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Background: Melasma is a prevalent pigmentary disorder characterized by treatment resistance and high recurrence. Existing 
assessment methods like the Melasma Area and Severity Index (MASI) are subjective and prone to inter-observer variability.
Objective: This study aimed to develop an AI-assisted, real-time melasma severity classification framework based on deep learning 
and clinical facial images.
Methods: A total of 1368 anonymized facial images were collected from clinically diagnosed melasma patients. After image 
preprocessing and MASI-based labeling, six CNN architectures were trained and evaluated using PyTorch. Model performance was 
assessed through accuracy, precision, recall, F1-score, AUC, and interpretability via Layer-wise Relevance Propagation (LRP).
Results: GoogLeNet achieved the best performance, with an accuracy of 0.755 and an F1-score of 0.756. AUC values across severity 
levels reached 0.93 (mild), 0.86 (moderate), and 0.94 (severe). LRP analysis confirmed GoogLeNet’s superior feature attribution.
Conclusion: This study presents a robust, interpretable deep learning model for melasma severity classification, offering enhanced 
diagnostic consistency. Future work will integrate multimodal data for more comprehensive assessment.
Keywords: melasma, deep learning, convolutional neural networks, MASI, clinical decision support

Introduction
Melasma, a common hyperpigmentation disorder, predominantly affects middle-aged women, particularly those of Asian 
descent, with prevalence rates ranging from 8.8% to 40%.1 Its pathogenesis is multifactorial, with key risk factors 
including UV exposure, hormonal therapies, and pregnancy.2 Despite a variety of treatment modalities, melasma 
management remains challenging due to prolonged treatment durations, variable outcomes, and high recurrence rates.3 

Moreover, adherence to treatment is often compromised due to persistent pigmentation and high recurrence rates, 
significantly affecting patients’ quality of life. These limitations underscore the need for early diagnosis, standardized 
monitoring tools, and enhanced patient education to optimize therapeutic outcomes.4

Current melasma assessment heavily relies on subjective scoring systems, such as the Melasma Area and Severity 
Index (MASI), which are influenced by clinician variability and patient compliance.5 Additionally, patient dropout and 
inconsistent follow-up data hinder comprehensive evaluations of treatment efficacy, making it challenging to develop 
standardized treatment strategies. The lack of objective and quantitative assessment tools limits the ability to manage 
patient expectations effectively and optimize therapeutic approaches.6 These limitations underscore the need for 
improved, technology-driven evaluation methods to enhance diagnostic accuracy and treatment monitoring.

In response to these challenges, deep learning and advanced imaging technologies are being explored to revolutionize 
melasma assessment.7,8 Machine learning-based approaches offer the potential to provide objective, reproducible 
measurements of pigmentation depth and distribution, reducing reliance on subjective clinician evaluations. Our study 
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aims to develop a deep learning-based melasma assessment model trained on facial images, which could significantly 
improve diagnostic precision and disease monitoring. Notably, although all patients in this study underwent reflectance 
confocal microscopy (RCM) imaging, its detailed application in melasma assessment is not the focus of this research. 
Instead, we plan to integrate RCM-based analysis in future studies to further refine objective assessment methods and 
establish a comprehensive evaluation system.

By integrating artificial intelligence (AI) with clinical dermatology, this study seeks to bridge the gap between 
subjective evaluation and precise, data-driven analysis. Standardizing melasma assessment through AI-driven methodol-
ogies could significantly enhance early diagnosis, personalized treatment plans, and long-term patient outcomes. 
Collaborative efforts between dermatologists, researchers, and technology developers are crucial to validating these 
emerging techniques, ultimately transforming melasma management and improving the quality of life for affected 
individuals.

Materials and Methods
Design
This study included 1368 patients clinically diagnosed with melasma at the dermatology outpatient clinic of Wuhan First 
Hospital between January 1 and June 30, 2024. All participants underwent facial reflectance confocal microscopy (RCM) 
for diagnostic confirmation. The study focused exclusively on evaluating the area and depth of melasma lesions on the 
face.

