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Objective: To develop an interpretable machine learning (ML) model using dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) radiomic data, dosimetric parameters, and clinical data for predicting radiation-induced hepatic toxicity (RIHT) in patients 
with hepatocellular carcinoma (HCC) following intensity-modulated radiation therapy (IMRT).
Methods: A retrospective analysis of 150 HCC patients was performed, with a 7:3 ratio used to divide the data into training and 
validation cohorts. Radiomic features from the original MRI sequences and Delta-radiomic features were extracted. Seven ML models 
based on radiomics were developed: logistic regression (LR), random forest (RF), support vector machine (SVM), eXtreme Gradient 
Boosting (XGBoost), adaptive boosting (AdaBoost), decision tree (DT), and artificial neural network (ANN). The predictive 
performance of the models was evaluated using receiver operating characteristic (ROC) curve analysis and calibration curves. 
Shapley additive explanations (SHAP) were employed to interpret the contribution of each variable and its risk threshold.
Results: Original radiomic features and Delta-radiomic features were extracted from DCE-MRI images and filtered to generate 
Radiomics-scores and Delta-Radiomics-scores. These were then combined with independent risk factors (Body Mass Index (BMI), V5, 
and pre-Child-Pugh score(pre-CP)) identified through univariate and multivariate logistic regression and Spearman correlation analysis to 
construct the ML models. In the training cohort, the AUC values were 0.8651 for LR, 0.7004 for RF, 0.6349 for SVM, 0.6706 for 
XGBoost, 0.7341 for AdaBoost, 0.6806 for Decision Tree, and 0.6786 for ANN. The corresponding accuracies were 84.4%, 65.6%, 
75.0%, 65.6%, 71.9%, 68.8%, and 71.9%, respectively. The validation cohort further confirmed the superiority of the LR model, which 
was selected as the optimal model. SHAP analysis revealed that Delta-radiomics made a substantial positive contribution to the model.
Conclusion: The interpretable ML model based on radiomics provides a non-invasive tool for predicting RIHT in patients with HCC, 
demonstrating satisfactory discriminative performance.
Keywords: radiation-induced hepatic toxicity, radiomics, hepatocellular carcinoma, MRI, machine learning

Introduction
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, which poses a significant threat to 
human health.1 The etiology of HCC has been demonstrated by relevant studies to be closely associated with viral hepatitis, 

Journal of Hepatocellular Carcinoma 2025:12 999–1015                                                     999
© 2025 Liu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Hepatocellular Carcinoma                                                

Open Access Full Text Article

Received: 18 February 2025
Accepted: 3 May 2025
Published: 17 May 2025

Jo
ur

na
l o

f H
ep

at
oc

el
lu

la
r 

C
ar

ci
no

m
a 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-2987-0259
http://orcid.org/0009-0004-9609-7819
http://orcid.org/0009-0007-7167-6074
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/4.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


aflatoxins, hepatic fibrosis, genetic elements, and specific chemical carcinogens.2–4 Early-stage HCC typically presents with 
subtle or no clinical symptoms. Studies have demonstrated that approximately 70%-85% of HCC patients are diagnosed at an 
advanced stage, missing the optimal surgical opportunity.5,6 Radiation therapy (RT), which is regarded as one of the key 
modalities in modern cancer treatment, plays a crucial role in the comprehensive treatment of HCC, particularly in patients 
with inoperable HCC or those requiring adjuvant therapy (eg, positive surgical margins, portal vein tumor thrombosis).4,7,8 With 
advancements in RT techniques, including intensity-modulated radiation therapy (IMRT), an increasing number of HCC patients 
have demonstrated effective disease control post-treatment.9

However, radiation-induced hepatic toxicity (RIHT), a common dose-limiting factor during RT for HCC patients, has become 
a significant barrier to treatment efficacy and patient prognosis.10 Traditionally, the prediction of RIHT has been mainly dependent 
on clinical factors and dose - volume parameters, such as the patient’s age, liver function status, tumor volume, and the irradiated 
liver dose.11–13 However, the accuracy of predicting RIHT based on these factors is limited and cannot meet the needs of clinical 
precision treatment. Gradually, radiomics has been drawing the attention of researchers, which involves extracting and compre-
hensively analyzing various imaging features to subsequently achieve the quantitative characterization of diseases has been 
attracting the attention of researchers, which involves the extraction and comprehensive analysis of various imaging features to 
achieve the subsequent quantitative characterization of diseases.14 Shen et al found that computed tomography (CT) - based 
radiomics could predict radiation - induced liver disease in hepatocellular carcinoma patients receiving stereo - tactic body 
radiotherapy.15 Unlike traditional static imaging (CT and magnetic resonance imaging(MRI)), which focuses on anatomical 
structures, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a multi-parameter and multi- 
dimensional evaluation of the liver, enhancing the quantification of anatomical and functional abnormalities,16 DCE-MRI focuses 
on microstructural details. Its triphasic dynamic characteristics combined with the temporal analysis advantages of delta- 
radiomics offer a novel approach for noninvasively predicting the risk of radiation-induced liver injury. This approach has 
been validated in preoperative evaluations, including assessing vessels encapsulating tumor clusters (VETC) patterns,17 predict-
ing microvascular invasion18 and liver function in chronic hepatitis B patients.19 The typical pathological manifestation of 
radiation-induced liver injury is hepatic veno-occlusive disease (VOD), characterized by swelling of central venous endothelial 
cells in the liver lobules, luminal stenosis or obstruction, along with hepatic sinusoid congestion, fibrin deposition, and collagen 
fiber proliferation, ultimately leading to portal hypertension and hepatic fibrosis.20,21 By integrating temporal components and 
radiomic features, DCE-MRI captures the dynamic distribution changes of contrast agents over time,22 allowing for the 
quantification of hepatocellular functional impairment23 and microvascular permeability abnormalities in liver tissue.24 This is 
closely related to the three mechanisms of radiation-induced liver injury: inflammatory amplification,25 increased oxidative stress, 
and accelerated fibrosi.21,26 This further highlights the unique value of DCE-MRI in liver disease assessment. Machine learning 
(ML), an important branch of artificial intelligence, has demonstrated its advantages in the diagnosis and treatment of liver 
cancer.27,28 However, these models usually lack high interpretability. Especially in the clinical environment, doctors need to be 
able to understand and trust the prediction results of the models.

