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Abstract: Cervical cancer, a significant public health concern, demands precise and expeditious detection methods to curb the spread 
of human papillomavirus (HPV). The early detection of cervical cancer remains a critical challenge in developing reliable and efficient 
screening tools to meet the demand for controlling cervical cancer. Traditional detection techniques are often cumbersome, costly, and 
inadequate for on-site HPV testing. Nanotechnology, with its unique electrical, chemical, and optical properties, has emerged as 
a pivotal component in the development of biosensors for rapid and reliable HPV detection. This article provides a comprehensive 
review of the advancements in cervical cancer detection, encompassing traditional methods, emerging protocols, and novel quantum 
dots (QDs)-based approaches for detection. The review examines the application of various nanomaterials in electrochemical and 
photoelectrochemical biosensors for the diagnosis of cervical cancer, with these innovations offering a significant improvement over 
conventional approach. Furthermore, we detail the synthesis methods of QDs and their properties, illustrate the substantial enhance-
ment in sensor performance achieved through their applications, and elucidate the improvements and challenges associated with these 
new protocols while highlighting the potential application prospects of novel QDs technology in HPV detection. 
Keywords: cervical cancer, human papillomavirus detection, nanotechnology, quantum dots, biosensors, early diagnosis

Introduction
Cervical cancer ranks as the fourth most prevalent malignancy among women worldwide, constituting a significant 
menace to women’s health.1 Despite being preventable through vaccination, cervical cancer screening remains indis-
pensable due to limitations in vaccine coverage and immunogenicity.2,3 The World Health Organization (WHO) 
recommends nucleic acid detection of human papillomavirus (HPV) as the preferred method for cervical cancer 
screening,4 which has drawn scholars’ attention to advancements in cervical cancer detection technology.5 Apart from 
high-income countries exhibiting screening rates of 84%, women aged 30–49 years residing in upper-middle- (48%), 
lower-middle- (9%), and low-income countries (11%)6 may leave generations of girls and women at risk, though global 
strategies are paralleled with the goal of a 70% screening coverage by 2030.4 Given the vast population size, there is an 
urgent imperative to explore innovative methods for promoting cervical cancer screening.7

Over the past two decades, traditional diagnostic modality has evolved from a cytology adjunct to a primary co- 
testing methodology with cytology, establishing an optimized cost-benefit paradigm for cervical cancer screening.8–10 

Persistent infection with high-risk HPV genotypes, particularly HPV16 and HPV18, represents the leading etiological 
factor in cervical carcinogenesis and precancerous lesions development.11,12 Molecular detection of these oncogenic 
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HPV types constitutes a critical component of evidence-based strategies for early cervical cancer detection and precision 
management.13,14 The integration of nanotechnology into clinical diagnostics has achieved transformative breakthroughs. 
In the battle against cervical cancer, timely detection is crucial for effective treatment outcomes. Nanotechnology, with its 
exceptional sensitivity, precision, and capability for multiplex measurements, has emerged as a potent tool to enhance the 
early detection of cervical cancer.15,16

Quantum dots (QDs), known as semiconductor nanocrystals, are composed of nanoparticles that typically range in 
size from 1 nm to 100 nm, closely aligning with the exciton Bohr radius.17 Unlike traditional enzyme-linked immuno-
sorbent assays and organic fluorescent dyes, QDs offer a broader and more effective excitation spectrum,18 along with 
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a narrow and symmetrical emission spectrum. They also exhibit high fluorescence quantum efficiency,19 excellent 
photochemical stability,20 flexible surface chemistry, and the ability to be biologically modified. Among various 
traditional and novel HPV detection technologies, QDs stand out as a remarkable fluorescent marker due to their 
superior specificity, heightened sensitivity, and enhanced fluorescence stability.21

Overall, this review provides a thorough examination of recent advancements in HPV detection, covering both 
conventional strategies and cutting-edge approaches that incorporate various nanotechnologies, particularly the integra-
tion of QDs. It examines the advantages and disadvantages of traditional methods and highlights the exciting potential of 
QD technology for HPV detection.