To ensure high-quality and standardized image acquisition, all clinical photographs were captured using a Canon EOS 
90D DSLR camera equipped with a 100mm f/2.8 macro lens. Uniform illumination was achieved using consistent LED 
ring lighting to minimize shadows and enhance clarity. Each image was taken at a fixed distance of 50 cm, with the 
camera positioned perpendicular to the patient’s face to ensure consistency in angle and framing. A solid black 
background was used for all images to reduce visual distractions and enhance lesion contrast. Furthermore, all imaging 
sessions were conducted by the same trained medical photographer to minimize inter-operator variability.

Facial images were assessed using the Melasma Area and Severity Index (MASI) by three board-certified dermatol-
ogists, each performing an independent evaluation. To mitigate subjectivity and improve consistency, the final MASI 
score for each patient was calculated as the average of the three individual assessments. Severity was categorized based 
on the averaged score: mild (<16), moderate (16–32), and severe (32–48). The labeled images were then randomly 
divided into training, validation, and testing datasets in a 6:3:1 ratio for model development and evaluation. A summary 
of the study workflow is shown in Figure 1.

This study was conducted in accordance with the Declaration of Helsinki and was approved by the Institutional 
Review Board of Wuhan First Hospital (IRB No. [2023] 53). Written informed consent was obtained from all 
participants. To protect participant confidentiality, all personal identifiers were removed, and facial images were 
anonymized prior to analysis. The study adhered to all applicable national and international guidelines for human subject 
research.

Outcome Measures
PyTorch, as a leading deep learning framework, offers a variety of pre-trained deep learning models,1 a widely adopted 
deep learning framework that provides access to a variety of pre-trained convolutional neural networks (CNNs). The pre- 
labeled facial images were used to train and evaluate six CNN architectures: AlexNet, ResNet-18, GoogLeNet, VGG16, 
DenseNet121, and MobileNetV2. All models were fine-tuned to classify melasma severity into three categories: mild, 
moderate, and severe.

Model performance was assessed using multiple standard classification metrics, including accuracy, precision, recall, 
F1-score, and area under the receiver operating characteristic curve (AUC). These metrics were computed using the 
following formulas:

True Positive (TP)
The model correctly predicts the positive class (both the prediction and actual values are positive).
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True Negative (TN)
The model correctly predicts the negative class (both the prediction and actual values are negative).

False Positive (FP)
The model incorrectly predicts the positive class when the actual class is negative (predicted-positive, actual-negative).

False Negative (FN)
The model incorrectly predicts the negative class when the actual class is positive (predicted-negative, actual-positive).

The evaluation metrics are calculated as follows:
Precision¼ TP

TPþFP Recall¼ TP
TPþFN F1¼ 2� Precision�Recall

PrecisionþRecall Accuracy¼ TPþTN
TPþTNþFPþFN

In this study, we used Layer-wise Relevance Propagation (LRP) to visualize and quantify model attention to 
melasma-related features. LRP is a widely used interpretability technique in medical AI and has been successfully 
applied in dermatology and histopathology to enhance model transparency and clinical trust.2–4 Each model was 
initialized using PyTorch with pre-trained weights and adapted to a three-class output. Images were resized to 
224×224 pixels and normalized before being passed through the network to obtain class predictions. LRP values 
were then computed by backpropagating the predicted class score and extracting relevance from the gradient- 
weighted input tensor. For each severity category, mean LRP scores were calculated across a validation set, and 
the results were statistically aggregated by model and severity level. These values were visualized using bar plots 

Figure 1 Overview of the study design and representative clinical and RCM images across melasma severity levels. The upper panel illustrates the study workflow, including 
patient recruitment, clinical image acquisition, preprocessing, MASI scoring, dataset partitioning, model training, and evaluation. The lower panel presents representative 
clinical photographs (left) and corresponding reflectance confocal microscopy (RCM) images (right) for mild, moderate, and severe melasma. Mild melasma is characterized 
by increased epidermal pigmentation without melanocyte hypertrophy. Moderate melasma shows enlarged and active melanocytes. Severe melasma exhibits highly reflective 
dendritic melanocytes, indicating intense pigment activity and distribution.
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to compare attribution patterns, and CSV files were generated for reproducibility. The LRP analysis provided 
insight into whether the models assigned higher relevance to image regions associated with increasing melasma 
severity, thereby supporting clinical interpretability and model transparency.