To date, there have been no reports on the use of DCE-MRI models to predict RIHT following radiotherapy. In this study, we 
aim to develop an interpretable machine learning prediction model that integrates DCE-MRI radiomic features, clinical factors, 
and dose-volume parameters to predict the occurrence of RIHT. The design objective of this model is to provide evidence for 
personalized radiotherapy strategies to improve treatment efficacy and ensure patient safety.

Methods and Materials
Patients
Medical records of 481 HCC patients treated with IMRT in the Guangxi Medical University Cancer Hospital between 
February 2016 and August 2021 were retrospectively reviewed. Finally, after applying the eligibility and exclusion criteria, 
150 patients with HCC were enrolled in this study. The patients were diagnosed with HCC histologically and/ or radiologically 
based on the guidelines of the American Association for the Study of Liver Diseases29 and staged according to the Barcelona 
Clinic Liver Cancer (BCLC) system.8 The inclusion criteria were as follows: (1) Child-Pugh(CP)-A or -B class; (2) Eastern 
Cooperative Oncology Group (ECOG) scores of 0–2; (3) DCE-MRI images within two weeks prior to IMRT available for the 
analysis of radiomic features; (4) recovery of all hepatotoxic conditions of patients to grade 1 or less before the first fraction of 
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radiotherapy in those who received prior interventional therapy and (5) complete follow-up information. The exclusion criteria 
were as follows: (1) liver metastases and other pathological types of liver tumors and (2) RT interruption.

Radiation Treatment
All patients underwent enhanced CT with a slice thickness of 2.5–5 mm for IMRT planning. To identify intrahepatic lesions, CT 
and MRI fusion was performed, and all target volumes and critical organs were contoured using MIM software (version 6.8; MIM, 
USA). The gross tumor volume (GTV) was defined as the tumor lesion. To compensate for organ motion and positioning errors, 
the planning target volume (PTV) included the GTV plus a safety margin of 5–10 mm in all directions. The tumor irradiation dose, 
the tolerance dose of the surrounding normal tissues, and the radiotherapy technique used were comprehensively considered,30,31 

a linear accelerator (6 MV X-ray, ELEKTA Versa-HD or ELEKTA Synergy, Sweden) was used for radiotherapy with a total dose 
of 45–60 Gy, administered in 15–30 fractions.

Patient Follow-Up and Definition of RIHT
All patients underwent follow-up visits 1–4 months after IMRT completion and subsequently every 3 months, including 
liver function tests, abdominal dynamic CT, and/or MRI scans, to assess treatment outcomes and side effects. For patients 
with disease progression, salvage or palliative treatment was provided.

Classic radiation-induced liver disease (RILD) was defined as an anicteric elevation in alkaline phosphatase levels of 
at least twofold the upper normal level of RILD that occurred between two weeks and three months after RT. Meanwhile, 
non-classic RILD was defined as elevated levels of liver transaminases (alanine aminotransferase (ALT) or aspartate 
aminotransferase (AST)) of at least fivefold the upper limit of normal that occurred between one week and three months 
after RT.32 The evaluation of radiation-induced hepatotoxicity relied on the Child-Pugh scoring system. A Child-Pugh 
score (CP≥1 or CP≥2) is considered an effective tool for assessing radiation-induced hepatotoxicity.

MR Imaging Acquisition
All patients underwent IMRT treatment within two weeks after enhanced MRI examination, using a 1.5-T MRI system to scan the 
entire liver. Image acquisition was achieved through intravenous injection of Gd-EOB-DTPA (Primovist, Bayer, Germany). 
Scanning was performed at 20 seconds, 60 seconds, and 180 seconds post-injection to obtain arterial phase, portal venous phase, 
and delayed phase images (arterial phase (AP), portal venous phase (VP), and delayed phase (DP)). T2-weighted imaging (T2WI) 
and diffusion-weighted imaging (DWI) sequences were excluded from the radiomic feature analysis due to their slice thickness of 
approximately 6–10 mm, which may influence the quantitative analysis of radiomic features and were likely to introduce more 
partial volume effects.33,34 Detailed MRI sequences can be found in the Supplementary Material, Table S1.

