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Background: Idiopathic macular hole is an ophthalmic disease that seriously affects vision, and its early diagnosis and treatment have 
important clinical significance to reduce the occurrence of blindness. At present, OCT is the gold standard for diagnosing this disease, 
but its application is limited due to the need for professional ophthalmologist to diagnose it. The introduction of artificial intelligence 
will break this situation and make its diagnosis efficient, and how to build an effective predictive model is the key to the problem, and 
more clinical trials are still needed to verify it.
Objective: This study aims to evaluate the role of deep learning systems in Idiopathic Macular Hole diagnosis, grading, and 
prediction.
Methods: A single-center, retrospective study used binocular OCT images from IMH patients at the First Affiliated Hospital of 
Nanchang University (November 2019 - January 2023). A deep learning algorithm, including traditional omics, Resnet101, and fusion 
models incorporating multi-feature fusion and transfer learning, was developed. Model performance was evaluated using accuracy and 
AUC. Logistic regression analyzed clinical factors, and a nomogram predicted surgical risk. Analysis was conducted with SPSS 22.0 
and R 3.6.3. P < 0.05 was statistically significant.
Results: Among 229 OCT images, the traditional omics, Resnet101, and fusion models achieved accuracies of 93%, 94%, and 95%, 
respectively, in the training set. In the test set, the fusion model and Resnet101 correctly identified 39 images, while the traditional omics 
model identified 35. The nomogram had a C-index of 0.996, with macular hole diameter most strongly associated with surgical risk.
Conclusion: The deep learning system with transfer learning and multi-feature fusion effectively diagnoses and grades IMH from 
OCT images.
Keywords: transfer learning, deep learning, optical coherence tomography, idiopathic, macular hole, multi-feature, grading

Introduction
Idiopathic Macular Hole (IMH) refers to a discontinuity in the photoreceptor layer of the macula, with an incidence of 
approximately 0.1% in adults.1–3 It is primarily caused by pathologic vitreomacular traction.4,5

The diagnostic criteria for idiopathic macular holes have undergone significant evolution. While initial classification 
by Gass relied on biomicroscopic assessment of full-thickness defects and diameter measurements,6 the introduction of 
high-resolution optical coherence tomography (OCT) - with its remarkable 3.3 µm axial resolution - has established OCT 
as the current gold standard. This imaging modality provides histology-level visualization of retinal architecture, 
enabling precise morphological assessment of macular pathology. Altaweel et al7 proposed an OCT-derived grading 
system for IMH diagnosis. Clinical treatment protocols are determined based on the diagnostic classification established 
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through OCT examination.8–11 Furthermore, accumulating clinical trial evidence has led to continuous evolution in 
surgical approaches for IMH.12

However, OCT-based diagnostic and grading approaches present several inherent limitations: Firstly, the current 
approach relies heavily on empirical observation and demands significant expertise from experienced ophthalmologists. 
However, severe shortages of eye care specialists persist in many rural and underserved regions. With only approximately 
40,000 registered ophthalmologists serving China’s vast population, patients frequently experience delayed diagnosis and 
treatment. This critical gap in care access often leads to preventable vision deterioration and even blindness. Secondly, 
the current approach lacks standardized quantitative criteria, leading to significant variability in diagnostic accuracy 
among clinicians of differing experience levels. This inconsistency in assessment directly impacts both disease classi-
fication and subsequent treatment decisions. Particularly for small macular holes (<250μm), intravitreal pharmacologic 
therapy alone often achieves satisfactory anatomical closure rates.13,14

DL technology holds significant advantages in the AI field, especially in medical image analysis. Transfer learning 
further enhances DL system performance under limited biomedical image conditions. DL systems excel in several 
aspects of image analysis: their core advantage lies in high accuracy, comparable to expert-level diagnostics across 
diabetic retinopathy,15 age-related macular degeneration,16 glaucoma,17 and cataract18 diagnostics. Highly automated, DL 
models minimize human intervention and subjective errors, enhance diagnostic consistency, and expedite processing 
speed.19 Moreover, DL models handle large datasets cost-effectively, reducing manpower and resource demands.20

However, current literature lacks dedicated DL models specifically for diagnosing and grading Idiopathic Macular Hole 
(IMH), particularly in large-scale clinical applications.21–23 Existing studies predominantly employ conventional machine 
learning approaches, which demonstrate limited generalizability and fail to fully leverage multimodal imaging features, 
resulting in suboptimal performance metrics. Multimodal data integration combines heterogeneous data from various 
imaging modalities (OCT, fundus photos, FA) and sources (imaging, clinical, genomic data) to extract complementary 
features and improve model performance. The combination of DL, transfer learning, and multimodal data integration shows 
promise for optimizing ophthalmic image analysis, though its application to IMH remains to be clinically validated.