Results
Image Preprocessing and Annotation
A total of 1368 anonymized facial images were collected from patients clinically diagnosed with melasma at the 
Dermatology Department of Wuhan First Hospital. Prior to model training, all images underwent systematic preproces-
sing to enhance quality and ensure consistency across the dataset. Each image was resized to 224×224 pixels to match the 
input specifications of the convolutional neural networks (CNNs) used in this study. Normalization was applied to 
standardize pixel value distribution, improving training efficiency and model convergence.

To increase dataset diversity and prevent overfitting, data augmentation was performed using PyTorch’s transforma-
tion pipeline. The augmentation techniques included random horizontal flipping, rotation (±15°), and color jittering to 
simulate variations in lighting and skin tone. These transformations effectively enriched the training data and enhanced 
the generalization performance of the models.

For annotation, all images were independently evaluated by three board-certified dermatologists using the Melasma 
Area and Severity Index (MASI), a standardized scoring system for assessing melasma severity. Based on the averaged 
MASI scores, images were categorized into three severity levels: mild (MASI < 16), moderate (MASI 16–32), and 
severe (MASI 32–48).5 A quality control protocol involving cross-verification among raters ensured annotation 
consistency.

In addition to MASI-based annotation, reflectance confocal microscopy (RCM) imaging was used to support severity 
classification and provide biological validation of melasma characteristics. RCM analysis revealed progressive changes in 
pigmentation and melanocyte morphology across severity levels. Mild melasma typically exhibited increased epidermal 
pigmentation without significant melanocyte alteration. In moderate cases, melanocytes appeared enlarged and more active, 
whereas severe melasma was characterized by highly active melanocytes with prominent, high-reflectivity dendritic 
structures. These observations were consistent with the MASI-based grading and further supported the reliability of the 
deep learning classification framework. Representative clinical photographs and corresponding RCM images for each 
severity level are shown in Figure 1, illustrating the typical features observed in mild, moderate, and severe melasma.

Model Development and Training
During the modeling phase, six widely used convolutional neural network (CNN) architectures—AlexNet, ResNet-18, 
GoogLeNet, VGG16, DenseNet121, and MobileNetV2—were selected from PyTorch’s pre-trained model library and 
fine-tuned for classifying melasma severity.6–11 Each model was adapted to accommodate three output classes (mild, 
moderate, severe), corresponding to MASI-graded and RCM-supported labels.

The training process utilized the Cross-Entropy Loss function to quantify the discrepancy between predicted and actual 
labels, while the Adam optimizer was employed for its efficiency in handling gradients, featuring a learning rate of 0.001 and 
a weight decay of 0.0001 to prevent overfitting.12,13 Models were trained using a batch size of 32 over multiple epochs. 
Throughout the training cycle, training and validation losses and accuracies were continuously monitored and recorded.

To enhance generalization and reduce the risk of overfitting, an early stopping mechanism was implemented. Training 
was halted if validation loss failed to improve for three consecutive epochs. This approach ensured that model 
performance was optimized without excessive parameter updates. The training dynamics for each model, including 
learning curves and validation accuracy trends, are illustrated in Figure 2, highlighting the convergence behavior and 
comparative learning stability across architectures.14

Model Evaluation and Performance Comparison
Following model training, all six architectures were evaluated on a held-out test set using standard performance metrics, 
including accuracy, precision, recall, and F1-score.15 Accuracy reflected the overall classification correctness, while 
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precision and recall assessed the model’s ability to minimize false positives and capture true positives, respectively. The 
F1-score, as the harmonic mean of precision and recall, offered a balanced view of model performance. The quantitative 
results are summarized in Table 1.

Among the evaluated models, GoogLeNet outperformed all others, achieving the highest accuracy (0.755), precision 
(0.770), recall (0.755), and F1-score (0.756). DenseNet and MobileNet followed, with comparable accuracy scores of 
0.727 and F1-scores of 0.712 and 0.694, respectively. In contrast, AlexNet and VGG16 performed poorly, with accuracy 
values of 0.453 and low F1-scores (0.283), indicating limited suitability for this classification task.

To further assess discriminative capacity, Receiver Operating Characteristic (ROC) curve analysis was performed for 
each model.16 As shown in Figure 3, GoogLeNet achieved the highest AUC values across all three severity levels: 0.93 
for mild, 0.86 for moderate, and 0.94 for severe melasma. These results indicate its superior ability to distinguish 

Figure 2 Training and validation loss and accuracy curves for the six deep learning models. (A–F) present individual training process for each of the six convolutional neural 
networks (CNNs) evaluated: (A) AlexNet, (B) DenseNet, (C) ResNet, (D) VGG16, (E) GoogLeNet, and (F) MobileNet.GoogLeNet, DenseNet, and MobileNet 
demonstrated smoother convergence and lower validation loss across epochs, indicating improved generalization. In contrast, AlexNet and VGG16 exhibited unstable 
learning curves, consistent with their lower classification performance on the test set.