Radiomics Feature Extraction and Selection
The regions of interest (ROIs) in the AP, VP, and DP of DCE-MRI were manually delineated by two independent radiologists 
using the MIM software. The ROIs were defined as normal liver tissue, and its extent was the total liver volume minus the GTV, 
the cystic part, and the gallbladder part. Feature extraction was performed using the FAE software (version 0.5.2; https://github. 
com/salan668/FAE), an open-source software based on PyRadiomics.35 Feature calculation was performed under the condition of 
resampling to voxel dimensions of 1 × 1×1 mm³, and all features conformed to the definitions specified by the Imaging Biomarker 
Standardization Initiative. A total of 107 features, the detailed descriptions of each feature can be found online (https:// 
pyradiomics.readthedocs.io/en/latest/features.html), including first-order features, shape features, texture features, gray-level co- 
occurrence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run-length matrix (GLRLM), gray-level size- 
zone matrix (GLSZM), and neighborhood gray-tone difference matrix (NGTDM), were extracted from each set of images 
(including original and derived images). The original radiomic features were defined as the image features extracted from three 
different sequences (AP, PP, and DP). Delta radiomic features were defined as the radiomic matrix data that is obtained by having 
the radiomic matrix data extracted from images configured at different time points and then being subjected to difference 
processing (V - A, D - A, D - V).

The reproducibility of the features was evaluated using the intraclass correlation coefficient (ICC). Only the features 
with an ICC ≥ 0.75 were retained for subsequent analysis, and the extracted features were normalized using the z-score 
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method. Redundant and irrelevant features were eliminated using the Pearson correlation coefficient (PCC) with a value 
of > 0.7. Subsequently, the least absolute shrinkage and selection operator algorithm (LASSO) was applied. The optimal 
weight parameter λ was selected using the 5-fold cross-validation method. The radiomics signature was constructed 
based on these selected features, and the original radiomics scores (Radiomics-scores) and Delta radiomics scores (Delta- 
Radiomics-scores) were calculated by summing up the weighted coefficients.

Model Construction
Patients were divided into training and validation sets in a 7:3 ratio. Univariate and multivariate logistic regression 
models were used to identify independent clinical and dosimetric risk factors for RIHT. Subsequently, Spearman 
correlation analysis was performed by combining the original radiomic scores (Radiomics-scores), Delta radiomic scores 
(Delta-Radiomics-scores), and independent predictors to assess the strength of the associations between these variables.

The training set patients were split into 70% for training and 30% for internal validation to avoid overfitting, with the 
internal validation dataset also used for model testing. Independent risk factors, combined with the Radiomics-scores and 
Delta-Radiomics-scores, were included in the development of the predictive model.

Seven machine learning models were constructed in this study, including logistic regression (LR), random forest (RF), 
support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), adaptive boosting (AdaBoost), decision tree (DT), 
and artificial neural network (ANN), for predicting radiation-induced hepatotoxicity. Grid search was used to optimize the 
hyperparameters of each model, and five-fold cross-validation was employed for hyperparameter selection.

The performance of the models was evaluated using multiple metrics, including comparing the models’ area under the 
curves (AUCs) with the Delong test, and calculating accuracy, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) using the critical value determined by the Youden index. The final model was 
independently tested on the validation set to ensure its generalizability.

Model Interpretation
Shapley additive explanation (SHAP) is a model interpretation framework based on cooperative game theory, with the core 
idea of quantifying the marginal contribution of each feature to the model’s prediction, addressing the interpretability problem 
of machine learning models.36 This method calculates Shapley values (a fair allocation criterion for feature contributions) to 
reveal the global impact of features on prediction outcomes, while also analyzing the prediction logic of individual samples at 
the local level, providing a dual perspective for explaining the “black-box” decision-making of the model.

In this study, the SHAP method was used to provide multi-level interpretation of the optimal model: First, global 
feature importance ranking (SHAP feature importance) was used to identify key predictors; second, SHAP summary 
plots were used to visualize the relationship between feature values and prediction directions (promotion/inhibition); 
finally, clinical significance was combined to select typical cases to construct SHAP force plots, visually demonstrating 
the positive and negative influences of features in individualized prediction. All analyses were conducted using the SHAP 
package on the Python platform (Version: 0.46.0).

Statistical Analysis
The cutoff values for continuous laboratory variables were determined using X-tile program 3.6.1 (Chicago, Rim Lab). 
Continuous variables were expressed as median and interquartile range (IQR), while categorical variables were expressed as 
frequency and percentage. The clinical characteristics of the training and testing sets were compared using the chi-square test (Chi- 
square test) and Mann–Whitney U-test, respectively. All statistical analyses were performed using R (version 4.2.3; https://www. 
r-project.org), Python (3.10.16), and SPSS 26.0 (IBM Corporation, Armonk, NY). A two-sided P value < 0.05 was considered 
statistically significant for all analyses.
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Results
Patient Characteristics
According to the inclusion and exclusion criteria, 150 patients were included in this study. In the entire cohort, the 
median age was 55 years (IQR, 43–66 years), with 15 females (24.4%) and 135 males (75.6%). Among the patients, 109 
(72.6%) were infected with hepatitis B virus (HBV). The median follow-up time was 180 days (IQR, 90–180 days). At 
the last follow-up, 72 patients (48.0%) experienced RIHT ≥ 1, and 21 patients (14.0%) experienced RIHT ≥ 2. Patients 
were randomly divided (7:3) into the training cohort (106 cases) and the validation cohort (44 cases). There were no 
significant differences between the training and validation cohorts in factors such as body mass index (BMI), pre-CP 
score, dose–volume parameters, and the number of people infected with HBV DNA (P >0.05), with baseline character-
istics shown in Tables 1 and 2.

