
O R I G I N A L  R E S E A R C H

Single Cell Transcriptomics Genomics Based on 
Machine Learning Algorithm: Constructing and 
Validating Neutrophil Extracellular Trap Gene 
Model in COPD
Jia Yu 1,*, Tiantian Xiao 1,*, Yun Pan 2,*, Yangshen He 1, Jiaxiong Tan 3

1Department of Internal Medicine, Dongguan Hospital of Integrated Chinese and Western Medicine, Dongguan, Guangdong Province, People’s 
Republic of China; 2Department of Infectious Disease, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, People’s 
Republic of China; 3Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People’s Republic 
of China

*These authors contributed equally to this work 

Correspondence: Yangshen He, Dongguan Hospital of Integrated Chinese and Western Medicine, Dongguan, Guangdong Province, 523000, People’s 
Republic of China, Email 13713193315@163.com; Jiaxiong Tan, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research 
Center for Cancer, Tianjin, 300202, People’s Republic of China, Email gdydtjx@163.com

Background: Neutrophil trap (NET) is an important feature of chronic inflammatory diseases. At present, there are still few studies to 
explore the characteristics of NET in different chronic obstructive pulmonary disease (COPD) patients. This study aimed to identify 
NET signature genes in different COPD patients.
Methods: We analyzed single-cell RNA sequencing data from COPD and non-COPD individuals to identify differentially expressed 
neutrophil genes. Machine learning algorithms were applied to construct models A and B, specific to smoking and non-smoking COPD 
patients, respectively.
Results: Through single-cell cluster analysis, 165 neutrophil characteristic genes in COPD group were successfully identified. Model 
A, consisting of key genes CD63, RNASE2, ERAP2, and model B, consisting of GRIPAP1, NHS, EGFLAM, and GLUL, were 
validated internally and externally, showing significant risk scores and good diagnostic efficacy (AUC: 60.24–87.22). Alveolar lavage 
fluid in patients with COPD was studied and confirmed higher expression levels of RNASE2 and NHS in severe COPD patients.
Conclusion: The study successfully developed NET signature gene models for identifying smoking and non-smoking COPD 
respectively, with validated specificity and predictive power, offering a foundation for personalized treatment strategies.
Keywords: COPD, neutrophil extracellular traps, single-cell sequencing, transcriptomics

Introduction
Chronic obstructive pulmonary disease (COPD) is now recognized as a complex, multicomponent disease characterized 
by chronic systemic inflammation and is currently the third leading cause of death worldwide.1 The mortality rate for 
male COPD patients is higher, with an increasing trend in mortality rates among those over 45 years of age.2 In 
developing countries, mortality rates are also increasing in tandem with the rise in smoking rates. In China, tobacco- 
related deaths account for 12% of all deaths, and predictions suggest that this proportion could reach 33% by 2030.3 

Although the hazardous role of smoking in the development of COPD is well established, nearly half of COPD patients 
are non-smokers, particularly women exposed to biomass smoke in poorly ventilated homes.4

The high mortality rate associated with COPD is linked to its progressive, irreversible airway obstruction and 
complex comorbidities.5,6 Each bacterial or respiratory viral infection experienced by this population exponentially 
increases the risk of adverse outcomes.6 Currently, identified endogenous factors associated with COPD include alpha-1 
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antitrypsin (AAT) deficiency and geNETic mutations in the telomerase gene TERT, which can lead to early-onset 
emphysema and are also seen in idiopathic pulmonary fibrosis.7–9

The role of inflammatory mechanisms in COPD has been progressively investigated, characterized by increased and 
activated macrophages and neutrophils.10 Sputum neutrophilia is a significant feature of COPD, and this neutrophilic inflamma-
tion is induced by cigarette smoke, bacteria, viruses, and oxidative stress.10 The increase and local chemotactic activation of 
neutrophils are associated with resistance to inhaled corticosteroids, which becomes a critical factor in exacerbating COPD 
mortality and progression.11 Although CXCR2 antagonists (such as navarixin) can block the chemotactic effects of CXCL8 and 
related chemokines to reduce the number of neutrophils in the sputum of COPD patients, they do not improve already 
deteriorated lung function.12