Traditional Methods for HPV DNA Detection
The HPV genome is intricately organized into three principal functional regions: the early transcription region (E region), 
the late transcription region (L region), and the long control region (LCR). The E1 and E2 genes within the E region are 
instrumental in viral replication and transcription, respectively.22,23 Overexpression of E6 and E7 can immortalize cells 
by interfering with host cell cycle, inhibiting cell apoptosis, causing gene instability and affecting telomerase activity, 
which leads to the occurrence of cervical cancer.24,25 The L1 and L2 genes encode structural proteins of the viral capsid, 
pivotal for HPV infectivity.25–27 In the context of persistent HPV infection, integration of the viral genome into the host’s 
genomic DNA may lead to the disruption and loss of regions such as L1, E1, and E2, while the E6 and E7 regions are 
often preserved.25,28 This observation suggests that detection methods focusing on the E6 and E7 regions could offer 
a more specific assessment of HPV DNA, regardless of its integrated state.29 Current HPV molecular detection 
technologies in clinical practice are developed into nucleic acid hybridization signal amplification, nucleic acid ampli-
fication technologies, and other developed biological technologies.30

Nucleic Acid Hybridization Signal Amplification Technology
Nucleic acid hybridization signal amplification technology represents a direct method for identifying HPV nucleic acid 
sequences in clinical samples, circumventing the need for PCR amplification. This approach minimizes the risk of 
contamination, although it falls short in discerning specific HPV genotypes. The domain encompasses three principal 
techniques: hybrid capture technology, enzyme digestion signal amplification technology, and branched DNA signal 
amplification technology.

Hybrid Capture Technology
Hybrid capture technology’s detection principle is based on hybridization of the target HPV genomic DNA with the corresponding 
RNA probe, which is captured by the corresponding antibody on a microplate. Finally, HPV detection is carried out by enzyme- 
linked secondary antibody and catalytic substrate chemiluminescence.31–33 A pioneering clinical trial of cervical cancer screening 
published in The New England Journal of Medicine demonstrated that the second-generation hybrid capture (HC2) product has 
significantly better clinical detection sensitivity in detecting grade 2 or 3 cervical intraepithelial neoplasia (CIN2 or CIN3) than the 
traditional cytological detection (94.6% vs 55.4%), but its specificity is slightly lower than that of conventional cytological detection 
(94.1% vs 96.8%).34 In addition, studies have shown that HC2 undergoes certain cross-reactivity with certain non-targeted and non- 
carcinogenic HPV genotypes.35 After optimizing probes, this series of products can effectively reduce potential cross-reactivity 
between HPV genotypes. There is no need for a professional PCR laboratory to use hybrid capture technology for testing work, 
which has the potential to penetrate into grassroots medical units and remote areas and has great application prospects.

Enzyme Digestion Signal Amplification Technology
Enzyme digestion signal amplification technology’s detection principle is to detect specific target nucleic acid sequences 
through two synchronous isothermal reaction signals and amplification technology. Based on this technology, Cervista™ 
HPV HR was developed and approved by the US FDA in 2009.36 A comparative study between Cervista and HC2 for 
detecting high-risk HPV in cervical lesions showed that the consistency rates of positive and negative percentages were 
90.8% and 64.5%, respectively. Cervista and HC2 methods have the same sensitivity of 90% in detecting cervical lesions 
of CIN2, with specificity of 47% and 43%, respectively.37,38 Enzyme digestion signal amplification technology excels in 
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its good specificity, providing the capability to semi-quantitatively assess mRNA transcription levels. Despite these 
strengths, the method encounters limitations, notably its inability to discriminate between specific HPV subtypes and the 
complex procedural steps involved, which can be a deterrent in clinical settings seeking streamlined operations.