Establishment of Radiomics-Scores and Delta-Radiomics-Scores
According to the “Radiomics Feature Extraction and Selection” process described in Radiomics Feature Extraction and 
Selection, 107 radiomic features were extracted from AP, PP, and DP for the original images, and 107 radiomic features were 
generated from V-A, D-A, and D-V for the Delta radiomic features. After applying ICC ≥ 0.75, z normalization, PCC redundancy 
elimination, and LASSO regression (Figure 1), a total of three radiomic features for the original images (Supplementary Material 
Figure S1A) were identified: AP-original_firstorder_90Percentile, AP-original_firstorder_Variance, and AP-original 
_glcm_MCC. Additionally, four Delta radiomic features (Supplementary Material Figure S1B) were identified: DP-VP- 

Table 1 Baseline Tables for Total Cohort, Training Cohort, and Validation Cohort

Variables Total  
Cohort (N = 150)

Training  
Cohort (N = 106)

Validation  
Cohort (N = 44)

P

CP ≥ 1 No 78(52.0%) 58 (54.7%) 20 (45.5%) 0.301

Yes 72(48.0%) 48 (45.3%) 24 (54.5%)
CP ≥ 2 No 129(86.0%) 92 (86.8%) 37 (84.1%), 0.664

Yes 21(14.0%) 14 (13.2%) 7 (15.9%)

Gender Male 135(90.0%) 95 (89.6%) 40 (90.9%) 1
Female 15(10.0%) 11 (10.4%) 4 (9.1%)

HBV Negative 41(27.3%) 29 (27.4%) 12 (27.3%) 0.991

Positive 109(72.7%) 77 (72.6%) 32 (72.7%)
Cirrhosis No 84(56.0%) 57 (53.8%) 27 (61.4%) 0.394

Yes 66(44.0%) 49 (46.2%) 17 (38.6%)

pre_CP ≤6 122(81.3%) 86 (81.1%) 36 (81.8%) 0.922
>6 28(18.7%) 20 (18.9%) 8 (18.2%)

ECOG 0 27(18.0%) 17 (16%) 10 (22.7%) 0.332

1/2 123(82.0%) 89 (84.0%) 34 (77.3%)
BCLC_stage A 36(24.0%) 24 (22.6%) 12 (27.3%) 0.796

B 16(10.7%) 11 (10.4%) 5 (11.4%)

C 98(65.3%) 71 (67%) 27 (61.4%)
Lymph_node_metastasis No 125(83.3%) 87 (82.1%) 38 (86.4%) 0.521

Yes 25(16.7%) 19 (17.9%) 6 (13.6%)

Distant_metastasis No 124(82.7%) 88 (83%) 36 (81.8%) 0.860
Yes 26(17.3%) 18 (17%) 8 (18.2%)

Vascular_cancer_thrombosis No 95(63.3%) 64 (60.4%) 31 (70.5%) 0.244

Yes 55(26.7%) 42 (39.6%) 13 (29.5%)
Age ≤55 77(51.3%) 52 (49.1%) 25 (56.8%) 0.387

> 55 73(48.7%) 54 (50.9%) 19 (43.2%)

AST, u/l ≤40 83(55.3%) 59 (55.7%) 24 (54.5%) 0.900

(Continued)
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original_glszm_LargeAreaHighGrayLevelEmphasis, DP-AP-original_shape_VoxelVolume, DP-AP-original 
_gldm_DependenceNonUniformity, and DP-AP-original_gldm_DependenceVariance. Subsequently, Radiomics-scores and 
Delta-Radiomics-scores were constructed.

Table 1 (Continued). 

Variables Total  
Cohort (N = 150)

Training  
Cohort (N = 106)

Validation  
Cohort (N = 44)

P

>40 67(44.7%) 47 (44.3%) 20 (45.5%)
ALT, u/l ≤40 87(58.0%) 58 (54.7%) 29 (65.9%) 0.206

>40 63(42.0%) 48 (45.3%) 15 (34.1%)

ALP, u/l ≤150 115(76.7%) 79 (74.5%) 36 (81.8%) 0.337
>150 35(23.3%) 27 (25.5%) 8 (18.2%)

AFP, ng/mL <400 111(74.0%) 74 (69.8%) 37 (84.1%) 0.069

≥400 39(26.0%) 32 (30.2%) 7 (15.9%)
Tumor_size, cm ≤5 59(39.3%) 38 (35.8%) 21 (47.7%) 0.175

>5 91(60.7%) 68 (64.2%) 23 (52.3%)

Immune checkpoint inhibitor therapy No 135(90.0%) 97(91.5%) 38(86.1%) 0.339
Yes 15(10.0%) 9(8.5%) 6(13.6%)

Targeted therapy No 139(92.7%) 99(93.4%) 40(90.9%) 0.410

Yes 11(7.3%) 7(6.6%) 4(9.1%)

Note: Both cohorts were well balanced in the clinical characteristics. Statistical comparisons between the training and validation cohorts were computed using the χ2 test. 
Abbreviations: HBV, Hepatitis B Virus; ECOG, Eastern Cooperative Oncology Group; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline 
phosphatase; AFP, Alpha - fetoprotein; BCLC, Barcelona clinic liver cancer; CP, Child–Pugh.

