gene co-expression network analysis 
(WGCNA). By intersecting the immune-related gene set, glycolytic gene set, and HCC characteristic gene set, a total of 
196 immune and glycolytic-related genes (IGRGs) ere obtained. These 196 IGRGs underwent further screening, and 
ultimately, 13 key survival-related immune and glycolytic-related genes (SRIGRGs) were identified through 
a combination of F-test, univariate Cox regression, and Lasso regression analysis. An immune-glycolysis-related 
prognostic signature (IGRPS) was then constructed and validated in both the training and validation cohorts. The Kaplan- 
Meier (K-M) survival curves, time-dependent receiver operating characteristic (ROC) curves, and the concordance index 
(C-index) of the prognostic nomogram demonstrated excellent performance in both cohorts, highlighting the superior 
predictive capability of the IGRPS. Gene set enrichment analysis (GSEA) revealed significant differences in multiple 
biological processes and pathways between the high- and low-risk groups. TIME analysis showed that the infiltration of 
immune cells, such as activated dendritic cells (DCs), mast cells, and natural killer (NK) cells, along with various 
immune-related functions, differed significantly between these groups. Further analyses examined the association 
between the risk score and clinical features, immune subtypes, glycolysis profiles, immune escape potential, and response 
to immunotherapy. Finally, the expression levels and functional roles of the genes within the IGRPS were validated 
through in vitro experiments. In summary, we constructed a valuable prognostic model based on IGRPS and explored the 
relationship of the model with TIME which might provide insights for physicians to develop personalized treatment 
strategies for HCC patients.

Materials and Methods
Data Acquisition
RNA-seq data, clinical information, and gene mutation profiles for 424 samples, including 374 hCC specimens and 50 
adjacent non-tumor tissue samples, were acquired from The Cancer Genome Atlas (TCGA) database (https://www. 
cancer.gov/tcga). The mRNA transcriptomic data (GSE76427) and corresponding clinical data for 167 matched pairs of 
HCC and adjacent tissues were sourced from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/).10 Additionally, single-cell sequencing datasets GSE175793, comprising three HCC specimens and three non- 
tumor tissue samples, were also obtained. All data followed strict screening criteria: a) samples with a missing data rate 
exceeding 20% were excluded, b) HCC samples without prior chemotherapy or radiotherapy were selected. The TCGA 
cohort served as the training group, while the GEO cohort was used as the validation group to construct the prognostic 
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model. Lists of immune-related genes were retrieved from the ImmPort (https://www.immport.org/resources), InnateDB 
(https://www.innatedb.ca/), and GSEA Molecular Signatures databases (https://www.gsea-msigdb.org/gsea/msigdb). 
Concurrently, a gene set associated with glycolysis was identified from the GSEA Molecular Signatures database.

Identification of HCC IGRGs
Characteristic genes of HCC were identified using WGCNA in the TCGA cohort. First, we calculated the network 
properties, fit indices (R²), and average connectivity for each soft threshold (β=1 to 20). The β value with R² above 0.8 
and moderate average connectivity density was selected as the optimal soft-thresholding power value. A scale-free co- 
expression network was constructed based on the optimal soft-thresholding power value, which was then converted into 
an adjacency matrix and a topological overlap matrix (TOM). Pearson correlation analysis was used to integrate disease 
traits with gene modules, and it was found that the disease trait-gene module correlation exhibited minimal variation 
under the optimal soft threshold, indicating high stability. HCC characteristic modules were defined based on 
a correlation coefficient greater than 0.09 and a P-value less than 0.05. Genes from these characteristic modules 
were extracted and classified as HCC characteristic genes. Finally, IGRGs were identified by taking the intersection of 
the HCC characteristic gene set, the immune-related gene set, and the glycolytic-related gene set.

F-Test, Univariate Cox Regression, and Lasso Regression Analyses
IGRGs with scores exceeding 60 were initially selected using an F-test and subsequently analyzed with Univariate Cox 
regression to identify SRIGRGs. The results were visualized in a forest plot. To further refine the selection and prevent 
overfitting, Lasso regression was employed. Using a 10-fold cross-validation approach to minimize the risk of overfitting, 
the genes associated with the optimal λ value were selected. This stepwise screening process, incorporating F-test, 
Univariate Cox regression, and Lasso regression, enabled the identification of crucial SRIGRGs critical for constructing 
the predictive model.

Construction of IGRPS
Multivariate Cox regression was performed to construct IGRPS in the training group. The risk score of each patient was 
calculated as follows: risk score = gene A expression × gene A regression coefficient + gene B expression × gene 
B regression coefficient +. + Gene N expression × gene N regression coefficient. The accuracy of the model was verified 
in the validation group. The “survminer” and “survival” R packages were then applied to obtain the median value of the 
risk score, which was used to divide HCC patients into high-risk and low-risk groups.