This study aims to fill this gap by developing a DL model based on transfer learning and multi-feature fusion for IMH 
diagnosis and classification. The following key questions are addressed: whether the diagnostic performance of the fusion 
model is improved compared with the traditional omics model and ResNet101; We compare its performance with 
traditional computational models and ResNet101. Visualization of predictive factors through nomograms24 to assist in the 
formulation of surgical intervention strategies, providing clinicians with personalized decision-making criteria to predict 
the need for surgical intervention in Idiopathic Macular Hole.

Materials and Methods
Ethical Approval and Patient Selection
This retrospective study was approved by the Ethics Review Committee of First Affiliated Hospital of Nanchang University 
(Ethics No.(2023) CDYFYYLK(04–040). All procedures were carried out in accordance with the principles of the Declaration 
of Helsinki. We included patients with macular holes admitted to the Ophthalmology Department of First Affiliated Hospital 
of Nanchang University from November 2019 to January 2023. Patients with (1) A diagnosis of IMH was made and OCT 
examination was performed in the outpatient department of our hospital; (2) clearly visualized macular holes on OCT were 
included in this study. Patients with(1) Macular hole caused by high myopia; (2) received treatment prior to examination; and 
(3) had other ocular or systemic diseases were excluded. The research roadmap is shown in Figure 1.

A total of 229 OCT images were included. All OCT images were obtained from the same machine, the Heidelberg 
Spectralis OCT(Heidelberg Engineering, Dossenheim, Germany), and were acquired by the same ophthalmologist. Two 
ophthalmologists reviewed these images and classified each macular hole into the following grades: grade 0 - without macular 
hole; grade 1 - impending macular hole without vitreomacular traction; grade 2 - impending macular hole with vitreomacular 
traction; grade 3 - small full-thickness macular hole (FTMH) <250 μm; grade 4 - medium FTMH >250 μm but <400 μm; and 
grade 5 - large FTMH >400 μm. Images that were classified as different grades were reviewed by a senior ophthalmologist. All 
OCT images were randomly assigned to the training and test sets with an 8:2 ratio. As such, 183 and 46 images were assigned 
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to the training and test sets, respectively. ITK-SNAP software (Version 3.8.0) was used to manually mark the region of 
interest(ROI) in the OCT images. The minimal extent of the full-layer macular hole was measured on OCT images, which was 
defined as “hole diameter” and the diameter of the hole base at the level of the retinal pigment epithelium, which was defined 
as “basal diameter”, and whether there was a post-vitreous detachment(PVD) was recorded, with 1 and 0, respectively.

Image Acquisition and Classification
Development and Preliminary Feature
In the present investigation, a deep learning (DL) framework has been meticulously engineered to prognosticate the grading of 
Idiopathic Macular Holes (IMH). Ensuring adherence to data privacy standards, all input variables were anonymized prior to 
analysis. The dataset was bifurcated into distinct cohorts for training and validation purposes, with the latter serving to 
evaluate the algorithm’s capability to discriminate among multiple treatment stratagems corresponding to the IMH severity. 
The predictive efficacy of the proposed DL architecture was benchmarked against conventional omics-based models as well as 
established convolutional neural network paradigms, specifically the Resnet101 architecture, to ascertain its relative perfor-
mance in multi-classification tasks within the domain of ophthalmological interventions.

Extraction Advanced Feature Extraction Using
Utilizing the “PyRadiomics” package, an open-source Python library, a comprehensive extraction of radiomic features was 
performed. Specifically, the Python Software Foundation’s offering facilitated the delineation of seven distinct radiomic 

Figure 1 The flowchart of this study.
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feature categories. These encompassed first-order statistics, two-dimensional morphological metrics, and higher-order 
textures, including the Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM), Gray- 
Level Size Zone Matrix (GLSZM), Gray-Level Difference Matrix (GLDM), and Gray-Level Dependence Matrix (GLDM). 
For an in-depth elucidation of the individual features, interested parties are directed to consult the official PyRadiomics 
documentation, accessible at (https://pyradiomics.readthedocs.io/en/latest/features.html). The spatial distribution and central 
tendencies of the traditional omics-derived features are graphically represented in Figure 2.