Table 2 Dose–Volume Parameters Baseline Tables for Training Cohort and Validation Cohort

Variables Training Cohort Median (IQR) Validation Cohort Median (IQR) P

Dose, Gy 51.00 (48.00–60.00) 50.30 (50.00–60.00) 0.939
GTV volume, mL 185.13 (75.11–611.21) 161.45 (53.68–606.62) 0.561

Normal liver volume, mL 982.30 (773.34–1173.40) 942.73 (759.73–1147.85) 0.898
Dmean, cGy 1756.70 (1344.50–2112.03) 1793.50 (1278.80–2060.78) 0.904

V5, % 66.31 (55.47–81.06) 72.55 (59.28–82.13) 0.391

V10, % 49.92 (36.88–60.31) 55.099 (36.79–63.58) 0.501
V15, % 39.67 (28.79–50.04) 44.78 (29.21–52.09) 0.426

V20, % 33.65 (22.60–42.87) 36.08 (23.34–44.24) 0.543

V25, % 29.20 (19.45–37.25) 30.15 (18.43–38.38) 0.659
V30, % 24.26 (15.64–30.49) 25.21 (14.52–31.72) 0.814

V35, % 19.60 (11.91–25.61) 20.29 (11.06–25.34) 0.787

Vs5, mL 298.15 (166.11–413.20) 287.66 (169.83–373.28) 0.686
Vs10, mL 462.56 (324.05–603.11) 446.04 (316.07–580.87) 0.686

Vs15, mL 549.91 (446.48–695.99) 548.17 (431.57–665.87) 0.760

Vs20, mL 606.65 (502.62–767.78) 621.89 (515.99–767.52) 0.875
Vs25, mL 672.41 (559.42–849.30) 687.28 (550.18–796.01) 0.875

Vs30, mL 717.50 (595.56–909.81) 748.65 (611.73–844.74) 0.905

Vs35, mL 761.16 (621.99–955.29) 795.709 (625.49–910.94) 0.931
BMI, kg/m2 22.50 (20.01–24.70) 21.75 (20.00–23.50) 0.381

Note: Both cohorts were well balanced in the dose–volume parameters variables. Statistical comparisons between the training and 
validation cohorts were computed using the Wilcoxon test. 
Abbreviations: IQR, interquartile range; GTV, gross tumor volume; Dmean, mean dose; BMI, body mass index; Vx, the percentage 
(%) of normal liver volume receiving more than x Gy; Vsx, the volume of normalliver receiving more than xGy.
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Model Performance
The univariate and multivariate logistic regression analyses of the training cohort for predicting the outcomes associated 
with RIHT ≥ 1 are presented in Table 3. The results of the univariate logistic analysis showed that BMI, pre_CP, Dmean, 
V5-35, and Vs5-25 were significantly associated with RIHT ≥ 1 (P < 0.05). The multivariate logistic regression analysis 
indicated that BMI (OR: 0.582, 95% CI: 0.378–0.896, P = 0.014), pre_CP (OR: 4.478, 95% CI: 1.166–17.194, P = 
0.029), V5 (OR: 1.75, 95% CI: 1.108–2.763, P = 0.016), and Vs5 (OR: 1.062, 95% CI: 1.014–1.113, P = 0.011) were 
independent risk factors for RIHT ≥ 1. Spearman correlation analysis was conducted using Radiomics-scores, Delta- 
Radiomics-scores, and independent predictive factors (BMI, pre_CP, V5, and Vs5). According to the Spearman correla-
tion analysis (Figure 2), a strong negative correlation (ρ = −0.86) was observed only between Vs5 and V5. V5 
demonstrated greater interpretability in clinical applications, and thus, Vs5 was excluded. The correlations between 
the remaining variables were generally weak. Specifically, the correlation coefficients between Radiomics_Score, 
Delta_Radiomics_Score, V5, and BMI were all less than or equal to 0.23, indicating a weak association. 
Subsequently, models were constructed using LR, RF, SVM, XGBoost, AdaBoost, DT, and ANN. The Supplementary 
Material lists the optimal hyperparameters for each model. External validation was then performed.

The performance of the ML models in the training and test cohorts is shown in Table 4. In the training cohort, the 
AUC values were 0.8651 (95% Confidence interval (CI): 0.7182–0.9798) for LR, 0.7004 (95% CI: 0.5159–0.8651) for 
RF, 0.6349 (95% CI: 0.4008–0.8300) for SVM, 0.6706 (95% CI: 0.4682–0.8413) for XGBoost, 0.7341 (95% CI: 
0.5431–0.8981) for AdaBoost, 0.6806 (95% CI: 0.4960–0.8552) for DT, and 0.6786 (95% CI: 0.4726–0.8500) for 
ANN. The results of the Delong test indicated that LR showed a significant difference in AUC compared to RF (P = 
0.024), SVM (P = 0.026), XGBoost (P = 0.021), DT (P = 0.020), and ANN (P = 0.034), whereas no significant 

Figure 1 Radiomics feature selection using the LASSO regression analysis. (A) and (B) is the original radiomic features; (C) and (D) is the delta radiomic features.
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difference was observed between LR and AdaBoost (P = 0.097) (Supplementary Material, Table S2). However, 
compared to XGBoost, LR demonstrated superior accuracy, sensitivity, PPV, and NPV. In the validation cohort, LR 
(AUC: 0.725) outperformed RF (AUC: 0.595), SVM (AUC: 0.570), XGBoost (AUC: 0.640), AdaBoost (AUC: 0.611), 
DT (AUC: 0.688), and ANN (AUC: 0.563). The LR model exhibited an accuracy of 0.705, sensitivity of 0.667, 
specificity of 0.750, PPV of 0.762, and NPV of 0.652 in the validation cohort. Therefore, LR was selected as the final 
model. Additionally, the receiver operating characteristic (ROC) curves (Figure 3) and performance radar plots (Figure 4) 
for all models in the training and validation cohorts are presented. The calibration curve (Figure 5) illustrates a good 
agreement between the predicted probabilities of LR and the actual occurrence of RIHT ≥ 1 in the total cohort.