The Predictive Value and Clinical Efficacy of IGRPS
The prognostic value of the IGRPS was evaluated and validated in both the training and validation groups. K-M survival 
curves, time-dependent ROC curves, and a prognostic nomogram were generated using the “maxstat”, “survival”, and 
“pROC” R packages. Additionally, the nomogram was constructed with the “rms” and “survivalROC” packages to 
further assess the model’s predictive accuracy. Finally, both univariate and multivariate Cox regression analyses were 
conducted to determine whether the risk scores could serve as independent prognostic and predictive factors for HCC.

Correlation Analysis of Risk Score with Clinical Features, Immune Subtypes, and 
Glycolysis Profiles
The “ComplexHeatmap” package was utilized to analyze the correlation between the risk score and various clinical 
features, including age, gender, tumor grade, clinical stage, and TNM stage. The “RColorBrewer” package was employed 
to investigate the association between the risk score and different immune subtypes. Additionally, glucose transporters 
and essential kinases (glycolysis-related genes) that encode and directly regulate cellular glycolysis were identified from 
previous studies.11 The differential expression of these glycolysis-related genes between high-risk and low-risk groups 
was then analyzed to further understand their roles in the prognosis of HCC.
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GSEA and Genomic Stability Analysis
To explore the potential molecular mechanisms of IGRGs in HCC, GSEA was conducted to identify the relevant 
functions and pathways. The top five pathways most closely associated with the risk score were selected and visualized 
to provide insights into their biological significance. Additionally, genetic mutation data of HCC samples were obtained 
from the TCGA database. The “maftools” R package was used to analyze and visualize the genetic mutation profiles in 
the high-risk and low-risk groups, allowing for a comprehensive comparison of mutation patterns between these groups.

TIME Analysis
The single-sample gene set enrichment analysis (ssGSEA) algorithm was employed to compute the relative infiltration 
abundance of 16 types of immune cells in each sample. The differences in immune cell infiltration between the high-risk 
and low-risk groups were visualized using a boxplot. Immune cells associated with overall survival (OS) were identified 
using the “limma”, “survival”, and “survminer” R packages, and their significance was visualized through K-M survival 
curves. To analyze differences in immune-related functions between the high-risk and low-risk groups, the 
“CIBERSORT”, “limma”, “reshape2”, and “ggpubr” packages were applied. Additionally, the correlation between the 
risk score and Stromal scores, Immune scores, and ESTIMATE scores was assessed using the “ESTIMATE” package.

Furthermore, the glycolytic metabolic pathway reshapes the local TIME. Immune cells such as γδ T cells undergo 
metabolic reprogramming to trigger metabolic adaptation, meeting their own needs and exerting immunosuppressive 
effects.12 Immune cell infiltration related to the IGRPS and the expression levels of IGRPS genes in γδ T cells was 
analyzed using single-cell sequencing data. The GSE175793 dataset was normalized, and high-variance genes were 
selected with the “Seurat” R package. Dimensionality reduction was performed through principal component analysis 
(PCA) and visualized using the uniform manifold approximation and projection (UMAP) method. Cell clustering was 
then conducted using the “FindNeighbors” and “FindClusters” functions. The “FindAllMarkers” function was utilized to 
identify marker genes for each cell cluster. Finally, cell types were automatically annotated using the “SingleR” package, 
based on reference transcriptome data.

Validation of Immunotherapy Response
Immunophenotype scores (IPS) for 378 hCC patients were obtained from The Cancer Immunome Atlas (TCIA) (https:// 
www.tcia.at/home). The “ggpubr” R package was used to analyze the differential efficacy of anti-CTLA-4, anti-PD-1 
monotherapies, and their combination therapy between high-risk and low-risk groups. Additionally, clinical data, 
molecular characteristics, and survival data of patients treated with different immunotherapy regimens were sourced 
from the IMvigor 210 database (https://github.com/ixxmu/mp_duty/issues/4275). The “limma” and “ggpubr” packages 
were utilized to evaluate the effectiveness of these immunotherapies.

Moreover, Tumor Immune Dysfunction and Exclusion (TIDE) data for HCC were downloaded from the TIDE 
database (http://tide.dfci.harvard.edu/). The “limma” and “ggpubr” packages were applied to investigate the association 
between the risk score and various TIDE components, including dysfunction, exclusion, microsatellite instability, and 
overall TIDE score. Finally, the tumor mutation burden (TMB) for each sample was calculated, and differences between 
high-risk and low-risk groups were compared. The correlation between TMB and risk scores was also analyzed to 
provide further insights into the impact of mutational load on prognostic outcomes and immunotherapy response in HCC.