PyRadiomicsResNet101 Model Adaptation and Feature Extraction
ResNet10125 is an instantiation of the ResNet model which comprises 101 layers and utilizes a directed acyclic graph (DAG) 
structure for deep learning. This model is renowned for its efficacy in reducing error rates in image classification tasks, 
exemplified by its winning performance in the 2015 ImageNet Contest with a 3.6% error rate. The architecture of ResNet 
consists of an input stem that applies convolution with a large stride for dimensionality reduction, followed by four stages 
containing multiple residual learning blocks, each stage typically decreasing resolution and increasing width (channels). The 
output stem is adaptable to various tasks, marking ResNet101’s flexibility and deep compositional capabilities. Firstly, the 
model was initialized with the parameters obtained from full training on the ImageNet26 dataset. Then, due to the relatively 
small OCT image data set, a transfer learning program was used to train the pre-training model multiple times (100 epochs). 
The parameters were fine-tuned by the feedback of cross entropy loss function to improve network performance. The average 
probability of all images was used to produce DL or DTL features, DTL features means deep learning features for which 
transfer learning has been performed, and the output of the penultimate FC layer of the convolutional neural network (CNN) 
was used as DL or DTL features. The structure of convolutional neural network was implemented in Python.

Integrative Approach for Feature Fusion
In our study, features from the Resnet101 model were combined with those from a traditional omics model through 
a process known as feature fusion.27 This method enhances the discriminative power of the resulting feature vector by 
improving the representation of image information.

LASSO Regression for Feature Refinement
In our study, computer-generated randomized sampling distributed 80% of the images to the training set and 20% to the 
test set. We utilized LASSO regression to enhance model efficiency by eliminating less significant features through 
penalizing larger regression coefficients, effectively shrinking some to zero. This method prioritizes feature screening to 
refine the model. The selection of the regularization parameter, λ, critical to the LASSO model, was determined through 
5-fold cross-validation, choosing λ based on the optimal performance criterion.

Figure 2 (A) Violin diagram of feature distribution extracted from traditional omics model; (B) Pie chart of feature distribution extracted from traditional omics model.
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Machine Learning Models for Prediction
Each feature group was individually normalized by z-score to combine features of different magnitudes into one. Non-zero 
coefficients were used as useful predictors in each feature group, and LASSO regression was used for feature selection in the 
training cohort. Machine learning classifier Support vector machine (SVM) and GradientBoosting were used for predictive 
classification.

Visualization Techniques for Model Insights
We employed the Grad-CAM technique to produce heat maps that visualize the neural network’s response during the grading 
of Idiopathic Macular Holes (IMH). These heat maps highlight specific regions within the images that are significantly 
influential in predicting the outcome, thereby providing insights into which areas of the image the neural network focuses on 
for making its predictions. This visualization aids in understanding the model’s decision-making process.

Construction and Evaluation of the Nomogram
Logistic regression was used to analyze clinical factors, and a nomogram was established based on the results of the 
analysis to predict the relationship between clinical factors and the risk of requiring surgical treatment. “Grade 0–3” was 
defined as requiring no surgery or only intravitreal drug injection, and “Grade 4–5” was defined as requiring vitrectomy. 
The evaluation of the prediction model includes three parts, Discrimination: it is obtained by calculating the area under 
ROC curve (AUC) and the consistency index (C-index); Calibration: Describe by drawing the Calibrate Plot; Clinical 
Benefit: Evaluated using Decision Curve Analysis(DCA).

Statistical Analysis
All extracted features were dimensionally reduced by LASSO regression to improve the accuracy and fit of the modeling. The 
extracted features were then used to construct the prediction model with machine-learning methods, such as SVM and 
GradientBoosting. The performance of the study model was evaluated through AUC, accuracy measurements. Select data 
were also presented through confusion matrices and heat maps. Logistic regression was performed using the IBM Statistical 
Package for the Social Sciences (SPSS) 22.0 Windows software package. Nomogram developed and C-index calculated were 
based on logistic regression of software R 3.6.3. (http://www.r-project.org; version3.6.3). P value (two-sided) < 0.05 was 
considered to be statistically significant.