Table 3 Univariate and Multivariable Logistic Regression Analysis of the Risk Factors in the 
Training Cohort

Variables Univariate Analysis Multivariate Analysis

OR (95% CI) P OR (95% CI) P

Gender 2.305(0.632–8.405) 0.206 – –
Age 1.723(0.796–3.732) 0.168 – –

HBV 1.244(0.524–2.951) 0.621 – –

Cirrhosis 0.714(0.33–1.544) 0.392 – –
ECOG 0.914(0.322–2.591) 0.866 – –

AFP 0.915(0.397–2.108) 0.835 – –

Tumor_number 1.012(0.466–2.199) 0.976 – –
Lymph_node_metastasis 1.108(0.41–2.995) 0.840 – –

Distant_metastasis 0.729(0.259–2.056) 0.551 – –

Vascular_cancer_thrombosis 0.997(0.456–2.179) 0.994 – –
BMI 0.815(0.709–0.936) 0.004* 0.582(0.378–0.896) 0.014*

pre_CP 1.869(1.163–3.005) 0.010* 4.478(1.166–17.194) 0.029*

AST 0.999(0.996–1.002) 0.578 – –
ALT 0.998(0.994–1.003) 0.492 – –

ALP 1.001(0.996–1.006) 0.776 – –

Tumor_size 1.036(0.948–1.131) 0.434 – –
Dose 1.015(0.967–1.064) 0.551 – –

GTV_volume 1(0.999–1.001) 0.638 – –

Normal_liver_volume 1(0.999–1.001) 0.871 – –
Dmean 1.002(1.001–1.003) <0.001* 1.005(0.999–1.012) 0.114

V5 1.051(1.023–1.08) <0.001* 1.75(1.108–2.763) 0.016*

V10 1.052(1.024–1.081) <0.001* 1.133(0.756–1.7) 0.545
V15 1.062(1.03–1.096) <0.001* 0.617(0.15–2.537) 0.503

V20 1.077(1.038–1.117) <0.001* 0.036(0.001–3.398) 0.152
V25 1.093(1.047–1.141) <0.001* 79.204(0.379–16,538.099) 0.109

V30 1.104(1.052–1.159) <0.001* 1.118(0.251–4.967) 0.884

V35 1.106(1.049–1.166) <0.001* 0.449(0.144–1.398) 0.167
Vs5 0.997(0.995–0.999) 0.007* 1.062(1.014–1.113) 0.011*

Vs10 0.997(0.995–0.999) 0.004* 0.999(0.973–1.026) 0.941

Vs15 0.997(0.995–0.999) 0.005* 0.962(0.86–1.077) 0.503
Vs20 0.998(0.996–0.999) 0.012* 0.747(0.509–1.095) 0.134

Vs25 0.998(0.996–1) 0.027* 1.488(0.953–2.323) 0.081

Vs30 0.998(0.997–1) 0.056 – –
Vs35 0.999(0.997–1) 0.095 – –

Note: Performed univariate and multivariate analyses using logistic regression analysis. * P < 0.05. 
Abbreviations: OR, odds ratio; CI, confidence interval; HBV, Hepatitis B Virus; ECOG, Eastern Cooperative Oncology 
Group; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AFP, Alpha - 
fetoprotein; BCLC, Barcelona clinic liver cancer; CP, Child–Pugh; BMI, body mass index; GTV, gross tumor volume; 
Dmean, mean dose; Vx, the percentage (%) of normal liver volume receiving more than x Gy; Vsx, the volume of 
normalliver receiving more than xGy.
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Model Interpretability
SHAP values were calculated for each independent risk factor in the LR model. In the interpretation, the SHAP bar plot 
(Figure 6A) illustrates the importance of each feature, with the results indicating that Delta_Radiomics contributed the 
most to the LR model. A summary plot of the SHAP values (Figure 6B) was generated, which explains the impact of 

Figure 2 The Spearman rank correlation.

Table 4 Comparison of the Performance of ML Models in Training and Validation Cohorts

Models AUC Accuracy Sensitivity Specificity PPV NPV

Training cohort LR 0.865 0.844 0.786 0.889 0.846 0.842

RF 0.700 0.656 0.857 0.500 0.571 0.818

SVM 0.635 0.750 0.429 1.000 1.000 0.692
XGBoost 0.671 0.656 0.786 0.556 0.579 0.769

AdaBoost 0.734 0.719 0.786 0.667 0.647 0.800

DT 0.681 0.688 0.857 0.556 0.600 0.833
ANN 0.679 0.719 0.500 0.889 0.778 0.696

Validation cohort LR 0.725 0.705 0.667 0.750 0.762 0.652

RF 0.595 0.614 0.417 0.850 0.769 0.548
SVM 0.570 0.636 0.542 0.750 0.722 0.577

XGBoost 0.640 0.636 0.417 0.900 0.833 0.563

AdaBoost 0.612 0.636 0.583 0.700 0.700 0.583
DT 0.688 0.682 0.625 0.750 0.750 0.625

ANN 0.563 0.591 0.333 0.900 0.800 0.529

Abbreviations: AUC, area under the curves; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector 
Machine; XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting; DT, Decision Tree; ANN, and Artificial 
Neural Network; PPV, positive predictive value; NPV, negative predictive value.
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each feature on the model’s predictions. Furthermore, two typical examples were provided by us to illustrate the 
interpretability of the model. Figure 7 shows two typical cases correctly predicted as RIHT ≥ 1 and < 1.