Validation of Expression Levels of IGRGs
The differential expression of IGRGs was assessed between HCC and adjacent non-tumor tissues, as well as between 
high-risk and low-risk groups. The “ggpubr” and “ggExtra” packages were employed to analyze the correlation between 
the expression of IGRGs and the risk scores. The “pROC” package was utilized to construct ROC curves to determine 
the diagnostic value of each IGRG.

A total of 15 paired HCC and adjacent non-tumor tissues were collected from patients in the Department of 
Hepatobiliary Surgery at Shandong University Qilu Hospital. This study adhered strictly to the principles outlined in 
the Declaration of Helsinki, with ethical approval granted by the Ethics Committee of Shandong University Qilu 
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Hospital. Informed consent was obtained from all patients prior to surgery. The expression levels of IGRPS genes at both 
the mRNA and protein levels were evaluated using reverse transcription-quantitative polymerase chain reaction (RT- 
qPCR) and immunohistochemistry (IHC), respectively.

Cell Culture and Transfection
Human HCC cell lines, Bel-7402 (No.C6109) and Huh-7 (No.SCSP-526), were obtained from the Cell Bank of the 
Chinese Academy of Sciences. Bel-7402 cells were cultured in RPMI-1640 (Solarbio, No.11875) medium supplemented 
with 10% fetal bovine serum (FBS) (Solarbio, No.S9030) and 1% penicillin-streptomycin (Solarbio, No.P1410), while 
Huh-7 cells were maintained in DMEM (Solarbio, No.11965) with the same supplements (10% FBS and 1% penicillin- 
streptomycin). All cell lines were maintained at 37°C in a humidified atmosphere containing 5% CO2. Small interfering 
RNA (siRNA) (Beijing SyngenTech) transfections were conducted using Lipofectamine 3000 (Solarbio, No.L3000008).

Determination of Glucose Consumption, ATP, Lactic Dehydrogenase Activity, Lactate, 
and Extracellular Acidification Rate (ECAR) in HCC Cells
Bel-7402 and Huh-7 cell lines (5×105 cells/well) were cultured in 96-well plates (Servicebio, No.KB-96U20-L) and 
transfected with either negative control siRNA (NC-siRNA) or specific siRNAs targeting PRKAG1 and B3GAT3. Once 
the cells reached 80% confluence, the cell supernatant was collected for further analysis. The levels of glucose 
consumption, ATP, lactate dehydrogenase activity, and lactate were measured using a glucose consumption detection 
kit (Abbkine, No.KTB1300), an ATP detection kit (Abbkine, No.KTB1016), a lactate dehydrogenase activity detection 
kit (Abbkine, No.KTB1110), and a lactate detection kit (Abbkine, No.KTB1100), respectively. Additionally, the ECAR 
was assessed using the Seahorse XFe96 Flux Analyzer to evaluate glycolytic activity.

Cell Proliferation and Migration Ability Assays
Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay (Abbkine, No.KTA1020). Bel-7402 and 
Huh-7 cell lines were seeded into 96-well plates at a density of 2000 cells per well and transfected with either NC-siRNA 
or specific siRNAs targeting PRKAG1 (siRNA1, 2) and B3GAT3 (siRNA1, 2). The experiment included nine groups for 
each cell line: NC-siRNA, PRKAG1 siRNA1, PRKAG1 siRNA2, B3GAT3 siRNA1, B3GAT3 siRNA2, lactate added to 
NC-siRNA, lactate added to PRKAG1 siRNA1, lactate (Servicebio, No.GM3029) added to PRKAG1 siRNA2, and 
2-deoxy-D-glucose (2-DG) (Solarbio, No.D8930) added to NC-siRNA or siRNA1, 2. After culturing for various time 
points, CCK-8 reagent was added to each well. Absorbance was measured at a wavelength of 450 nm using a microplate 
reader (BioTek), and cell viability was determined based on the optical density (OD) values.

For the migration assay, cells were seeded in the upper chamber of a 24-well Transwell plate with an 8-μm porous 
polycarbonate membrane (Servicebio, No.WG3422) at a density of 1×105 cells per well. The upper chamber was filled 
with medium without FBS, while the lower chamber contained medium supplemented with 10% FBS. The experiment 
was designed with the same nine groups for each cell line as in the proliferation assay. After incubation, cells that had 
migrated to the lower chamber were fixed and stained. The number of migrating cells was then counted under an inverted 
microscope (Thermo Fisher Scientific) to assess the migration capability of each group.

In the scratch assay, cells were seeded onto a 6-well plate (Servicebio, No.CCP-6H) and cultured for 24 hours to 
allow them to adhere to the surface. A sterile 200-µL pipette tip was then used to create a straight scratch through the 
middle of the cell monolayer, ensuring that the width of the scratch was as uniform as possible. Images of the scratched 
area were captured using an inverted microscope at the start of the experiment (0 hours) and after 24 hours of incubation 
to assess cell migration into the scratch area.