Results
Characteristics of Participants and OCT Images
A total of 229 OCT images from 229 participants were included in this study. According to the grading criteria, they were 
classified into grade 0 (27 images), grade 1 (58 images), grade 2 (73 images), grade 3 (15 images), grade 4 (23 images), 
and grade 5 (33 images). As shown in Table 1, 183 (80%) images comprised the training data set, while 46 (20%) images 
comprised the test set.

Table 1 Baseline Features of the Study Cohort and OCT Images

Clinical Characteristics Participants, No.(%) P value

Group Train (n = 183) Test(n = 46) –

OCT images 183 46 –

Age, median±SD(range), years 50.33± 15.59 53.65 ± 15.26 0.81

Male 86 25 0.37

Female 97 21
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LASSO Model and Feature Screening
LASSO regression was used to screen the features of the fusion model, and regularization was introduced to screen the 
weight of each feature. Each feature was assigned a coefficient that represented its weight size. The larger the penalty 
coefficient, λ, the smaller the weight. Through 5-fold cross-validation, the optimal λ value identified for the fusion model 
was 0.022230 (Figure 3). Through the application of LASSO regression, 12 features with non-zero coefficients were 
selected, while 56 redundant features were successfully eliminated. This process preserved the features that are strongly 
associated with the disease, thereby reducing computational time, mitigating the risk of overfitting inherent in small- 
sample datasets with excessive features, and ultimately enhancing the overall performance of the classifier.

Comparison of Model Classification Performance
The Accuracy
Both classifiers showed the fusion model achieving top test-set accuracy (GradientBoosting: 74%; SVM: 85%). Using 
the GradientBoosting classification model, our results showed that the accuracy of the traditional omics model, 
Resnet101 model and the fusion model were 93%,94% and 95% respectively, in the training set, whereas the scores 
were 70%,67% and 74% in the test set, respectively. Comparatively, by using the SVM classification model, the accuracy 
of the three model were 78%,93% and 92% respectively, in the training set, whereas the scores were 76%,85% and 85% 
in the test set, respectively. As shown in Table 2.

Receiver Operating Characteristic (ROC) Curves and Area Under ROC Curve (AUC)
We utilized ROC curves and AUC values to distinguish IMH grades. The fusion model (SVM-based) achieved superior 
or comparable AUC values (0.90–1.00 across grades 0–5) for IMH grading compared to traditional omics (0.70–1.00) 
and ResNet101 (0.88–1.00) models, with particularly improved performance for grade 4 (AUC=0.90 vs 0.70 in omics).

In detail, in the fusion model, using the SVM classification as the classifier, the AUCs for grades 0–5 were calculated 
as 1.00,0.97,0.97,0.90,1.00 and 1.00 respectively, whereas the scores were 1.00,0.92,0.93,0.70,0.98 and 1.00 in the 
traditional omics model, 1.00,0.96,0.98,0.88,1.00 and 1.00 in the Resnet101 model. The GradientBoosting-based fusion 
model demonstrated superior and more consistent performance across IMH grades 0–5 (AUCs: 0.88–1.00), particularly 
excelling in grade 4 classification (AUC=0.91 vs 0.67 in omics and 0.73 in ResNet101), while maintaining competitive 
results in other grades compared to both traditional omics and ResNet101 approaches.

In detail, in the fusion model, the AUCs for grades 0–5 were calculated as 1.00, 0.90, 0.93, 0.91, 0.88 and 0.97, 
respectively. In comparison, the AUCs for grades 0–5 in the traditional omics model were 1.00, 0.88, 0.95, 0.67, 0.93, 

Figure 3 Feature selection by LASSO model. (A) LASSO coefficient profiles of the 75 variables (in Fusion model); (B) The curve of the binomial deviation with respect to 
the parameter λ, where the vertical dotted line at the right shows the optimal value of λ (λ =0.022230) (in Fusion model).
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and 0.96, respectively, whereas the scores were 1.00,0.89,0.88,0.73,0.82 and 0.99, respectively in the Resnet101 model. 
As shown in Figure 4.

Confusion Matrix
The classification results of the test set were distributed in a 6×6 confusion matrix (Figure 5).

The fusion model demonstrated superior diagnostic performance, attaining the highest correct identification rates 
under both SVM (39/46) and GradientBoosting (34/46) classification frameworks when compared to traditional omics 
and ResNet101 models.