Table 1 Performance Metrics of Deep Learning Models for 
Melasma Severity Classification

Model Accuracy Precision Recall F1-Score

Alexnet 0.453237 0.205424 0.453237 0.282712
Resnet 0.625899 0.658339 0.453237 0.601982

Googlenet 0.755396 0.769569 0.755396 0.756077

Vgg16 0.453237 0.205424 0.453237 0.282712
Denseet 0.726619 0.783832 0.726619 0.711599

Mobilnet 0.726619 0.753674 0.726619 0.693812
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Figure 3 Receiver Operating Characteristic (ROC) curves and AUC values for melasma severity classification. (A–F) present individual ROC curves for each of the six 
convolutional neural networks (CNNs) evaluated: (A) AlexNet, (B) ResNet, (C) GoogLeNet, (D) VGG16, (E) DenseNet, and (F) MobileNet. ROC curves were plotted for 
each model across mild, moderate, and severe classes. GoogLeNet achieved the highest AUC scores (0.93 for mild, 0.86 for moderate, and 0.94 for severe), indicating 
superior discriminative ability. ResNet showed moderate performance, while AlexNet and VGG16 had flatter curves, reflecting limited sensitivity and specificity.
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between clinically meaningful severity grades. ResNet followed with moderate AUC values, while AlexNet and VGG16 
showed limited discriminative capability, consistent with their classification performance.

In addition to predictive metrics, Layer-wise Relevance Propagation (LRP) was employed to evaluate model 
interpretability. LRP quantified the average contribution of input image regions to the model’s decision-making 
across severity categories. As illustrated in Figures 4 and 5 and Table 2, GoogLeNet demonstrated the lowest and 
most concentrated LRP values (Mild: 0.0351; Moderate: 0.0412; Severe: 0.0418), suggesting highly localized and 
efficient feature attribution. Conversely, AlexNet and VGG16 exhibited higher and more diffuse LRP values, 
indicating less precise decision focus. DenseNet and MobileNet offered moderate interpretability, balancing 
relevance intensity with spatial specificity. These patterns suggest that GoogLeNet not only achieved high classi-
fication accuracy but also aligned well with clinical patterns of pigmentation, enhancing trustworthiness in decision 
support.

Figure 4 Layer-wise Relevance Propagation (LRP) heatmaps illustrating feature attribution for melasma severity classification. Representative heatmaps are shown for mild, 
moderate, and severe melasma cases across different models. The LRP visualizations highlight image regions contributing most strongly to the model’s predictions. 
GoogLeNet displays more concentrated and interpretable activation patterns, whereas AlexNet and VGG16 exhibit more diffuse and less localized relevance signals, 
indicating reduced interpretability.
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Collectively, these findings validate GoogLeNet as the most accurate, robust, and interpretable model for melasma 
severity classification. Its superior performance across quantitative metrics, high AUC values, and focused LRP 
relevance patterns highlight its potential for integration into AI-assisted clinical decision-making. These results also 
underscore the importance of choosing appropriate architectures that balance performance and explainability when 
deploying deep learning tools in dermatological imaging tasks. While previous studies have focused primarily on binary 
classification for melasma detection or differentiating it from other hyperpigmented lesions, our study is among the first 
to implement a deep learning framework for severity stratification of melasma. By training on a MASI-labeled dataset 
and evaluating model interpretability via LRP, we provide a fine-grained, clinically relevant classification system that 
supports individualized management decisions.17

Discussion
Deep Learning in the Clinical Assessment of Melasma: Opportunities and Challenges
The utilization of deep learning models in the clinical assessment of melasma presents several transformative advantages, 
particularly in enhancing diagnostic accuracy and optimizing treatment protocols.18 Melasma, characterized by its 
complex pathogenesis and variability in presentation, necessitates precise evaluation for effective management.19 

Traditional assessment methods, such as the Melasma Area and Severity Index (MASI), heavily depend on subjective 
evaluations from clinicians, which can lead to inconsistencies and biases in scoring.5 In contrast, deep learning 

Figure 5 Bar plots of mean LRP relevance values across models and melasma severity levels. This figure summarizes the average LRP scores for each CNN model when 
classifying mild, moderate, and severe melasma. Lower values indicate more focused and efficient feature attribution. GoogLeNet consistently demonstrates the lowest LRP 
scores across all severity levels, while AlexNet and VGG16 show higher, less specific attribution patterns.