Immunofluorescence (IF) was performed to evaluate the proliferative capacity of HCC cells at the protein level. The 
cells were fixed, permeabilized, and blocked to prepare for staining. An anti-Ki-67 antibody (Proteintech Group, 
No.27309-1-AP) was added to the cells, and they were incubated overnight to detect the proliferation marker. The 
following day, a fluorescently labeled secondary antibody was applied and incubated for 1 hour. Finally, the cells were 
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mounted with a mounting medium and observed under a fluorescence microscope to capture images, which were used to 
assess the expression of Ki-67 as an indicator of cell proliferation.

Statistical Analysis
All statistical analyses were conducted using R version 4.3.1 and GraphPad Prism version 8.0. Differences between 
groups were evaluated using either a one-way analysis of variance (ANOVA) or a T-test, where appropriate. A p-value of 
less than 0.05 (P<0.05) was considered statistically significant.

Results
Screening of IGRGs
Eleven distinct HCC characteristic modules were identified using WGCNA, from which 4016 hCC characteristic genes 
were extracted (Figure 1A-C). A total of 11,429 immune-related genes were downloaded from the ImmPort, InnateDB, 
and GSEA Molecular Signatures databases, while 930 glycolytic-related genes were obtained from the GSEA Molecular 
Signatures database. The intersection of these three gene sets yielded 196 IGRGs (Figure 1D).

Additionally, 28 genes with scores greater than 60 were identified using the F-test (Supplementary Table 1). From 
these, 24 SRIGRGs were found to be associated with prognosis through univariate Cox regression analysis (Figure 1E). 
The K-M survival curves of these SRIGRGs are presented in Supplementary Figure 2. Lasso regression analysis, 
utilizing an optimal λ value of 13, further narrowed down the critical genes to ALDH2, PCK1, FBP1, AAAS, 
GMPPA, PRKAG1, PSMC4, HAX1, ADH1A, EIF6, B3GAT3, BPGM, and HSPA5 (Figure 1F and G).

Establishment of IGRPS
Multivariate Cox regression analysis was conducted to develop a prognostic signature based on three key SRIGRGs 
(ALDH2, PRKAG1, and B3GAT3) within the training group. The risk score for each patient was calculated using the 
following formula:

The positive regression coefficients of PRKAG1 and B3GAT3, as well as their hazard ratios (HR) greater than 1 in the 
univariate Cox analysis, suggested that these genes might function as oncogenic drivers in HCC. In contrast, ALDH2, 
with a negative coefficient, appeared to act as a protective factor (Figure 1E).

Validation of Predictive Value and Clinical Efficacy of IGRPS
Patients in the training group were categorized into high-risk and low-risk groups based on the median risk score. 
K-M survival analysis revealed that OS was significantly longer for patients in the low-risk group compared to those in 
the high-risk group, in both the training and validation cohorts (Figure 2A and B). The area under the curve (AUC) values 
for both the training and validation groups exceeded 0.7, indicating good prognostic performance (Figure 2C and D).

Additionally, univariate and multivariate Cox regression analyses were conducted using the training group data. The 
univariate Cox analysis indicated that both clinical stage (HR = 1.680, P < 0.001) and risk score (HR = 1.893, P < 0.001) 
were independently associated with OS. In multivariate Cox analysis, the risk score remained an independent predictor of 
survival for HCC (HR = 1.675, P < 0.001) (Figure 2E and F). These findings confirmed that the IGRPS was an 
independent prognostic factor for HCC.

The IGRPS prognostic nomogram further demonstrated strong predictive performance, with a C-index of 0.73 for the 
training group (95% CI: 0.67–0.79, P = 7.58e-13). Calibration curves indicated that the nomogram had moderate accuracy 
in predicting outcomes (Figure 2G and H). Overall, these results validated the excellent predictive value of the IGRPS.

Finally, we developed a prognostic prediction website for HCC (https://xever.shinyapps.io/hcc_igrps/), named the 
HCC IGRPS Model, to enhance the clinical applicability of this model. By inputting the expression data of ALDH2, 
PRKAG1, and B3GAT3, the website can predict the prognostic risk for the person.
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Figure 1 Identification of 13 key SRIGRGs. (A-C) HCC characteristic genes were screened by WGCNA. The optimal power value was 7, the color depth in Figure 
C represented the correlation, and the numbers in brackets were p-values. (D) 196 IGRGs were obtained from the intersection of the HCC characteristic gene set, 
immune-related gene set, and glycolytic gene set. (E) 24 SRIGRGs were obtained by univariate Cox regression. (F and G) Lasso regression selected the optimal λ value 13 
and obtained 13 key SRIGRGs.