Table 2 The Accuracy of the Three Models for the Train and Test Set

Model Task Accuracy

Gradient Boosting SVM

Traditional omics model Label-train 93% 78%

Label-test 70% 76%

Resnet101 model Label-train 94% 93%

Label-test 67% 85%

Fusion model Label-train 95% 92%

Label-test 74% 85%

Figure 4 Receiver operating characteristic curves (ROC) and area under curve (AUC): AUC values for models under different classifiers. The five ROC curves in each 
figure represent the grade 0 (blue), grade 1 (Orange), grade 2 (green), and grade 3(red), grade 4 (purple), grade 5 (brown) respectively. “Class” means “grade”. (A and D) 
Traditional omics model; (B and E) Resnet101 model; (C and F) Fusion model.
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To elaborate, when SVM was used for predictive classification, the results showed that the fusion model demonstrated 
better recognition performance than the traditional omics model. Specifically, the fusion model identified 39 correct 
images, the same as the Resnet101 model, whereas the traditional omics model identified 35 images. The total number of 
images in the test set was 46. When GradientBoosting was used as the classification model, the three models demon-
strated lower accuracy. In this scenario, the fusion model, the Resnet101 model and the traditional omics model identified 
only 34,31 and 32 images correctly, respectively.

Heat Map
As seen in the heat maps, the central region of the macula is the primary region of interest (Figure 6). The blue regions 
indicate the model’s prioritized feature extraction zones, with macular retinal structural characteristics - particularly full- 
thickness discontinuity and macular hole diameter - emerging as the predominant discriminative features, as visually 
demarcated in the heatmap.

Nomogram
Based on the results of the Logistic regression model (Table 3), a nomogram (C-index =0.996, Figure 7) was established to 
predict the surgical risk. As shown in Figure 7, the hole diameter, basal diameter, and posterior vitreous detachment (PVD) 
were included as variables in the study. Each variable’s corresponding line is marked with a scale representing the possible 
range of values for that variable, while the length of the line segment reflects the magnitude of that factor’s contribution to the 
clinical outcome event. The “Point” means the individual score, which represents the corresponding single-item score for 
each variable at different values; and the “Total Point”, which is the sum of the individual scores for all variables after their 
values are determined. “Predicted probability”: This indicates the risk of requiring surgical intervention.

The results show that the risk score corresponding to hole diameter is the highest (100 points), PVD (35 points), and 
basal diameter (25 points). When clinical risk factors are visualized, the risk of surgery can be predicted. First, each 
independent clinical risk factor was projected upward to the first row of the scale to obtain the score for each factor, and 

Figure 5 Confusion matrix. “label” means “grade”. (A–C) When Gradient Boosting was used as the prediction classification model in the test set, the number of correct 
predictions by traditional omics model, Resnet101 model and fusion model were 32, 31 and 34 respectively; (D–F) When SVM was used as the prediction classification 
model in the test set, the number of correct predictions by the three model were 35, 39 and 39 respectively.
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then the scores of the three risk factors were summed to obtain the total score. The ROC curve is shown in Figure 8A, 
and the AUC is 0.996, which illustrates the high prediction accuracy of the nomogram.

The calibration curve is shown in Figure 8B, where the points are close to the 45-degree line, indicating a high degree 
of fit between the predicted and observed values. Due to the small sample size in this study, we combined the training and 
validation cohorts and applied DCA to evaluate the clinical benefit of the nomogram, as shown in Figure 8C, when the 
threshold was between 0–1, the prediction model was clinically beneficial.

Figure 6 (A, D and G) Heat maps of the OCT images; (B, E and F) OCT images of IMH; (C, F and I) Composite images of the previous two images. The blue area is the 
synaptic focus of the system. The primary feature extraction region is localized at the macular hole position.

Table 3 Logistic Regression of Clinical Variables

Clinical Variables Z-Score P-value

Hole diameter 4.11 4.00E-05(P<0.05)

Basal diameter 2.36 0.02(P<0.05)

PVD 0.01 0.99(P>0.05)