In recent years, the formation of neutrophil extracellular traps (NETs) has gained increasing attention. Neutrophils, when 
recruited, have a certain probability of undergoing programmed cell death, leading to the rupture of cell membranes and the 
release of web-like structures containing extracellular double-stranded DNA (dsDNA) combined with histones, myeloper-
oxidase, and neutrophil elastase.13 In respiratory viral infections, NETs formation is considered one of the beneficial 
protective mechanisms.14 The formation of NETs is advantageous for the entrapment and containment of pathogens, and it 
has been reported that NETs exhibit antiviral properties against poxviruses.15 Conversely, persistent NETs formation is 
considered a driver of immune pathology, most extensively demonstrated in COVID-19, where systemic and airway NET 
accumulation induces high inflammation in both acute and chronic disease stages.16,17 NETs, loaded with highly basic 
histones and degradative enzymes, possess cytotoxic effects. When they are formed in excess or not cleared by the still poorly 
understood mechanisms, they can directly lead to host cell death and chronic tissue damage.18 The tissue damage caused by 
local overload of NETs is closely related to pulmonary fibrosis, acute respiratory distress syndrome (ARDS), and the 
progression of asthma.18,19 Studies have found that the sputum of exacerbated COPD patients contains a large amount of 
NET.20 Importantly, NETs formation is not limited to exacerbated COPD; it also exists in stable COPD patients and correlates 
with the severity of airflow limitation.20 Pharmacologists have been committed to manipulating NETs formation and reducing 
the pathogenic effects of NETs by administering DNase to degrade the NETs scaffold.21 In recent years, with the development 
of genomics, a series of gene signatures related to NETs formation have been gradually identified in various diseases and have 
been well applied in predicting ischemia-reperfusion injury after lung transplantation, sepsis, and thrombotic diseases.22–25

Hematological and immunological data (HID) are crucial for the diagnosis, prognosis, and monitoring of numerous 
diseases.26 As a result, HID data have been widely employed in artificial intelligence research to diagnose and predict the 
course of diseases.27–29 In recent years, various clinical studies have demonstrated that HID is an effective and cost-efficient 
alternative for the early diagnosis and prognosis of coronavirus disease 2019 (COVID-19) and other diseases.29–31 For instance, 
Huyut et al successfully developed artificial intelligence models using HID data for the diagnosis and prognosis of COVID-19.32– 

34 Yan et al effectively applied the Gradient Boosting Decision Tree method to HID data for the early diagnosis of multiple 
myeloma.35 Soerensen et al developed an artificial intelligence model based on HID to predict cancer risk in primary care.36 Wu 
et al achieved 95.7% accuracy in diagnosing lung cancer using the Random Forest algorithm based on 19 routine blood test 
parameters.37 Haider and others used artificial neural NET works to analyze HID data for early differentiation among 
leukemias.38

Compared with existing studies, this study innovatively identified NET-related genes associated with poor COPD 
prognosis using three machine learning methods combined with single cell sequencing dataset and multiple large sample 
lung tissue transcriptome sequencing dataset. We also constructed prognostic prediction models suitable for both 
smoking and non-smoking patients and preliminarily confirmed their good efficacy. This research will provide a basis 
for understanding the pathogenesis of COPD driven by gene-mediated NETs formation and for targeting NETs to 
improve the prognosis of COPD patients.

Materials and Methods
Data Acquisition and Preprocessing
We downloaded single-cell RNA sequencing (scRNA-seq) data of COPD lung tissue (GSE173896) and transcriptome 
sequencing data of COPD (GSE37768, GSE54837, GSE57148), and ARDS (GSE76293) from the Gene Expression 

https://doi.org/10.2147/IJGM.S516139                                                                                                                                                                                                                                                                                                                                                                                                                                        International Journal of General Medicine 2025:18 2248

Yu et al                                                                                                                                                                               

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/). Ultimately, we obtained scRNA-seq profiles from five COPD 
patient lung tissues and three age-matched non-COPD lung tissues as controls from GSE173896. The remaining 
transcriptome data were used to subsequently identify differentially expressed genes. The whole research process is 
shown in Supplemental Figure 1. In the entire workflow, first, the neutrophil signature genes in COPD tissues were 
successfully identified in comparison with normal tissues. Meanwhile, the following intergroup comparisons were 
conducted on the COPD-RNA-Seq data: high GOLD stage vs low GOLD stage, smokers vs non-smokers, and ARDS 
occurrence vs non-occurrence groups, to identify DEGs for subsequent machine learning. Subsequently, the preliminary 
validation efficacy was assessed using alveolar lavage fluid samples from COPD patients.

Acquisition of COPD Neutrophil Differential Gene Set
In order to obtain the genes associated with the neutrophil extranuclear trap, we first need to perform cluster analysis of 
single-cell sequencing samples of COPD and successfully annotate the neutrophil subsets. First, we performed quality 
control on the downloaded GSE173896 dataset to ensure the accuracy and reliability of the data. This included checking 
sequencing depth, excluding low-quality cells, and removing cells with a high proportion of mitochondrial genes 
(Supplementary Figure 2). We created Seurat objects based on the following filtering criteria: genes expressed in at 
least 3 cells and cells with at least 200 genes expressed. At the same time, samples with a total UMI number less than 
1000 and samples with a gene number less than 500 were filtered out. The first 2000 highly variable genes were then 
selected for subsequent analysis. We utilized the RunPCA function from the Seurat package to perform principal 
component analysis (PCA) on the preprocessed data, selected high variable genes (HVGs) for dimensionality reduction 
using PC4, and employed the Run-TSNE function for t-SNE clustering analysis. The results of t-SNE cell subsets 
clustering in all samples of COPD group and normal control group are shown in Figure 1A and B. Clustered cell 
populations were annotated using Cell Marker 2.0 to identify components.39 Differential analysis with control group data 
identified 165 highly expressed neutrophil differential genes.