Table 2 Mean Layer-Wise Relevance Propagation (LRP) Values by Model and Severity 
Category

AlexNet ResNet GoogLeNet VGG16 DenseNet MobileNet

Mild 0.054575 0.046193 0.035092 0.034498 0.045951 0.042852
Moderate 0.060662 0.049674 0.041241 0.038392 0.054858 0.049603

Severe 0.060207 0.049125 0.041784 0.03666 0.055251 0.049445
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methodologies can offer objective measurements, thereby reducing variability in assessments and enhancing the 
reliability of diagnoses.20

Mechanistic Impact on Assessment and Management
Objective Quantification of Pigmentation
These models can measure lesion area, intensity, and border sharpness quantitatively using image analysis, replacing 
subjective clinical judgment with pixel-based metrics.

Region-Specific Analysis
Advanced models can localize pigmentation across facial regions (eg, cheeks, forehead, upper lip), offering more 
granular insights than traditional global severity scores. This helps in identifying lesion-prone areas for targeted 
interventions.

Temporal Tracking
Longitudinal monitoring with deep learning enables precise tracking of changes in pigmentation over time. Clinicians 
can assess the efficacy of treatment regimens with consistent, automated scoring.

Predictive Modeling
By integrating patient metadata (age, ethnicity, treatment history), deep learning models can potentially predict treatment 
response or relapse likelihood, supporting personalized treatment plans.

Advantages of Pre-Classification Models
One of the primary benefits of deploying deep learning in melasma evaluation is the ability to analyze vast amounts of 
imaging data efficiently. Machine learning algorithms can identify patterns in pigmentation depth and distribution that 
may be imperceptible to the human eye.21 This capability not only aids in the classification of melasma severity but also 
facilitates early diagnosis, which is crucial for initiating timely and appropriate treatment.22 Early intervention is essential 
for preventing the worsening of pigmentation and improving overall patient outcomes.

Furthermore, pre-classification models streamline the diagnostic process by serving as an initial screening tool. They 
can categorize images into broad severity levels (mild, moderate, severe) quickly, allowing dermatologists to prioritize 
cases that may require immediate attention. This rapid triage capability enhances clinical workflows and improves patient 
management by enabling focused resource allocation.

Limitations and Potential Biases
Despite these advantages, several challenges remain in the implementation of deep learning for melasma assessment.23

Data Bias
Many deep learning models are trained on datasets that may not be representative of all skin tones, age groups, or ethnic 
backgrounds. This can lead to inaccurate assessments in underrepresented populations, perpetuating health disparities.

Annotation Gaps
The absence of region-specific annotations limits the model’s ability to understand pigment distribution nuances. Lesions 
on different facial zones may present distinct challenges requiring differentiated management strategies.

Confounding with Other Conditions
Overlaps in visual features between melasma and other pigmented skin conditions (eg, post-inflammatory hyperpigmen-
tation) can result in false positives or negatives, necessitating dermatologist oversight for verification.24

Lack of Interpretability
Clinicians may be hesitant to adopt “black box” AI tools without understanding the rationale behind their predictions. 
Enhancing model explainability—through techniques like heatmaps or attention mechanisms—will be essential to 
gaining clinician trust.
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Performance and Applicability of Various Models
The deep learning models employed, while powerful, are not without their limitations. Each architecture has unique 
strengths and weaknesses that can impact performance in clinical settings:

AlexNet
Simple and easy to implement, but prone to overfitting and limited in depth. Suitable for initial studies with limited data.6

VGG16
High accuracy and effective for transfer learning, yet resource-intensive with a large model size. Works well in well- 
resourced environments.9

GoogLeNet
Efficient with fewer parameters, allowing for multi-scale feature extraction, making it good for diverse manifestations of 
melasma. Its complexity may lead to longer training times but is beneficial for capturing various lesion characteristics.8