Branched DNA Signal Amplification Technology
The representative product of branched DNA signal amplification technology for HPV detection is QuantiVirus™ HPV 
E6/E7 mRNA test reagent developed by DiaCarta. This reagent adopts the principle of nucleic acid sandwich hybridiza-
tion technology and can directly detect HPV mRNA in liquid-based samples.39,40 Studies have shown that the positive 
rate of E6/E7 mRNA detection is notably higher than that of HC2 detection (75.3% vs 62.3%). HPV mRNA detection 
and HC2 detection demonstrate equivalent sensitivity to high-grade cervical intraepithelial neoplasia (CIN2+), reaching 
a rate of 82.4% (14/17). However, the specificity of HPV mRNA detection for CIN2+ is significantly lower than that of 
HC2 detection.39 Leveraging the precision of branched-chain DNA signal amplification technology, Kodia 
Biotechnology has crafted a qualitative detection kit targeting 14 high-risk HPV mRNA species with commendable 
specificity and simplified pretreatment process. Nonetheless, the methodology faces a trade-off, as the detection protocol 
involves several incubation cycles that may be perceived as cumbersome and time-intensive.40

Nucleic Acid Amplification Technology
HPV nucleic acid amplification technology mainly includes PCR amplification or constant temperature amplification, 
which first enriches a portion of the DNA sequence in the HPV genome, and then detects it by fluorescent probes, reverse 
dot hybridization, gene chips, flow cytometry fluorescence hybridization, and other methods.

Real-Time Fluorescence PCR Technology
Real-time fluorescence PCR technology involves the incorporation of fluorescent markers into the PCR reaction system, 
allowing for the real-time monitoring of DNA amplification through the accumulation of fluorescence signals. This 
method enables the simultaneous amplification and detection within a closed tube system, culminating in the quantitative 
analysis of the target sample using standard curves. It offers high sensitivity and specificity for the detection of specific 
HPV types and provides several operational advantages, including full automation, expedited detection times, high 
throughput, and the capability to measure viral load. Moreover, it significantly minimizes the risk of contamination from 
amplification products.41–43 However, the technology faces constraints due to the finite number of fluorescence channels 
on real-time PCR instruments, which limits the typing detection scheme within a single tube. To overcome this, multiple 
HPV types must be tested in grouped sets across multiple reactions, compensating for the instrument’s limitations.

Reverse Dot Hybridization Technology
Reverse line blot (RLB) method employs biotin-labeled PCR amplification products that hybridize with probes fixed on 
nitrocellulose or nylon membranes, and generates detection signals through chemical colorimetry.44,45 This technique offers 
broad coverage for the identification of HPV genotypes and is characterized by a stable hybridization process, coupled with 
a robust adaptability to diverse sample types. However, RLB technology encounters some challenges, including a heightened 
susceptibility to contamination from PCR amplification products, a multi-step procedural requirement, and the potential for 
subjective bias in the interpretation of colorimetric results, which could introduce human error into the diagnostic process.

Gene Chip Technology
Gene chip technology employs universal primers to amplify the HPV E1 gene, followed by denaturation of the amplified 
product. Simultaneously, a multitude of probe molecules are affixed onto solid-phase supports, generating a two-dimensional 
DNA probe array designed to hybridize specifically with the labeled amplification products. HPV genotyping is subsequently 
accomplished through enzyme-labeled colorimetry or fluorescence labeling methods.46–49 This technology offers the cap-
ability to simultaneously identify multiple HPV types and concurrent infections, meeting the requirements of high-throughput, 
rapid analysis, and minimal sample volume. It is tailored to clinical needs with its sensitivity and specificity aligning well with 
HPV typing, featuring stable fluorescence signal interpretation and clear, actionable results. Nevertheless, gene chip 
technology faces certain limitations. The cost of DNA chips is relatively high, and the necessity for a gene chip scanner for 
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analysis elevates the overall detection expense. Moreover, the HPV viral load usually cannot be determined using this method. 
A comprehensive summary of the specific products of molecular assay for HPV detection is provided in Table 1.50–75

Other Developed Biological Technologies
RNAscope is an innovative method for RNA in situ hybridization that combines the benefits of traditional RNA in situ 
hybridization techniques and fluorescence in situ hybridization (FISH) technology to visualize the transcription of 
individual RNA molecules. Unlike PCR technology, RNAscope can confirm whether the HPV DNA content exceeds 
a specific threshold, allowing for a more straightforward and intuitive screening of HPV infections.76 This technique 
addresses several challenges, including the inability of PCR to provide location data, non-specific binding observed in 
immunohistochemistry, the limitation of protein detection only, and the restricted availability of antibodies.