Figure 1 Single cell sequencing analysis of COPD and Control samples. (A) Preliminary results of tSNE clustering using high-mutation genes from PC4 in dimensionality- 
reduced data obtained from five COPD samples and three control samples. (B) Twenty-four cellular clusters identified through clustering at the same resolution. (C) 
Volcano plot of differential genes within the neutrophil cluster, with blue representing downregulated differential genes and red representing upregulated differential genes. 
(D) tSNE plot after cell cluster annotation. (E) Stacked plot of annotated cellular components, with different colors representing distinct cell clusters.
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Identification of Differentially Expressed Genes (DEGs) Between Different Subgroups 
of COPD
Having successfully identified a range of neutrophil subpopulation specific genes from single-cell cluster analysis, we 
then need to identify which genes are specific to COPD disease, which genes are associated with poor disease prognosis, 
and even which genes may be associated with smoking as a risk factor. After obtaining gene mRNA expression matrices 
and clinical information for 18 COPD samples, 11 smoking healthy controls, and 9 non-smoking healthy controls from 
GSE37768; 68 GOLD stage 3/4 (stage high), 68 GOLD <3 (stage low), 84 smoker controls, and 6 non-smoker controls 
from GSE54837; and 12 ARDS samples and 12 normal controls from GSE76293, we preprocessed the data, including 
gene matching, removal of blank information, and standardization. We used the R package “limma” for intergroup 
differential analysis and “ggplot2” for visualizing DEGs, setting the criteria to |log2 fold change (FC)| > 1.0 and adjusted 
p-value < 0.05. Additionally, we employed the R package “cluster Profiler” for KEGG and GO enrichment analysis of 
differential genes. Furthermore, we used the MCP counter estimate function to analyze the infiltration of eight common 
immune cells in the GSE37768, GSE54837, and GSE76293 datasets.

RF-LASSO-SVM RFE Machine Learning for Feature Gene Selection and Model 
Construction
Machine learning can better identify the weight of different factors in different disease states. Therefore, we carry out 
machine learning on the differential genes obtained in the previous step to identify which genes are the most critical. We 
intersected the COPD smoking DEGs and COPD nonsmoking DEGs obtained above with COPD stage high DEGs, 
ARDS DEGs, and scRNA-NDEGs. Finally, we extracted 23 smoking COPD-NDEGs and 33 nonsmoking COPD- 
NDEGs and included them in the random forest algorithm, LASSO regression analysis, and SVM RFE machine learning. 
The three machine learning methods were completed using the R packages “randomForest”, “glmnet”, and “e1071”, 
respectively. All variables were used for SVM model construction, with AvgRank sorted by the average ranking of 10- 
fold cross-validation. Ultimately, we obtained 3 COPD smoking NDEGs (CD63, RNASE2, and ERAP2) and 4 COPD 
nonsmoking NDEGs (GRIPAP1, NHS, EGFLAM, and GLUL) for the construction of models A and B through 
intersection.

Single-Gene Efficacy Assessment and Model Efficacy Validation
We used the GSE37768 dataset to perform group expression analysis and obtain ROC diagnostic dependency curves for 
the 7 feature genes selected by machine learning to assess the efficacy of single genes in identifying COPD. 
Subsequently, we used the R package “clusterProfiler” for GSEA analysis of highly expressed differential genes. 
Additionally, we studied the protein molecular interaction patterns of the two groups of genes using protein-protein 
interaction (PPI) NETworks and STRING database-based protein interaction NETwork analysis. Furthermore, we 
constructed gene diagnostic nomograms for the two groups of NDEGs. To validate the efficacy of the machine learning- 
built models A-B, we used GSE37768 as the internal training set and GSE54837 and GSE57148 as external validation 
sets for risk score grouping validation and construction of corresponding ROC curves.