Journal of Hepatocellular Carcinoma 2025:12                                                                                    https://doi.org/10.2147/JHC.S510460                                                                                                                                                                                                                                                                                                                                                                                                    811

Zhang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Association of Risk Score with Clinical Features, Immune Subtypes, and Glycolysis 
Profiles
The results demonstrated that the risk score was significantly associated with tumor grade, clinical stage, and T stage. 
Patients in the low-risk group were predominantly found in Grade 1, Grade 2, Stage I, and T1, whereas those in the high-risk 
group were mainly concentrated in Grade 3, Grade 4, Stage II, Stage III, T2, T3, and T4 (Supplementary Figure 3A-D). 
Furthermore, a significant correlation was observed between the risk score and immune subtypes; the low-risk group was 
primarily composed of C3 and C4 subtypes, while the high-risk group was mainly composed of C1 and C2 subtypes 
(Supplementary Figure 3E). Analysis of the glycolysis profile revealed that the expression levels of glycolysis-related genes 
were higher in the high-risk group compared to the low-risk group, indicating that glycolytic activity increased with the risk 
score (Supplementary Figure 3F and G).

Figure 2 Validation of IGRPS. (A and B) Survival curves of the training group and the verification group. (C and D) 1, 3, and 5-year time-ROC curves for the training and 
validation groups. (E and F) Univariate and multivariate Cox analysis confirmed that IGRPS was an independent predictor and prognostic factor of HCC. (G and H) 
Prognostic nomograms and calibration curves for the training group.
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GSEA and Genomic Stability Analysis
The GSEA results showed distinct pathway enrichment patterns between the high-risk and low-risk groups in both the 
GO and KEGG datasets. In the GO dataset, the high-risk group was significantly associated with pathways related to 
B cell-mediated immunity, complement activation, digestion, humoral immune response mediated by circulating immu-
noglobulins, and immunoglobulin complexes. Conversely, the low-risk group was linked to processes such as drug 
catabolic process, drug metabolic process, aromatase activity, oxidoreductase activity acting on paired donors with 
incorporation, and steroid hydroxylase activity.

In the KEGG dataset, the high-risk group showed significant enrichment in pathways related to cell cycle, cytokine-cytokine 
receptor interaction, ECM-receptor interaction, hematopoietic cell lineage, and neuroactive ligand-receptor interaction. In 
contrast, the low-risk group was significantly enriched in pathways such as drug metabolism-cytochrome P450, fatty acid 
metabolism, metabolism of xenobiotics by cytochrome P450, primary bile acid biosynthesis, and retinol metabolism 
(Supplementary Figure 4A-D). The gene mutation analysis revealed that TP53 had the highest mutation rate in the high-risk 
group, whereas CTNNB1 exhibited the highest mutation rate in the low-risk group (Supplementary Figure 4E and F).

The Relationship of Risk Score with TIME
Immune cell infiltration analysis showed that the levels of activated DCs, immature DCs, macrophages, T follicular helper 
cells, and Tregs were significantly higher in the high-risk group compared to the low-risk group. Additionally, antigen- 
presenting cell co-stimulation and MHC class I activities were more prominent in the high-risk group. Conversely, mast 
cells, NK cells, and Type II IFN response were more abundant in the low-risk group (Figure 3A and B). Furthermore, the 
infiltration levels of naive B cells, M0 macrophages, M2 macrophages, CD8+ T cells, and T follicular helper cells were 
significantly correlated with OS (Figure 3C-G). The risk score was also found to be negatively correlated with Stromal 
scores, Immune scores, and ESTIMATE scores (Figure 3H-J).

Single-cell analysis revealed that cells from three normal and three HCC tissues in the GSE175793 cohorts were 
grouped into 17 distinct clusters. These clusters mainly consisted of six cell types: γδ T cells, B cells, myeloid cells, 
endothelial cells, epithelial cells, and hepatocytes (Supplementary Figure 5A and B). Notably, among the six cell types, 
the differential expression of PRKAG1 and B3GAT3 between normal and HCC tissues was most pronounced in γδ 
T cells (Supplementary Figure 5C and D).

Analysis and Validation of IGRPS Immunotherapy
When comparing the efficacy of two immune checkpoint inhibitors (ICIs: anti-CTLA4 and anti-PD-1) between the high-risk 
and low-risk groups, the results demonstrated that the low-risk group experienced better outcomes with combined anti-CTLA4 
and anti-PD-1 treatment compared to the high-risk group. However, there were no significant differences in efficacy between 
the two groups when treated with anti-CTLA-4 alone or anti-PD-1 alone (Figure 4A-C). Validation using the IMvigor210 
cohort further indicated that patients who responded to immunotherapy had a lower risk score than those who did not, 
suggesting that patients in the low-risk group were more likely to benefit from immunotherapy (Figure 4D).