With the progress of molecular biology, the importance of isothermal amplification methods—those that do not 
depend on temperature cycling instruments—has increasingly been recognized by researchers. Recombinase polymerase 
amplification (RPA) technology is particularly significant due to its straightforward and rapid nature, yielding results 
within approximately 30 minutes. This method does not necessitate sophisticated laboratory environments or equipment; 
rather, it requires only a simple heating device,77 which enables individuals without extensive professional training to 
conduct the tests. The sensitivity of RPA can reach levels of 100 to 101 copies per reaction.78 Nonetheless, as the entire 
RPA process occurs at a constant temperature, there may be instances of non-specific amplification.

The field of nucleic acid detection is currently focused on three primary research areas: CRISPR/Cas9, CRISPR/Cas12, and 
CRISPR/Cas13. Within the CRISPR/Cas12a system, two essential components are the guide RNA (gRNA) and the Cas12a 
proteins.79 Recently, a novel CRISPR-Cas12a-mediated colorimetric detection platform was developed for MPXV and HPV 
DNA sensing by applying probe DNA to reprogram the catalytic properties of MoS2 QDs, featuring subpicomolar detection 
limits, high specificity/sensitivity and applicability in human sera biosamples, with its colorimetric results analysable via 
a smartphone platform.80 The CRISPR/Cas system employs various signal transmission methods, with the most classic being real- 
time fluorescence detection, lateral flow chromatography strips, and hydrogels. Although a portable constant temperature 
fluorescence detector can measure the fluorescence intensity during the reaction, the viral load in the original sample was low. 
Transferring it to the CRISPR/Cas12a system for detection can significantly enhance sensitivity; however, this also raises the risk 
of aerosol contamination.

Nanotechnology in the Diagnosis of Cervical Cancer
In the late 1990s, nanotechnologies advanced clinical diagnosis, notably with the use of gold nanoparticles (AuNPs). The 
nanogold-mediated catalyzed reporter deposition (CARD) technique has demonstrated superior diagnostic performance com-
pared to conventional polymerase chain reaction (PCR), exhibiting 90% detection sensitivity for HPV-positive cervical cancer 
specimens versus only 20% for PCR.81 This breakthrough catalyzed the application of nanotechnology in virus detection.

Ultrahigh Sensitivity with Fluorescent Nanoparticles
The surface of the nanoparticle is modified with antibodies or ligands with biomarkers related to cervical cancer, which 
can be targeted by biomarkers to achieve visualization or electrochemical signal detection. In a groundbreaking study, 
Palantavia et al developed an ultrabright fluorescent mesoporous silica nanoparticle for the early detection of cervical 
cancer. The nanoparticle, loaded with Rhodamine 6G at a concentration significantly higher than its aqueous solubility, 
was labeled by folic acid for the specific targeting of cervical cancer cells, which overexpress folate (FA) receptors. The 
research revealed that the fluorescence intensity from pre-cancerous cervical cells was substantially greater than that from 
normal cells. This novel approach also enabled significantly better sensitivity (95–97% vs 30–80%) and maintained 
specificity (94–95%) compared with current clinical tests, indicating a promising method for the enhanced diagnosis of 
early-stage cervical cancer.82,83 Recently, a colorimetric nanosensor based on AuNPs for detecting high-risk HPV 16 and 
18 was developed, showing high specificity (77.8%–87.3%) and excellent negative predictive value (>96%) in clinical 
evaluation of 173 patients.84 The innovative use of more nanoparticles with various biomarker-specific targeting offered 
a significant advancement in the field of cervical cancer diagnostics, with the potential to revolutionize early detection 
methods and improve patient outcomes.
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Table 1 Specific Products of Molecular Assay for HPV Detection

Products Type of Detection Technology Target Genetic Testing Genotyping Product Certification Ref.