Distribution and Protein Structure Prediction of RNASE2 and NHS
We investigated the distribution of RNASE2 and NHS genes through the website Human Protein Atlas (proteinatlas.org), 
including mRNA distribution in different human organs and various immune cell subsets, as well as subcellular 
localization prediction. Finally, we constructed protein structure models for RNASE2 and NHS using Alphafold 2.0.

qRT-PCR and ELISA Experiments on COPD Bronchoalveolar Lavage Fluid Samples
We collected bronchoalveolar lavage fluid from ten COPD patients for the detection of RNASE2 and NHS genes and 
MPO protein ELISA. Among them, five patients requiring ventilator support were classified as stage high, and the 
other five patients not requiring ventilator support were classified as stage low. The sequence of primers associated 
with each gene for qPCR is provided in Supplemental Table 1. mRNA was isolated using a commercial Total RNA 
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Purification Kit from NORGEN, and its concentration was determined by a Thermo Fisher Scientific spectrophot-
ometer. The mRNA was then converted to cDNA using the High-Capacity RNA-to-cDNA Kit from Applied 
Biosystems. Quantitative PCR (qPCR) was performed with SYBR green PCR master mix, also from Applied 
Biosystems, on a Bio-Rad CFX Manager system. Finally, Δct values were used as the relative expression of 
RNASE2 and NHS genes compared to the GAPDH reference gene. A commercial MPO ELISA kit was used, 
which includes a pre-coated microplate with specific anti-MPO antibodies, enzyme-labeled secondary antibodies, 
washing buffer, substrate solution, and stopping solution. According to the kit instructions, the supernatant samples 
obtained after centrifugation of bronchoalveolar lavage fluid were appropriately diluted, and standard curves were 
constructed using standard samples at different gradient concentrations. Then, experimental samples were added, 
incubated, washed, and developed according to the instructions, and finally, the absorbance (OD values) of each well 
was measured at 450 nm using an enzyme-linked immunosorbent assay reader. The obtained sample OD values were 
converted into relative concentrations using the standard curve.

Statistical Methods
Data analysis and visualization were conducted using R software (version 4.3.3) along with GraphPad Prism 8. For the 
group difference analysis of RT-PCR and ELISA data, we employed both the two-tailed unpaired Student’s t-test and 
the Wilcoxon rank-sum test. For the differential analysis of GEO transcriptome data, we utilized the limma-voom 
method to assess differences between groups. A statistically significant result was considered when the P-value was 
less than 0.05.

Results
Successful Identification of COPD Neutrophil Differential Genes via scRNA-Seq
We analyzed the scRNA-seq profiles of lung tissues from five COPD patients in the GSE173896 dataset, with three age- 
matched non-COPD lung tissues as controls. As shown in Supplementary Figure 2, after rigorous quality control 
analysis, data standardization and scaling, and selection and filtering of highly variable feature-expressing cells, four 
principal component analysis modules were successfully constructed (Supplementary Figure 2F), with the top 20 genes 
of each PCA displayed in Supplementary Figure 2G. In Figure 1A and B, following tSNE nonlinear dimensionality 
reduction of PC4, 24 cellular clusters were preliminarily identified. Neutrophil populations in both COPD and control 
samples were successfully identified after cellular annotation, yielding 165 overexpressed neutrophil differential genes 
(scRNA-NDEGs) (Figure 1C). The composition and proportion distribution of cells are shown in Figure 1D and E, with 
a significantly higher neutrophil ratio in COPD samples compared to controls.

Acquisition of COPD and ARDS Differential Genes from Large-Scale Transcriptome 
Datasets
To obtain differential genes between COPD and smoking and non-smoking controls, we performed group differential 
analysis on the mRNA data of 18 COPD samples, 11 smoking healthy controls, and 9 non-smoking healthy controls from 
the GSE37768 dataset, yielding 178 COPD-Smoking-DEGs and 511 COPD-Non-smoking-DEGs. To assess differences 
among COPD patients of different GOLD stages, we conducted group differential analysis on 68 GOLD stage 3/4 (stage 
high), 68 GOLD <3 (stage low), 84 smoker, and 6 non-smoker controls from the GSE54837 dataset. Finally, 708 COPD- 
stage high DEGs, 2076 COPD stage high-smoking-DGEs, and 904 COPD stage high-Nonsmoking-DEGs, were identi-
fied. To further analyze gene differences in lung tissue samples as COPD progresses to ARDS, we performed differential 
analysis on 12 ARDS samples and 12 normal control samples from the GSE76293 dataset. We successfully identified 
3320 DEGs in the transcriptome sets of ARDS and normal control samples. We selected the top 30 differential genes 
from the above subgroup analysis and displayed them in the form of heat map (Supplementary Figure 3A–F). 
Meanwhile, the results of gene expression difference analysis for each subgroup were displayed in the form of volcano 
map (Supplementary Figure 4A–F).
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Candidate Gene Selection for Smokers and Non-Smokers and KEGG and GO 
Enrichment
To explore the impact of smoking and non-smoking on neutrophil proliferation, activation, and disease progression in 
COPD patients, we intersected the multiple transcriptome differential genes obtained with scRNA-NDEGs. Results in 
Supplementary Figure 5G and H show that we identified 23 smoking COPD-NDEGs and 33 non-smoking COPD- 
NDEGs for subsequent machine learning. Additionally, we performed KEGG and GO enrichment analyses on the 
differential genes obtained from the transcriptome samples, finding that genes highly expressed in COPD stage high were 
enriched in membrane potential regulation, passive transmembrane transporter activity, and ion channel activation 
pathways (Supplementary Figure 5E and F). COPD stage high differential genes are closely related to the formation 
of cell membranes and ion channel complexes (Supplementary Figure 5E and F). Compared to the non-smoking group, 
COPD-Smoking-DEGs were mainly enriched in DNA and cell signal transduction pathways, phosphatidylcholine 
metabolism pathways, and DNA damage repair checkpoint pathways (Supplementary Figure 5A and B). In contrast, 
COPD-NonSmoking-DEGs were primarily enriched in pathways related to endothelial cell proliferation and migration 
(Supplementary Figure 5C and D).