Additionally, the results revealed a significant negative correlation between TMB and risk score, with patients in the 
high-risk group exhibiting lower TMB (Figure 4E and F). Analysis of the relationship between risk score and immune 
escape showed that T-cell dysfunction, T-cell exclusion, microsatellite instability, and TIDE scores were all higher in the 
high-risk group than in the low-risk group. This indicated a higher likelihood of immune escape and poorer response to 
immunotherapy in the high-risk group (Figure 4G-J). Collectively, these findings confirmed the sensitivity and utility of 
the IGRPS model in evaluating the efficacy of immunotherapy for HCC patients.

Validation of IGRPS Gene Expression
Differential expression analysis revealed that the expression levels of IGRPS genes PRKAG1 and B3GAT3 were higher in the 
high-risk and tumor groups compared to the low-risk and normal groups, while the expression of ALDH2 showed the opposite 
trend (Figure 5A and B). Correlation analysis further demonstrated that the expression levels of PRKAG1 and B3GAT3 were 
significantly positively correlated with the risk score, whereas ALDH2 expression was negatively correlated (Figure 5C).
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Moreover, the diagnostic ROC curve analysis showed that the AUC values for PRKAG1, B3GAT3, and ALDH2 were 
0.86 (95% CI: 0.89–0.82), 0.80 (95% CI: 0.85–0.76), and 0.62 (95% CI: 0.67–0.57), respectively, indicating their 
potential diagnostic value (Figure 5D). Finally, the results from RT-qPCR and IHC confirmed that the expressions of 

Figure 3 TIME analysis. (A) The difference in immune cell infiltration between high-risk and low-risk groups. (B) Differences in immune-related functions between high-risk 
and low-risk groups. (C-G) Immune cells associated with HCC survival. (H-J) Differences in Stromal scores, Immune scores, and ESTIMATE scores between high-risk and 
low-risk groups. *: P<0.05; **: P<0.01; ***: P<0.001.
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PRKAG1 and B3GAT3 at the mRNA and protein levels were upregulated in HCC tissues, while ALDH2 was down-
regulated, aligning with the bioinformatics findings (Figure 5E and F).

PRKAG1 and B3GAT3 Induce HCC Cell Proliferation and Migration by Enhancing the 
Glycolytic Capacity of HCC Cells
Depletion of PRKAG1 or B3GAT3 led to a significant reduction in glucose consumption, ATP levels, lactate dehydro-
genase activity, lactate levels, and ECAR in HCC cells (Figure 6A-E). Additionally, the proliferation and migration 
abilities of HCC cells were inhibited in the PRKAG1 or B3GAT3 siRNA interference groups. Interestingly, the addition 
of lactate to the transfected cells restored their proliferation and migration capacities, which were subsequently reversed 
by adding 2-DG, an inhibitor of glycolysis (Figure 7A-C).

Moreover, IF analysis showed that depletion of PRKAG1 or B3GAT3 resulted in a downregulation of the prolifera-
tion marker Ki-67 in the nucleus, further confirming at the protein level that PRKAG1 and B3GAT3 promoted the 
proliferation of HCC cells (Figure 8A). These findings suggested that PRKAG1 and B3GAT3 might play oncogenic roles 
in HCC by enhancing the glycolytic capacity of the cancer cells, thereby promoting tumor growth.

Figure 4 Analysis of the effect of IGRPS on HCC immunotherapy response. (A-C) Differences in treating the ICIs anti-PD-1 and anti-CTLA-4 in high-risk and low-risk 
groups. (D) The IMvigor210 cohort was applied to verify the difference in immunotherapy response between high-risk and low-risk groups. (E and F) Relationship between 
risk score and TMB. (G-J) Relationship between risk score and immune escape characteristics. ***: P<0.001.
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Figure 5 Validation of IGRPS genes ALDH2, PRKAG1, and B3GAT3 expression. (A and B) Gene expression levels of IGRPS genes in high-low risk groups as well as HCC 
and its adjacent tissues. (C) Relationship between risk score and expression of IGRPS genes. (D) The diagnostic-ROC curve evaluated the diagnostic value of IGRPS genes. 
(E) The differential expression of the IGRPS gene at the mRNA level in HCC and adjacent tissues was confirmed by RT-qPCR. (F) The differential expression of the IGRPS 
gene at the protein level in HCC and adjacent tissues was verified by IHC (Scale bar: 50 μm; 20 X objective). *: P<0.05; ***: P<0.001; ****: P<0.0001.
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Discussion
HCC is the sixth most common cancer globally and is characterized by a complex mechanism of occurrence and 
progression, leading to a poor prognosis.13 Although numerous prognostic biomarkers have been identified, they often 
focus on the impact of a single biological process, neglecting the integration with other biological phenomena. For 
instance, Kong et al have identified five glycolytic genes associated with HCC prognosis and used two glycolytic gene 
features to predict patient outcomes.14 Similarly, Chen et al have developed a model based on five prognostic genes 
related to glycolysis/gluconeogenesis.15 Other previous studies enrolled mitochondrial-related genes (MRGs), RNA- 
binding proteins, or cytotoxic T lymphocyte-evasion genes to construct HCC prognostic models, have also considered 
only one kind of biological marker.16–18