Discussion
In this study, an interpretable ML model was developed to predict RIHT in patients with primary HCC following IMRT. 
The model utilizes radiomic features extracted from DCE-MRI, clinical parameters, and dosimetric volume parameters, 
demonstrating promising performance. The radiomic features (Radiomics-scores and Delta-Radiomics-scores), along 
with BMI, V5, and the pre-CP, reflect critical aspects of liver tissue characteristics and individual patient features, 
providing key predictive value for the occurrence of RIHT. The LR model exhibited the best performance in both the 
training cohort (AUC = 0.865) and validation cohort (AUC = 0.725), showing a significant advantage over other machine 

Figure 3 ROC curves of the training and validation cohorts of 7 ML models. (A) ROC curves of the training cohort. (B) ROC curves of the validation cohort.

Figure 4 The performance radar chart of the training and validation cohorts of 7 ML models. (A) Performance radar chart of the training cohort. (B) Performance radar 
chart of the validation cohort.
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learning algorithms, such as RF and SVM. To the best of our knowledge, this is the first exploratory attempt to construct 
a non-invasive predictive model for RIHT using DCE-MRI-based radiomic features and interpretable ML algorithms.

RIHT is a dose-limiting toxicity. Previous studies have primarily focused on the mean liver dose (MLD) or V30.37,38 

In clinical practice, studies on liver radiation tolerance based on three-dimensional conformal radiation therapy (3D- 
CRT) have suggested that we consider V5 ≤ 86% as the liver dose limit standard,38 and in our patients, V5 did not exceed 
the threshold. IMRT is a more complex form of conformal radiation therapy, which, compared to previous 3D-CRT, 
particularly emphasizes strict liver dose-volume constraints. The arrangement of multiple beams in the plan enhances 
target conformity while increasing the dose gradient.39 In this case, traditional dosimetric parameters may no longer be 
independent predictors of RIHT. Although strict dose-volume constraints can reduce the variation in dose-volume metrics 
between individuals, significant differences may still exist in spatial dose distribution. This may be related to the 
radiation sensitivity of the liver’s microvascular network, where diffuse endothelial injury caused by low-dose radiation 
may amplify liver damage effects through an inflammatory cascade.40 V5 is used as an important metric for assessing the 
extent of liver damage in radiation therapy plans, and its correlation with RIHT has been confirmed by multiple 

Figure 5 The calibration curve of the all cohort of 7 ML models.

Figure 6 The interpretability of the ML radiomics model was assessed using the SHAP method. (A) The SHAP bar chart shows the importance of each feature based on the 
mean SHAP values. (B) The SHAP summary plot shows the impact of each feature on the model predictions. Individual dots symbolize patients, and different colors 
represent different levels of influence on the model output.
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studies,38,41 which is consistent with our findings (P = 0.016). Therefore, the long-term effects of low-dose radiation need 
to be reassessed, particularly in patients with coexisting cirrhosis or metabolic syndrome. Even if the MLD is within 
acceptable limits, extensive low-dose irradiation may still lead to irreversible damage.

The pre-CP is an important indicator for assessing liver function. Wu et al and Su et al developed nomograms based 
on the pre-CP score to predict RIHT.42,43 This study further demonstrated that patients with a Child-Pugh score >6 had 
a fourfold higher likelihood of developing RIHT than those with a score ≤6 (P = 0.029, OR = 4.478, 95% CI: 
1.166–17.194). A higher Child-Pugh score indicates more severe hepatic dysfunction, with lower hepatic reserve and 
metabolic capacity.44 This affects the risk of RIHT in HCC patients. BMI is widely recognized as a clinical indicator 
reflecting nutritional status and metabolic profile.45 The malnutrition state associated with low BMI may reduce radiation 
tolerance in hepatic parenchymal cells, while the underlying pathological mechanisms contributing to BMI reduction, 
particularly those associated with tumor catabolism, may disrupt systemic homeostasis.46,47 This dual-pathway mechan-
ism may impair hepatic metabolic regulation and immune function, thereby indirectly elevating susceptibility to RIHT.

In recent years, radiomics-based image analysis technology has developed rapidly, providing a non-invasive and 
automated method for tumor diagnosis, staging, and prognosis prediction.14 Previous studies have shown that pre- 
treatment CT radiomics models can predict radiation-induced liver injury (AUC = 0.889),15 which is higher than clinical 
models (AUC = 0.763).42 However, many patients with intermediate or advanced-stage HCC, who undergo transcatheter 
arterial chemoembolization (TACE) treatment, may develop significant radiological artifacts on CT scans due to the 
accumulation of iodized oil in radiation-affected areas, which do not appear on MRI. This could lead to misjudgment of 
the normal liver boundary during radiomics feature extraction using CT images due to radiological artifacts.48 Radiomics 
based on DCE-MRI has also garnered increasing attention, especially due to its superior soft tissue contrast and anti- 
artifact properties,49,50 which facilitate multi-parameter and multi-dimensional liver evaluation. It also enhances the 
quantitative analysis of anatomical structures and functional abnormalities.16 Previous studies have demonstrated the 
successful application of radiomics models based on DCE-MRI in predicting liver diseases.17–19 DCE-MRI can reflect 
functional information such as tissue blood flow, vascular status, and blood perfusion.51 Kim et al52 and Choi et al53 

reported that insufficient compensation of hepatic arterial flow can damage the liver parenchyma, causing edema and 
hepatocytic depletion. This helps assess changes in liver tissue microstructure and function. While delta-radiomics 
provides information on hemodynamics, original multi-parameter radiomics offers insights into tumor morphology and 
tissue characteristics. Integrating these two types of information enables a more comprehensive visualization for 
predicting RIHT.54