MCPcounter Immune Infiltration Analysis
To assess differences in immune cell infiltration among different COPD subgroup samples, we used the “MCPcounter” 
R package to quantify and score the distribution differences of eight immune cells in the GSE37768, GSE54837, and 
GSE76293 datasets. Results in Supplementary Figure 6A and B show that the COPD group had higher infiltration of 
T cells, monocytes, and neutrophils, with the most significant difference in neutrophil infiltration. Compared to the non- 
smoking group, smoking group samples showed a trend of increased neutrophil and monocyte infiltration. The COPD 
stage high group had significantly higher neutrophil infiltration than the COPD stage low and other control groups. 
Interestingly, higher neutrophil infiltration scores were also observed in ARDS samples (Supplementary Figure 6C).

Machine Learning Model Construction Using RandomForest, LASSO, and SVM-REF
To evaluate the disease-related effects of the 23 smoking COPD-NDEGs and 33 nonsmoking COPD-NDEGs obtained in 
previous steps and to construct an efficient model, we employed three machine learning methods: RandomForest, LASSO, 
and SVM-REF, to jointly filter key feature genes. For the smoking group, distinct outcomes were observed: The SVM-REF 
model prioritized 5 genes to optimize performance metrics (AvgRank < 10), as shown in Figure 2A and B. LASSO regression 
analysis, validated through 10-fold cross-validation, proposed 3 genes (CD63, RNASE2, and ERAP2) for Model 
A construction (Figure 2C and D). Gene importance rankings derived from the RandomForest algorithm are presented in 
Figure 2E and F. The intersection of gene selections across methods was visualized in Figure 2G, ultimately defining the final 
candidate genes for downstream modeling. For the nonsmoking group, the SVM-REF model identified 7 genes required to 
achieve maximum accuracy and minimum error rate under the condition of AvgRank < 10, as illustrated in Figure 3A and B. 
Following 10-fold cross-validation, LASSO regression further refined the selection, recommending 4 genes (GRIPAP1, NHS, 
EGFLAM, and GLUL) for constructing Model B (Figure 3C and D). The importance rankings of these genes, evaluated by the 
RandomForest algorithm, are displayed in Figure 3E and F. A Venn diagram analysis integrating results from the three 
methods (Figure 3G) highlighted candidate genes through intersection screening, which were subsequently used to build gene 
feature models. ALL the candidate genes after intersection screening were constructed by following gene feature models:

Model A (smoker): risk score = (0.126 * expression of CD63) + (0.535 * expression of RNASE2) + (0.019 * 
expression of ERAP2)

Model B (nonsmoker): risk score = (0.353 * expression of GRIPAP1) + (1.497 * expression of NHS) + (0.0726 * 
expression of EGFLAM) + (0.627 * expression of GLUL)

Single-Gene Evaluation
To assess the feature genes selected by machine learning, we used the GSE37768 dataset as a training set for single-gene 
efficacy validation. Evaluation results of the 3 candidate genes for Model A (Figure 4A–C) showed that COPD group 
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samples have higher single-gene mRNA expression levels, with RNASE2 mRNA levels significantly higher than those in the 
normal control group (p=0.032). However, CD63 and ERAP2 did not show a difference between the two groups. Single-gene 
GSEA enrichment analysis showed that the 3 highly expressed differential genes in the COPD-smoking group are enriched in 
pathways related to allogeneic graft rejection, cobalamin transport and metabolism, and virus-related immune activation 
(Figure 4D–4F). Subsequent diagnostic ROC analysis revealed that the above 3 feature genes have high efficacy in 
diagnosing COPD (AUC: 0.586–0.727) (Figure 4G–4I). We then performed protein-protein interaction (PPI) analysis and 
using the STRING database to investigate the molecular interaction patterns of these genes. The results (Figure 4J and K) 
indicated that the primary interacting partners of CD63, RNASE2, and ERAP2 were CTSD, CTSA, and HLA-B, respec-
tively. We also developed a clinical diagnostic array based on the three feature genes (Figure 4L).