In this study, glycolysis and TIME were considered two crucial biological markers of tumors. Therefore, we 
constructed an IGRPS using IGRGs. The IGRPS demonstrated excellent predictive performance and was an independent 
prognostic factor for HCC. Additionally, it provided insights into the state of the TIME and the changes in tumor 
glycolysis. Notably, the IGRPS comprised only three genes, ALDH2, PRKAG1, and B3GAT3, making it practical for 
clinical application. Most importantly, the roles of these model genes in the development of HCC were experimentally 
validated, underscoring their relevance in tumor biology.

PRKAG1 and B3GAT3 were found to be upregulated in HCC, suggesting that they might serve as risk factors and 
possess oncogenic effects in the progression of HCC. Conversely, the downregulation of ALDH2 in HCC might help 
inhibit tumor progression. Notably, the diagnostic ROC curves confirmed that these model genes had excellent diagnostic 
value, indicating that they were valuable diagnostic and prognostic markers for HCC.

While there has been extensive research on the phenotypic and mechanistic roles of ALDH2 in HCC, studies focusing 
on PRKAG1 and B3GAT3 in HCC are relatively limited. Consequently, this study centered on PRKAG1 and B3GAT3. 
PRKAG1 (protein kinase AMP-activated non-catalytic subunit gamma 1) is one of the γ subunits of the AMPK (AMP- 

Figure 6 PRKAG1 and B3GAT3 regulate the glycolytic capacity of HCC cells. The levels of glucose consumption (A), ATP (B), lactate dehydrogenase activity (C), lactate 
(D), and ECAR (E) were measured and analyzed in HCC cells transfected with NC-siRNA, PRKAG1-siRNA, or B3GAT3-siRNA. ***: P<0.001.
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Figure 7 The effect of PRKAG1 and B3GAT3 on glycolytic capacity, proliferation, and migration. (A) CCK-8 assay. (B) Transwell migration assay (Scale bar: 200 μm; 10 
X objective). (C) Wound-healing assay (Scale bar: 200 μm; 10 X objective). *: P<0.05; **: P<0.01; ***: P<0.001.
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activated protein kinase) complex and is involved in AMPK activation. AMPK serves as a critical cellular energy sensor 
that regulates metabolic pathways to maintain energy homeostasis.19 Upon activation, AMPK enhances catabolic 
processes that generate ATP, such as glycolysis.20,21

In breast cancer, PRKAG1 regulates AMPK activity by sensing the intracellular AMP/ATP ratio. When activated, 
AMPK can directly phosphorylate and activate 6-phosphofructo-2-kinase (PFK-2), thereby increasing levels of fructose- 
2,6-bisphosphate and promoting glycolysis.22,23 Additionally, PRKAG1 plays a significant role in immune regulation. 
Studies have shown that PRKAG1, as part of the AMPK complex, assists immune cells in switching metabolic pathways 
to meet energy demands during activation and function.24 The PRKAG1-mediated AMPK signaling pathway is crucial 
for T cell activation and functional maintenance, influencing the anti-tumor immune response.25 However, no studies 
have yet examined the role of PRKAG1 in HCC, highlighting the novelty and importance of this research focus.

B3GAT3 (β-1,3-glucuronyltransferase 3) is a glycosyltransferase primarily involved in synthesizing glycosaminoglycans.26 

B3GAT3 modulates cellular metabolic states by regulating the interactions of glycosaminoglycans with cell surface receptors, 
thereby influencing signaling pathways such as PI3K/AKT and MAPK. Additionally, the products and energy levels derived 
from glycolysis feedback regulate these signaling pathways, creating a complex regulatory network.27,28

Moreover, studies have identified B3GAT3 as a risk factor in the progression of various tumors. For instance, B3GAT3 
expression is upregulated in osteosarcoma stem cells (OSC) and is associated with poor survival rates in osteosarcoma 
patients.29 Zhao et al have screened nine genes related to amino acid metabolism and identified B3GAT3 as an independent 
risk factor for HCC.30 Similarly, Wu et al have identified four glycolysis-related genes linked to the prognosis of clear cell 
renal cell carcinoma (ccRCC), with upregulated expression of B3GAT3 in ccRCC correlating with a poor prognosis for 
patients.31 These findings suggest that B3GAT3 plays a significant role in tumor progression by influencing metabolic and 
signaling pathways, making it an essential focus for understanding its impact on cancer biology, including HCC.

Figure 8 The effect of PRKAG1 and B3GAT3 on proliferation at the protein level. (A) IF assay. Blue represented the cell nucleus, and red indicated the localization and 
expression of the Ki-67 protein. The deeper the red, the higher the expression.