Xpert® HPV Test Real time fluorescent PCR DNA Detect 13 high-risk types Partial typing CE [50]

Onclarity™ HPV Assay Real time fluorescent PCR DNA Detect 14 high-risk types Partial typing FDA [51, 52]

Cobas® HPV Test Real time fluorescent PCR DNA Detect 14 high-risk types Partial typing FDA [53]

Sansure biotech HPV Diagnostic Kit Real time fluorescent PCR DNA Detect 23 types Complete typing NMPA [54, 55]

Liferiver® HPV Genotyping Real Time PCR Kit Real time fluorescent PCR DNA Detect 14 high-risk types Partial typing NMPA [56]

BioPerfectus Multiplex Real Time HPV Assay Real time fluorescent PCR DNA Detect 21 types Complete typing NMPA [57]

Linear Array® HPV Genotyping Test Reverse dot hybridization DNA Detect 37 types Complete typing CE [58, 59]

INNO-LiPA® HPV Genotyping Extra ll Assay Reverse dot hybridization DNA Detect 32 types Complete typing CE [60, 61]

YanengBIO HPV Genotyping Kit Reverse dot hybridization DNA Detect 23 types Complete typing NMPA [62]

Hybribio HPV GenoArray Diagnostic Kit Reverse dot hybridization DNA Detect 37 types Complete typing NMPA [63]

Digene HC2 hPV DNA Test Hybrid capture DNA Detect 13 high-risk types Unclassified FDA [61, 64]

DALTONbio® HPV Nucleic Acid Detection Kit Hybrid capture DNA Detect 14 high-risk types Partial typing NMPA [65]

Anyplex™ II HPV HR Assay Melting curve analysis DNA Detect 14 high-risk types Complete typing CE [66]

Zeesan MeltPro® Assay Melting curve analysis DNA Detect 14 types Complete typing NMPA [67]

Tellgenplex™ HPV DNA Test Flow cytometry fluorescence hybridization DNA Detect 27 types Complete typing NMPA [68]

SureX® HPV Genotyping Test PCR and capillary electrophoresis DNA Detect 25 types Complete typing NMPA [69]

QuantiVirus™ HPV E6/E7 mRNA Test Branched-DNA mRNA Detect 14 high-risk types Unclassified CE [70]

PapilloCheck® HPV-Screening Test Gene chip DNA Detect 24 types Complete typing CE [71, 72]

Cervista™ HPV HR Test Enzyme digestion signal amplification DNA Detect 14 high-risk types Unclassified FDA [73]

APTIMA® HPV Assay Transcription mediated amplification mRNA Detect 14 high-risk types Partial typing FDA [74, 75]

https://doi.org/10.2147/IJN
.S524518                                                                                                                                                                                                                                                                                                                                                                                                                                                 

International Journal of N
anom

edicine 2025:20 
6338

H
e et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Cutting-Edge Nanotechnology in Biosensors
The unique properties of nanotechnology of biosensors platform emerged as a highly promising tool, offering rapid and 
precise diagnostics for cervical cancer. A recent study by Wang et al introduced a novel electrochemiluminescence (ECL) 
sensor for HPV16 DNA detection, utilizing Eu3+ doped polydopamine nanoparticles (PDA:Eu NPs). To enhance sensor 
sensitivity, a hydrogel reductive copper (I) particle catalyst was integrated, inducing more hydroxyl radicals for signal 
strengthening. By employing a T7 exonuclease-mediated cycling process, the sensor demonstrated a linear response to 
target DNA concentrations from 1 nmol/L to 100 nmol/L, with a limit of detection (LOD) of only 0.6 nmol/L.85 Another 
highly sensitive ECL biosensor, named “signal-off” for HPV16 detection, was developed. This biosensor utilized a novel 
PCN-224/nano-zinc oxide composite enhanced by polyacrylamide to improve water solubility and stability. Signal 
amplification is achieved through exonuclease-based cycling cleavage and hybridization chain reaction (Figure 1A).86 