In the COPD-nonsmoking group, GRIPAP1, NHS, EGFLAM, and GLUL expression levels are all significantly elevated 
compared to the control group (P=0.0083, p=0.015, p=0.0024, and p=0.0016) (Figure 5A–D). The 4 highly expressed differential 
genes in the COPD-nons moking group were enriched in pathways related to IgA production, allogeneic graft rejection, 
apoptosis, and IL-17 signaling (Figure 5E–H). Subsequent diagnostic ROC analysis revealed that the above 4 feature genes 
have high efficacy in diagnosing COPD (AUC: 0.735–0.870) (Figure 5I-L). The protein interaction network for the four feature 
genes in the COPD-nonsmoking group comprises key players such as ENO1, GAPDH, and CD63, with comprehensive 
interaction maps presented in Figure 5M and N. A diagnostic array diagram for clinical application was developed based on 
the four feature genes (Figure 5O).

Systematic Validation of Machine Learning Model Efficacy
Next, we conducted efficacy validation of the machine learning-constructed Models A and B across multiple datasets. 
Initially, analysis of the training set GSE37768 dataset showed that COPD group samples had significantly higher risk scores 

Figure 2 Machine Learning Analysis and Model Construction with Smoking COPD-NDEGs. (A and B) display the results obtained using the SVM-RFE algorithm, illustrating 
the number of feature genes recommended for achieving the highest accuracy and the lowest error rate, respectively. (C and D) present the outcomes of incorporating 
feature genes into LASSO regression analysis. The y-axis in (C) represents the coefficients assigned to each feature gene, while the dashed line in (D) indicates the optimal 
number of factors recommended. (E and F) showcase the results derived from stepwise random forest analysis. The lollipop chart in E is a sorted display based on the 
importance coefficients assigned. (G) is a Venn diagram representing the intersection of genes recommended by three machine learning methods. The machine learning 
above uses the smoking COPD-NDEGs obtained in the previous step.
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for both Model A and Model B (p<0.05); while the ROC curves indicated good diagnostic efficacy (AUC=71.388 and 
AUC=87.222), with Model B outperforming Model A, further distinguishing between smoking and nonsmoking samples 
(Figure 6A–D). Additionally, we used the external dataset GSE54837 for efficacy assessment. The results, as shown in 
Figure 6E–H, indicate that in Model A, both COPD stage high and stage low groups had higher scores than the smoking 
control group (p=0.044, p=0.043); while in Model B, only the COPD stage high score was significantly higher than the 
smoking control group (p=0.0097); Models A and B showed similar diagnostic efficacy (AUC=60.245 and AUC=62.287). 
Similarly, analysis of another independent COPD dataset GSE57148 revealed that, compared to the normal control group, 
COPD group samples had significantly higher risk scores in both Model A and Model B (p<0.001); while the ROC curves 
indicated that Model A had better diagnostic efficacy than Model B (AUC=70.228 and AUC=62.839) (Figure 6I–L).

Distribution Patterns of RNASE2 and NHS and Protein Structure Prediction Based on 
Alphafold
Since the three machine learning methods assigned the highest importance coefficients to the RNASE2 and NHS genes, 
we conducted a systematic investigation and analysis of their distribution. The results, as shown in Figures 
Supplementary 7–8A, indicate that RNASE2 and NHS genes are expressed to varying degrees in multiple human organs, 
with RNASE2 being highly expressed in the spleen and lungs, and NHS in the retina and cervix; further analysis of their 
distribution in immune cells revealed that, in addition to high expression in neutrophils, RNASE2 and NHS genes are 
also highly expressed in PBMCs, monocytes, macrophages, basophils, and myeloid DC cells to varying degrees 
(Supplementary Figures 7, 8B and C). Subcellular localization revealed that RNASE2 exists in a membrane secretion 

Figure 3 Machine Learning Analysis and Model Construction with nonsmoking COPD-NDEGs. (A and B) display the results obtained using the SVM-RFE algorithm, 
illustrating the number of feature genes recommended for achieving the highest accuracy and the lowest error rate, respectively. (C and D) present the outcomes of 
incorporating feature genes into LASSO regression analysis. The y-axis in (C) represents the coefficients assigned to each feature gene, while the dashed line in (D) indicates 
the optimal number of factors recommended. (E and F) showcase the results derived from stepwise random forest analysis. The lollipop chart in E is a sorted display based 
on the importance coefficients assigned. (G) is a Venn diagram representing the intersection of genes recommended by three machine learning methods. The machine 
learning above uses the nonsmoking COPD-NDEGs obtained in the previous step.
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manner, while NHS is involved in the construction of the cell membrane scaffold (Supplementary Figures 7–8D). Finally, 
we used Alphafold version 2.0 to construct protein structure models for RNASE2 and NHS (Supplementary 7–8E).

qRT-PCR and ELISA Validation of Alveolar Lavage Fluid Samples
Lastly, we extracted RNA from the sediment of alveolar lavage fluid samples from 10 COPD patients for RT-PCR 
validation and used the ELISA method to detect the relative concentration of MPO in the supernatant. The results, as 
shown in Figure 7A and B, indicate that the relative expression levels of RNASE2 and NHS genes in the alveolar lavage 
fluid of COPD stage-high patients are significantly higher than those in COPD stage-low patients. After constructing the 
MPO-ELISA standard curve, the results of converting sample OD values to relative concentrations using the formula y = 
1220.5x - 118.1 showed that the supernatant of alveolar lavage fluid from COPD stage-high patients had a higher 
concentration of MPO (Figure 7C and D).