Figure 7 Force plots of personalized feature attributions of HCC patients with RIHT < 1 (A) and RIHT ≥ 1 (B). The arrow was used to represent contribution of each 
feature, the arrow pushes either a decrease (negative contribution) or an increase (positive contribution) in outcome probability. The red color indicates positive 
contribution, while blue color indicates negative contribution. The length of each arrow is proportional to the SHAP value of the feature.
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In this study, the original imaging features, namely AP-original_firstorder_90Percentile and AP-original 
_firstorder_Variance, reflected the distribution and dispersion of normal liver tissue at higher gray-scale values. This 
suggests a degree of tissue heterogeneity and microstructural unevenness, which may be associated with local inflam-
matory reactions in the liver.55 The maximum correlation coefficient in the gray-level co-occurrence matrix (AP-original 
_glcm_MCC) disclosed the linear correlation between different gray levels in liver tissue. It is closely linked to 
microstructural changes like disordered cell arrangement and increased stroma, which may impact hepatic perfusion 
and metabolism.56 Changes in the delta-radiomics features of gray-level dependence matrix nonuniformity and variance 
(DP-AP-original_gldm_DependenceNonUniformity and DP-AP-original_gldm_DependenceVariance) reflected the het-
erogeneity in gray-level dependence and variation during dynamic enhancement. These changes are associated with 
physiological processes such as hepatic perfusion and vascular permeability.57 Changes in the shape feature (DP-AP- 
original_shape_VoxelVolume) visually demonstrated the dynamic morphological changes in liver tissue. Associated with 
pathological processes like cellular swelling or atrophy, these changes offer crucial information for assessing liver 
function.58 DP-VP-original_glszm_LargeAreaHighGrayLevelEmphasis reflected the emphasis on large high-gray-value 
regions. Linked to perfusion differences between the hepatic arterial and portal venous phases, this feature aids in 
reflecting the hepatic blood supply and microcirculation status.59 SHAP analysis, a general tool for assessing feature 
importance in ML models, was employed to analyze and investigate the contributions of different variables in the risk 
prediction model. In our study, SHAP analysis revealed delta-radscore as the most informative feature, capturing subtle 
changes in liver tissue during dynamic enhancement. The information provided by these radiomic features complements 
conventional imaging findings and is difficult to interpret and identify with the naked eye.60,61 Thus, DCE-MRI-based 
radiomics strongly supports the prevention of radiation-induced liver toxicity.

Among the seven machine learning models, the LR model demonstrated superior performance in both the training and 
validation groups, confirming that the LR model not only fits well on the training set but also exhibits strong general-
ization ability when facing new data. Our model outperforms previous studies that used deep learning methods to predict 
radiation-induced liver injury (AUC: 0.865 vs 0.79).62 Although the LR model performed well on both the training and 
validation sets, the AUC value on the validation set (0.725) was lower than that on the training set (0.865), suggesting 
a potential overfitting risk. Expanding the sample size is critical for enhancing the model’s generalization ability and 
reducing overfitting. The LR model’s sensitivity (0.786) and negative predictive value (0.842) indicate room for 
improvement. Future model optimization could involve increasing the sample size or incorporating temporal imaging 
features, such as DCE-MRI data from multiple post-radiotherapy time points. The LR model’s linear combination 
approach quantifies each variable’s contribution, aligning with the preference for “white-box models” in clinical settings. 
While the relationships between data features in this study are relatively simple and linear, differences across datasets in 
sample size, data distribution, feature dimensions, and relationships require further assessment of the LR model’s 
generalizability using multi-center datasets. However, models like RF, SVM, and XGBoost had relatively low AUC 
values, indicating potential limitations in their training processes. While these models excel at handling complex data and 
non-linear relationships, with small sample sizes (n=150), the decision tree splitting in RF/XGBoost can capture noise 
features. This may result from inadequate feature capture or a mismatch between model complexity and data 
characteristics.63

HCC patients exhibit heterogeneity, necessitating individualized treatment approaches for each patient.64 Clinicians 
can utilize the LR model, integrated with clinical and radiomic data, to develop more targeted radiotherapy plans. For 
patients with low BMI, limited liver reserve function, and high predicted risk, a multidisciplinary team should be 
consulted to adjust treatment strategies. Initiate hepatoprotective therapy (eg, bicyclol) to enhance liver tolerance,65 

increase liver function monitoring, detect early signs of RIHT, and promptly implement interventions such as adjusting 
radiotherapy doses or temporarily halting treatment to mitigate liver injury. Combining immune checkpoint inhibitors 
(eg, anti-PD-1 antibodies) or anti-angiogenic agents (eg, lenvatinib) can synergistically enhance antitumor effects and 
reduce radiotherapy dose requirements.66,67

This study also has several limitations. First, the relatively small sample size and lack of external validation may 
affect the generalizability and stability of the model. Second, while SHAP was used to explain the model’s predictions, 
further exploration into the mechanisms underlying RIHT is needed, incorporating additional clinical data and biological 
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markers, such as gene expression and proteomic data, to develop a more accurate predictive model. Finally, the manual 
segmentation of the ROI by clinicians is time-consuming and may introduce subjectivity and variability. Therefore, 
future research should focus on advanced deep learning-based automatic segmentation and end-to-end techniques to 
minimize human intervention, ensuring reproducibility and efficiency.

Conclusion
This study successfully developed a machine learning model based on DCE-MRI radiomics, clinical, and dosimetric 
parameters, demonstrating the superior performance of the logistic regression model in predicting RIHT. The model not 
only provides a practical tool for clinical risk assessment of liver toxicity but also offers valuable insights by revealing the 
role of dynamic imaging features. It enables effective prediction of RIHT following IMRT for primary hepatocellular 
carcinoma, thereby achieving the goal of “precision toxicity avoidance” in individualized treatment.
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