Abbreviations: IMH, Idiopathic Macular Hole; AUC, area 
under the curve; OCT, optical coherence tomography (OCT).
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Discussion
The treatment of IMH is closely tied to its OCT-based staging. Several DL models for macular hole diagnosis and 
postoperative status prediction have been proposed. For example, Dong et al developed an AI system that can screen and 
diagnose 10 kinds of retinal diseases, including macular holes. Results from this study showed a high sensitivity of 
89.8% (95% confidence interval, 89.5–90.1%).28 In comparison, the DL model proposed by Hu et al was shown to 
predict macular hole status following vitrectomy with internal limiting membrane peeling with an accuracy, sensitivity, 
and specificity of 84.6%, 85.37%, and 81.99%, respectively.29 Meanwhile, Lachance et al combined clinical features with 
a DL model to predict visual improvement after macular hole surgery. The AUC for this model was 81.9 ± 5.2.30

Figure 7 Nomogram for predicting surgical risk of idiopathic macular hole. Surgical decision predictors in IMH: The hole diameter measured at the retinal defect; Basal 
diameter at the retinal pigment epithelium level; PVD status (arrowheads indicate detached posterior hyaloid).

Figure 8 (A) The ROC curve and AUC are used to estimate the accuracy of the nomogram. AUC=0.996, which shows good discriminative ability between the IMH group 
and the normal group. (B) Calibration plot comparing actual vs predicted non-adherence. The x axis is the predicted probability, and the y axis is the actual probability. The 
45-degree line (gray line) shows that the prediction matches the reality. (C) The DCA curve of the nomogram assessed the clinical benefit. X-axis: Threshold probability 
(0%-100%) indicating the clinical intervention cutoff. Y-axis: Standardized net benefit quantifying the model’s clinical utility across thresholds. Solid blue line represents the 
prediction model, compared to “treat-all” (dashed line) and “treat-none” (horizontal line) strategies.
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DL technology has allowed researchers to continuously develop and upgrade existing DL models. First proposed in 
2015, ResNet31 was a milestone in the development of DL. ResNet is a residual neural network that mainly serves CNNs. 
CNNs can analyze matrices of images and gradually extract underlying features from highly abstract images. The more 
layers in the network, the richer the abstract features that can be extracted from each level. The more abstract the 
features, the larger the amount of semantic information that can be contained within them. Research has also shown that 
networks with more layers did not mean achieve better optimization, sometimes with more degradation. ResNet can also 
integrate residual mapping between each layer, which significantly increases model efficiency.

Transfer learning32 is another example of efficient machine-learning technology. Transfer learning, defined as the influence of 
one kind of learning on another, has been increasingly applied in DL. This particular algorithm is pre-trained with a specific data 
set containing millions of ordinary images. The resulting output is a high-precision model with a relatively smaller training data 
set. Comparatively, multi-mode fusion technology refers to the combination of multiple data sets in various forms, such as images 
and text, for target prediction. The resulting model can summarize the features of various modes. The primary benefit of this 
particular model is that it can extract the most valuable information from the obtained features. However, there may be some 
redundancy in the extracted information. As such, there remains room for improvement with this model.33

Machine learning (ML) algorithms have been used for key feature training and recognition as well as group 
classification. Support Vector Machine (SVM)34 learning is one of many machine learning methods. Compared to 
other ML methods, SVM is very powerful in identifying subtle patterns in complex data sets. The main idea of support 
vector machine regression is to map the data x to the high level feature space F through a nonlinear mapping Φ, and carry 
out linear regression in this space. Support vector machines create separate hyperplanes to give class-level predictions, 
which is a powerful method for constructing classifiers. GradientBoosting35 is another ML, which is a combination of 
regression and classification tree models that apply progressively improved estimation to boost predictive power, helping 
to improve the accuracy of the tree. Each new tree constructed approximates the negative gradient of the empirical loss 
function, which can correct the mistakes made by the previous trees in the collection. Both of these classifiers have been 
widely used in medicine. The comparison and method improvement of various classifiers and the application of 
integration technology make the performance of classifiers improve constantly.36,37 This study aimed to develop 
a transfer learning and multi-feature fusion-based AI system that can classify IMH from OCT images and help guide 
ophthalmologists regarding patient treatment. In addition, we compared the diagnostic performance of the two classifiers 
(SVM and GradientBoosting) for IMH classification. Our results demonstrate that the SVM model achieved higher 
diagnostic accuracy than Gradient Boosting in the confusion matrix analysis. We hypothesize that Gradient Boosting 
underperforms SVM because its tree-based additive model struggles to capture critical non-linear feature interactions 
(hole diameter and PVD) that are explicitly modeled by SVM’s kernel trick.