Discussion
This study innovatively combines single-cell sequencing with large-scale transcriptomics and employs three classic 
machine learning methods to identify NETs signature genes closely associated with poor prognosis in COPD. These 
genes were used to construct models for predicting outcomes in different COPD populations based on smoking 
differences. The effectiveness of these models was preliminarily validated using alveolar lavage fluid samples.

Inflammatory mechanisms play a decisive role in the development of COPD, characterized by increased and activated 
macrophages and neutrophils.14 An increase in sputum neutrophils is a significant feature of COPD, and this neutrophilic 

Figure 4 Single-Gene Assessment, Protein-Protein Interaction NETwork Analysis, and Nomogram Construction in smoking COPD group. (A–C) present the gene 
expression group statistics for three smoking COPD NDEGs derived from machine learning on the GSE37768 dataset. The blue bars signify the normal control group, and 
the red bars represent the COPD group, with the y-axis indicating the level of gene expression. (D–F) depict the GSEA enrichment of differential genes associated with the 
high expression of the three single genes. (G–I) showcase the diagnostic dependency ROC curves for assessing the efficacy of single genes, with the yellow area 
corresponding to the area under the curve. (J and K) display the PPI protein-protein interaction NETworks and protein interaction diagrams based on STRING database 
analysis. (L) is a gene diagnostic Nomogram constructed from the three genes.
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inflammation is induced by cigarette smoke, bacteria, viruses, and oxidative stress.10 Current research indicates that sputum from 
all levels of COPD patients, whether exacerbated or stable, is characterized by the presence of a large number of NETs and NET- 
forming neutrophils.40,41 This is highly consistent with the results of our MCPcounter immune infiltration analysis study. 
Additionally, we detected varying concentrations of MPO in the alveolar lavage fluid of COPD patients. NETosis related to 
COPD is significantly associated with lung function impairment, which is considered one of the best indicators of disease 

Figure 5 Single-Gene Assessment, Protein-Protein Interaction NETwork Analysis, and Nomogram Construction in nonsmoking COPD group. (A–D) present the gene 
expression group statistics for four nonsmoking COPD NDEGs derived from machine learning on the GSE37768 dataset. The blue bars signify the normal control group, and 
the red bars represent the COPD group, with the y-axis indicating the level of gene expression. (E–H) depict the GSEA enrichment of differential genes associated with the 
high expression of the three single genes. (I–L) showcase the diagnostic dependency ROC curves for assessing the efficacy of single genes, with the yellow area 
corresponding to the area under the curve. (M and N) display the PPI protein-protein interaction NETworks and protein interaction diagrams based on STRING database 
analysis. (O) is a gene diagnostic Nomogram constructed from the three genes.

Figure 6 Validation of the Risk Scoring Model with Internal and External Datasets. (A–D) depict the validation outcomes of the internal dataset GSE37768 using Model 
A and Model B. In (A and B), the y-axis denotes the computed risk scores, with violin plots in various colors representing different groups. (C and D) exhibit the diagnostic 
dependency ROC curves for Model A and Model B, respectively, with the surrounding hues indicating the confidence intervals. (E and F) and (I and J) illustrate the 
disparities in group model scores for the external validation datasets GSE54837 and GSE57148. (G and H) and (K and L) present the diagnostic dependency ROC curves for 
Model A and Model B on the external validation datasets GSE54837 and GSE57148, respectively, with the surrounding hues signifying the confidence intervals.
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severity, further strengthening the relevance and accuracy of our results. All characteristics of NETosis are more commonly 
observed in the sputum of exacerbated patients and in GOLD stage 3 and 4 patients.20 Nevertheless, NETosis is clearly detected 
in the sputum of stable COPD and GOLD stage 1 and 2 patients.20

The formation of NETosis can be understood as a result of neutrophil autophagy, an essential component of innate 
immunity.13 This programmed cell death through self-destruction is observed in numerous inflammatory diseases and 
cancers.42,43 Their formation not only helps to confine pathogens and cancer cells but also aids in clearing pathogenic 
antigens due to the highly basic histones and degradative enzymes within their structure.43 However, excessive 
neutrophil infiltration and activation leading to a large amount of pathological NETosis formation and cytokine storms 
may exacerbate lung function deterioration in patients with respiratory diseases.17,44 Studies have shown that NETs 
formation is not limited to exacerbations but also exists in stable COPD and is correlated with the severity of airflow 