Journal of Hepatocellular Carcinoma 2025:12                                                                                    https://doi.org/10.2147/JHC.S510460                                                                                                                                                                                                                                                                                                                                                                                                    819

Zhang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



This study demonstrated, for the first time, that PRKAG1 and B3GAT3 could enhance the glycolytic capacity of HCC 
cells, leading to the production of a substantial amount of lactate, which in turn induced the proliferation and migration of 
HCC cells. This finding aligned with the glycolysis profile analysis conducted in this study. Both bioinformatics analyses 
and experimental validations confirmed that PRKAG1 and B3GAT3 were upregulated in HCC, and they served as strong 
prognostic indicators for the disease. These results suggested that PRKAG1 and B3GAT3 could act as risk factors for 
HCC and play oncogenic roles.

TMB quantifies the total number of genetic mutations within a tumor. A high TMB indicates a greater frequency of 
mutations, which may lead to the production of more neoantigens recognizable by the immune system, thereby 
potentially enhancing the immune response.32 Consequently, tumors with high TMB are more likely to respond to 
ICIs, such as anti-PD-1/PD-L1 therapies.33 In this study, TMB was found to be negatively correlated with the risk score; 
the lower TMB observed in the high-risk group suggested a poorer response to immunotherapy.

The TIDE score represents a measure of immune escape potential in tumors. It predicts the efficacy of tumor 
immunotherapy and patient survival based on two primary mechanisms: immune antigen presentation and T-cell 
exhaustion in the TIME. A lower TIDE score indicates that patients are more likely to respond effectively to 
immunotherapy.34 In this study, the expression levels of PRKAG1 and B3GAT3, as well as the TIDE score were 
significantly lower in the low-risk group compared to the high-risk group, indicating a reduced risk of immune escape 
potential and a better response to immunotherapy. This may be due to PRKAG1 promotes glycolysis by activating 
AMPK, leading to increased lactate production. The accumulation of lactate lowers the extracellular pH, which inhibits 
the cytotoxicity of T cells and NK cells, thereby enhancing immune suppression and contributing to immune escape.35 

Similarly, B3GAT3 promotes the synthesis of glycosaminoglycans (GAGs) which can interact with immune checkpoint 
molecules such as PD-L1 to suppress T cell function, thereby facilitating tumor cell immune escape.36

Furthermore, the immunotherapy analysis results indicated that the combination of anti-CTLA-4 and anti-PD-1 
treatments was more effective in the low-risk group compared to the high-risk group. However, there was no significant 
difference in efficacy between the two groups when anti-CTLA-4 or anti-PD-1 was administered as monotherapy. 
Combination therapy offers complementary anti-tumor effects by targeting different immune escape mechanisms.37 

For instance, anti-CTLA-4 therapy enhances T cell cytotoxicity by activating the initial T cell response, while anti-PD-1 
therapy improves T cell effectiveness by releasing the inhibition on effector T cells.38 Meanwhile, patients in the low-risk 
group exhibited higher TMB and lower immune escape characteristics, which allowed combination therapy to more 
effectively stimulate a multifaceted immune response. Furthermore, TIME analysis revealed that the infiltration scores of 
mast cells and NK cells were higher in the low-risk group, while the scores of macrophages and Tregs were lower. 
Studies have shown that mast cells can release pro-inflammatory mediators to activate other immune cells (such as DCs 
and T cells) or interact with NK cells, thereby enhancing anti-tumor immune responses.39 In contrast, M2-type 
macrophages and Tregs promote tumor growth and immune escape by secreting immunosuppressive factors such as 
IL-10 and TGF-β.40,41 These findings suggested that patients with a low-risk profile might benefit more from combina-
tion immunotherapy due to their more favorable TIME.

This study systematically explored the application value of the IGRPS in HCC, offering new perspectives for the 
diagnosis, prognosis, and immunotherapy of HCC. However, there are some limitations to this study. First, the data were 
derived from RNA-seq and clinical information available in public databases such as TCGA and GEO. These samples come 
from diverse sources and may include data generated from different laboratories and platforms, leading to heterogeneity 
and batch effects that could impact the consistency and generalizability of the model. Therefore, the predictive value of 
IGRPS needs further validation in large, prospective clinical cohorts to ensure its robustness and reliability.

Conclusions
This study introduced novel prognostic features for HCC by integrating immune status and glycolytic processes, 
significantly enhancing the ability to predict patient outcomes and response to immunotherapy. These features offered 
a promising framework for personalized therapeutic strategies in HCC, allowing for more tailored interventions that align 
with individual patient profiles. Moreover, these insights provided valuable therapeutic targets for advancing HCC 
immunotherapy, paving the way for more effective and precise treatment approaches in clinical practice.
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