ResNet
Extremely deep architecture that mitigates vanishing gradient issues, ideal for detailed classification with adequate 
resources. Its ability to learn complex features makes it particularly effective for accurate melasma assessments.7

DenseNet
Efficient in parameter use and promotes feature reuse, making it strong for smaller datasets. However, it can be complex 
to train and has higher memory usage.10

MobileNet
Lightweight and efficient, suitable for mobile applications, but may trade off some accuracy and robustness in complex 
datasets.11

The applicability of pre-classification models extends beyond initial assessments; they can be utilized in ongoing 
monitoring and follow-up care. By consistently evaluating the severity of melasma over time, these models can help track 
treatment efficacy and recurrence, facilitating timely adjustments to therapeutic strategies.

However, the challenges of model interpretability pose a significant barrier to clinical adoption. Clinicians may be 
hesitant to rely on “black box” models that offer little insight into the decision-making process behind predictions. To 
overcome this, ongoing research must focus on developing interpretability frameworks that elucidate how models arrive 
at specific classifications, fostering clinician trust in these technologies.

Integrating Clinical Expertise
While the use of deep learning can enhance the accuracy of melasma assessments, it does not eliminate the need for 
clinical expertise. Dermatologists bring a wealth of knowledge regarding the multifactorial aspects of melasma, including 
hormonal influences, UV exposure, and individual patient history. Therefore, the integration of deep learning tools should 
complement, rather than replace, traditional clinical evaluations. A collaborative approach that combines the strengths of 
both technologies and human expertise will yield the best outcomes for patients.

Comparison with Existing Literature
Recent advances in deep learning have demonstrated significant potential in skin lesion analysis and pigmentary 
disorders, particularly in improving diagnostic accuracy and supporting clinical workflows. Tschandl et al showed that 
AI models could match or exceed dermatologist-level performance in skin cancer classification, highlighting the clinical 
applicability of CNNs in dermatological contexts.4 While previous studies have focused primarily on binary classification 
for melasma detection or differentiating it from other hyperpigmented lesions, our study is among the first to implement 
a deep learning framework for severity stratification of melasma. By training on a MASI-labeled dataset and evaluating 
model interpretability via Layer-wise Relevance Propagation (LRP), we provide a fine-grained, clinically relevant 
classification system that supports individualized management decisions.17
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Future Directions
In terms of future directions, the evolution of deep learning methodologies holds great promise for advancing the 
management of melasma. Researchers should focus on enhancing dataset diversity to ensure that models generalize well 
across different demographics and skin types. This could involve expanding the cohort from which images are drawn, 
ensuring representation of various ethnic backgrounds and skin conditions. Additionally, exploring the integration of 
multimodal data—such as patient demographics, treatment history, and genetic factors—may yield deeper insights into 
the efficacy of treatments and help refine predictive models.

Continued collaboration among dermatologists, researchers, and technology developers is essential for addressing the 
current limitations and developing standardized protocols for melasma management. As these technologies advance, it 
will be crucial to ensure that they are implemented in ways that enhance clinical workflows, improve patient experiences, 
and ultimately lead to better health outcomes.

Conclusion
This study demonstrates that deep learning provides a transformative solution for improving the accuracy, consistency, 
and clinical applicability of melasma severity assessment. By addressing the limitations of traditional methods such as 
subjective scoring and inter-observer variability, deep learning models offer objective, consistent, and data-driven tools 
that significantly enhance diagnostic accuracy and efficiency. Pre-classification models, in particular, demonstrate strong 
utility in streamlining clinical workflows and enabling early intervention through rapid image-based screening.

However, the successful implementation of these technologies depends on overcoming key challenges, including data 
bias, lack of region-specific annotations, and limited interpretability. Moreover, while AI systems can support clinical 
decision-making, they must not replace the nuanced insights of experienced dermatologists. A synergistic approach— 
combining technological innovation with clinical expertise—remains essential for optimal patient care.

Looking ahead, efforts should focus on diversifying training datasets, integrating multimodal data sources, and 
developing interpretable AI frameworks to foster trust and transparency. Through ongoing collaboration between 
clinicians, researchers, and engineers, deep learning technologies can be further refined and responsibly integrated into 
routine dermatological practice, ultimately improving patient outcomes in melasma care and beyond.
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