Figure 7 Quantitative RT-PCR and ELISA Analysis of RNASE2 and NHS Gene Expression and MPO Concentration in Clinical Samples. (A and B) display the outcomes of 
quantitative real-time polymerase chain reaction (qRT-PCR), where the red bars indicate COPD patients who need mechanical ventilation support (stage high), and the blue 
bars indicate those who do not (stage low). The y-axis denotes the relative expression levels of the target genes normalized against the GAPDH housekeeping gene, 
represented as the relative expression ratio (ΔCt value). (C) illustrates the ELISA standard curve that was established, while (D) shows the relative concentration of 
myeloperoxidase (MPO) calculated after calibration against the standard curve. The red bars in (D) represent COPD patients requiring mechanical ventilation support (stage 
high), and the blue bars represent those not requiring such support (stage low).

International Journal of General Medicine 2025:18                                                                             https://doi.org/10.2147/IJGM.S516139                                                                                                                                                                                                                                                                                                                                                                                                   2257

Yu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



limitation.20 NETs are major contributors to chronic inflammation and lung tissue damage in COPD most of the time. 
Pharmacologists have been working on manipulating NETs formation and administering DNase to degrade the NETs 
scaffold to reduce the pathogenic effects of NETs.42 With the development of genomics in recent years, a series of 
gene signatures related to NETs formation have been gradually identified in various diseases and have been well 
applied in predicting ischemia-reperfusion injury after lung transplantation, sepsis, and thrombotic diseases.22,23 In our 
study, we used single-cell sequencing clustering analysis to identify differentially expressed genes in neutrophils and 
successfully identified NETosis-related genes associated with poor prognosis in COPD using machine learning 
combined with high-level gene signatures in COPD and ARDS from transcriptomics. Similarly, we detected higher 
levels of NETosis-related genes and MPO concentrations in alveolar lavage fluid samples from severe COPD patients 
requiring ventilator support.

A substantial body of research indicates that the genetic impact of smoking behavior increases over time.45 Long-term 
smoking suppresses DNA repair mechanisms and causes genomic changes, leading to the occurrence and development of 
respiratory diseases and even cancer.46 Non-smoking respiratory disease patients often have unique genetic biological 
characteristics and genetic susceptibility.47 Interestingly, we found differences in gene transcriptomes between smoking 
and non-smoking COPD, leading us to construct separate NETosis-related gene models for predicting outcomes in smoking 
and non-smoking COPD patients. These models were preliminarily validated for effectiveness in smoking and non-smoking 
subgroups using multiple external datasets. Feature importance evaluation by the three machine learning methods showed 
that RNASE2 and NHS genes play a key role in smoking and non-smoking groups, respectively. Human RNase2 is 
a secreted protein expressed in white blood cells and is reported to have antiviral activity against single-stranded RNA 
viruses.48 Current research also finds that RNase2 specifically cleaves cellular ncRNA.49 During oxidative stress responses, 
Schlafen 2 (SLFN2) protein can protect tRNA from RNase cleavage.50 The immunomodulatory role and potential targeting 
of RNase2 in human macrophage cell RNA populations have been preliminarily validated.49 However, whether the high 
expression of the RNASE2 gene mediates neutrophil autophagy and further promotes NETosis formation during the 
inflammatory state of COPD exacerbations remains unconfirmed. NHS gene mutations are found to be associated with the 
X-linked hereditary disease Nance-Horan syndrome (NHS).51,52 Early studies found extra expression of NHS in the kidneys, 
lungs, and thymus.51 Our subcellular localization found that NHS seems to be closely related to the scaffold structure of the 
cell membrane. There is currently very limited research on the NHS gene in immune cells.

In summary, the innovation of this study lies in the use of machine learning combined with single-cell omics 
and transcriptomics to screen for NET signature genes in smoking COPD and non-smoking COPD and to construct 
two gene models suitable for predicting outcomes in different COPD groups. However, the limitation of this study 
is the small number of clinical samples used for validation, which may cause some bias in the data. Additionally, 
there are no fixed indicators for the detection of neutrophil extracellular traps, often requiring multiple indicators 
and various detection techniques for identification. This study preliminarily uses MPO alone as a detection 
indicator for neutrophil extracellular traps, which can only serve as a preliminary reference, and the above 
shortcomings will be gradually improved in our subsequent research.

Conclusion
In conclusion, this study identified NET signature genes in smoking COPD and non-smoking COPD using various 
machine learning methods combined with single-cell omics and transcriptomics, and constructed COPD NDEGs Model 
A and Model B. The specificity of the feature genes RNASE2 and NHS and the good predictive efficacy of the scoring 
models were validated through internal training sets, external datasets, and clinical samples.

Data Sharing Statement
The datasets utilized and analyzed in this study were obtained from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/).
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