To the best of our knowledge, there are no previous reports on DL models for OCT-based macular hole grading. However, 
other DL models have been proposed for the diagnosis of other ophthalmologic conditions. For example, Hung et al utilized 
three other anterior segment-based AI models to construct a model that can grade pterygium. The accuracy values of Hung’s 
model was 86.67%.22 Son et al compared the application of ResNet18, WideResNet50-2, ResNext50, and their fusion models 
for cataract grading. The results from their study demonstrated that their fusion model had the best predictive performance, 
with an accuracy of more than 90%.23 Bhardwaj et al applied the InceptionResnet-V2 deep neural network framework to 
propose a quadrant-integrated automatic diabetic retinopathy classification method with an accuracy of 93.33%.21 Li et al 
adopted the CNN-combined transfer learning method of Inceptionresnet V2 to screen patients at risk of vision loss from high 
myopia. The resulting model had sensitivity and specificity values over 90%.38 These studies have all demonstrated the 
excellent diagnostic performance of deep learning models for multi-class data. Our study is the first to apply deep learning 
models to the grading and screening of idiopathic macular holes. By combining transfer learning and multi-feature fusion 
methods, we further explored the use of multimodal data to improve feature extraction techniques. Additionally, we compared 
the screening performance of traditional radiomics with that of the ResNet101 model. This represents a novel attempt in the 
application of deep learning models for classification-based diagnostic screening of ophthalmic diseases. Our results show 
that, the fusion model in this study also showed exceptional results, with accuracy 95%, using the classification model of 
GradientBoosting. Comparatively, the traditional omics model and the Resnet101 model had accuracy scores of 93% and 
94%, respectively. Similar results were found with classification model of SVM. Notably, both models performed not 
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particularly well when it came to small macular holes. As such, future research can focus on add the clinical measurement 
results of macular hole diameter into the model as a training parameter. Through comparative analysis, we observed that the 
deep learning models demonstrated exceptional performance in terms of both accuracy and AUC values. Specifically, the 
Fusion model and Resnet101 model achieved the highest test accuracy and AUC values under the SVM algorithm, high-
lighting their outstanding capability in handling complex data. High AUC values indicate that the models have excellent 
discriminatory power across various thresholds, enabling more accurate predictions of positive and negative samples.

Specifically, with the SVM algorithm, the Fusion model and Resnet101 model achieved AUC values of 0.99 and 0.98, 
respectively, while the traditional omics model had an AUC value of 0.96. Under the Gradient Boosting algorithm, the 
AUC values were 0.94, 0.90, and 0.92 for the Fusion model, Resnet101 model, and traditional omics model, respectively. 
These high AUC values further support the superior performance of the models.

AUC values are crucial for evaluating model performance, especially with imbalanced datasets. Higher AUC values 
indicate that the model has better discriminatory power, meaning it can accurately distinguish between positive and negative 
samples across various thresholds. In this study, the deep learning models, particularly the Resnet101 model and the Fusion 
model, achieved high AUC values, underscoring their potential in practical applications. A higher AUC value means the 
model can maintain good performance in recognizing positive and negative samples across different thresholds, which is 
particularly important when handling imbalanced datasets, as it ensures the model does not favor the majority class.

When SVM was used as the classifier, the confusion matrix showed the maximum number of correct identifiers, and 
the three models (the fusion model, the Resnet101 model and the traditional omics model) were 39, 39 and 35, 
respectively. However, with GradientBoosting, the correct scores were only 34, 31, 32, respectively. Therefore, when 
SVM was used as the classifier, our model showed better classification effect.

In summary, the deep learning models, especially the Resnet101 model and Fusion model, demonstrated high 
accuracy and AUC values in IMH classification, proving their superior capability in handling complex datasets. These 
results not only provide effective tools for clinical practice but also guide future research directions.

Research has shown that the minimum diameter of the macular hole (hole diameter)10 and the basal diameter39 of the 
macular hole are closely associated with the surgical outcomes of macular hole treatment. In addition, the latest macular 
hole classification also takes the diameter of macular hole as one of the important criteria, and PVD is another important 
classification index.8 According to the latest grading criteria and combined with the results of our regression analysis 
(Table 3),it can be seen that macular hole diameter is the most relevant to predict the possibility of surgery, but the 
correlation of PVD did not show statistical significance in our results, which may be related to our small sample size, and 
a larger sample is still needed to confirm in the future. The macular hole diameter, basal diameter and PVD were 
analyzed as clinical variables of the nomogram, and the results showed that the prediction model had good diagnostic 
performance (C-index = 0.996). Calibration Plot and DCA were used for model evaluation, and the results also showed 
good performance of the prediction model.

Image grading analysis has broad medical applications, including disease diagnosis, condition monitoring, and 
treatment evaluation. This study, to the authors’ knowledge, is the first to report on macular hole grading diagnosis. 
Current research in image grading primarily focuses on deep learning techniques, such as convolutional neural networks 
(CNNs) and pre-trained models, along with multimodal data fusion. Key challenges in this field include effectively 
extracting key features from large datasets, enhancing model generalization, and validating models in clinical settings.

This study introduces a novel approach in ophthalmic disease diagnosis, using deep learning and multi-feature fusion 
techniques. By employing CNNs and transfer learning, the need for large-scale data is reduced, easing data labeling, 
lowering costs, and improving model accuracy. LASSO regression was used to efficiently extract features from imaging 
data, optimizing the fusion strategy and enhancing model generalization.

Additionally, this study incorporated clinical factors (eg, posterior vitreous detachment and macular hole diameter) and 
developed a nomogram to predict the relationship between these factors and the risk of requiring surgery. This innovative 
approach validated the model in clinical practice, with results demonstrating excellent predictive capabilities.

Our study demonstrates the high accuracy and AUC values of deep learning models in IMH classification, indicating 
their superior performance in handling complex medical imaging data. Deep learning models, particularly Resnet101 and 
the fusion model, possess robust feature extraction capabilities that extend beyond OCT images to other types of medical 
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imaging, such as X-rays, CT scans, and MRI images.40 The use of transfer learning in our study has shown the potential 
to achieve high-precision classification with smaller datasets, a method applicable to other medical imaging tasks like 
breast cancer screening and skin lesion detection.41,42 Additionally, the successful application of multimodal fusion 
technology in this study suggests that combining different types of imaging data can provide more comprehensive 
diagnostic information.43 For instance, in oncology, combining PET and CT scans can enhance diagnostic accuracy.44 

The importance of high AUC values lies in their performance on imbalanced datasets, ensuring that models remain 
efficient in identifying minority classes (such as abnormal cases), which is crucial for practical clinical applications.19 

Therefore, deep learning models exhibit generalizability and effectiveness across various medical imaging tasks. Future 
research should further validate the performance of these models in other medical imaging fields, thereby advancing the 
comprehensive development of medical imaging analysis.

Our study has limitations. Firstly, our dataset was limited in size and derived from a single center. Small sample size 
is a key factor contributing to model overfitting. When the training data volume is insufficient relative to model 
complexity, the model cannot adequately learn generalizable patterns. This manifests as the model excessively memor-
izing training set noise (specific scanning artifacts) rather than learning pathological features, ultimately compromising 
generalization capability. Secondly, image quality plays a crucial role, as poor-quality image data can significantly impair 
the model’s ability to learn generalizable patterns. In our study design, we implemented several measures to mitigate 
overfitting risks: (1) applied regularization techniques to reduce the influence of non-essential features, (2) employed 
cross-validation to evaluate model performance, and (3) excluded poor-quality OCT images through rigorous quality 
control. These combined measures effectively minimize the impact of potential overfitting.

Future work should focus on: 1. Expanding the dataset, especially with data from multiple centers, to validate the 
model’s generalization and robustness. 2. Enhancing multimodal data fusion, integrating additional imaging like OCT-A 
and Fundus Photography to improve accuracy and diagnostic capability. 3. Developing real-time diagnostic tools that 
integrate the model into existing medical workflows. 4. Researching personalized treatment plans by incorporating 
patient differences and histories for more precise recommendations. 5. Improving model interpretability, such as 
enhancing heatmap displays, to help clinicians better understand and trust the model’s outputs for clinical use.6. 
Enhancing the verification and supervision processes for clinical physicians and promptly eliminating the noise and 
unimportant features of learning characteristics will further improve the performance of the model.

Conclusion
Our study shows that the DL model based on multi-feature fusion and transfer learning can be used to diagnose and grade 
macular holes from OCT images. The performance of fusion model is better than that of traditional omics model and 
Resnet101 model. Among the classifiers tested, SVM demonstrated superior classification performance. The nomogram 
based on macular hole diameter has high accuracy in predicting surgical risk and the indicator with the highest risk is the 
hole diameter.
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