Figure 1 (A) Schematic diagram for the ECL biosensing platform based on PCN-224/ZnO nanocomposites coupled with cyclic amplification and chain reaction for HPV-16 
assay. Reproduced from Wu D, Dong W, Yin T, et al. PCN-224/Nano-Zinc oxide nanocomposite-based electrochemiluminescence biosensor for Hpv-16 detection by 
multiple cycling amplification and hybridization chain reaction. Sensors and Actuat B Chem. 2022;372:132659. © 2022 Elsevier B.V. All rights reserved.86 (B) Illustration of 
the modularized electrochemical sensing strategy based on CRISPR/Cas-mediated controllable MB release/enrichment system for ultrasensitive determination of HPV-16, 
including target recognition module (a), signal amplification module (b), and signal transduction module (c).Reproduced from Wang H, Niu Y, Liu H, et al. A modularized 
universal strategy by integrating CRISPR/Cas with nanoporous materials for ultrasensitive determination of nucleic acids. Chem Eng J. 2025;506:160065. © 2025 Elsevier B.V. 
All rights are reserved, including those for text and data mining, AI training, and similar technologies.88 (C) Schematic diagram of an electrochemical nanobiosensor with 
CRISPR/Cas14a system integrated with bipedal DD walker to detect HPV16 E7 serum samples. Reproduced from Yue Y, Liu M, Ma M, et al. CRISPR/Cas14a integrated with 
DNA walker based on magnetic self-assembly for human papillomavirus type 16 oncoprotein E7 ultrasensitive detection. Biosens Bioelectron. 2025;272:117135. © 2025 
Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.89 (D) Schematic illustration of the fabrication procedures 
of Fe3O4@Au@PEI@HPP NPs and the strategy of HPV genotype detection in buffer or in 100% serum based on Fe3O4@Au@PEI@HPP NPs. Reproduced from Chen L, 
Liu M, Tang Y, et al. Preparation and Properties of a Low Fouling Magnetic Nanoparticle and Its Application to the HPV Genotypes Assay in Whole Serum. ACS Appl Mater 
Interfaces. 2019;11(20):18637–18644. Copyright © 2019 American Chemical Society.91
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A novel study presented a highly sensitive ECL biosensing strategy for HPV16 DNA detection, utilizing CRISPR/ 
Cas12a to regulate Pdots-DNA binding and enhance ECL emission through the local surface plasmon resonance effect of 
AuNPs, achieving a detection limit of 3.2 fM.87 Recently, Wang et al (2025) developed a modularized electrochemical 
sensing strategy that integrates CRISPR/Cas12 with nanoporous materials, enabling ultrasensitive nucleic acid detection. 
This strategy achieved a detection limit of 0.41 fM for HPV16 and demonstrated universality in detecting HPV18 
(Figure 1B).88 In a similar vein, Yue et al (2025) created a label-free electrochemical platform that combines CRISPR/ 
Cas14a with DNA walkers and magnetic self-assembly. This innovative approach allows for the ultrasensitive detection 
of HPV16 E7, with a detection limit of 67.17 fg/mL and recovery rates of 98.46%–115.78% in serum samples 
(Figure 1C).89 Additionally, Wang et al presented a label- and modification-free Cas12a-based ECL biosensor, which 
can detect HPV16 DNA at an ultralow concentration of 0.63 pM in approximately 60 minutes, showcasing great potential 
for point-of-care diagnostics.90 These developments highlight the power of combining advanced technologies like 
CRISPR systems with nanomaterials to enhance detection capabilities.

Based on electrochemical genosensor array for the simultaneous and sensitive detection of high-risk HPV DNA 
sequences,92–94 the optimization of novel nanocomposite materials provided a promising platform, such as 
a 3-aminopropyltriethoxysilane (APTES) modified gold electrode coupled with a super sandwich structure,95 

a graphitic nano-onion/molybdenum disulfide (MoS2) nanosheet composite,96 a novel nano-composite of Perylene 
Tetra carboxylic acid functionalized copper nanoparticles and reduced graphene oxide (Cu-PTCA/rGO),97 and rGO 
and DNA nano-biohybrid-coated carbon screen-printed flexible electrodes (CSPEs).98

Breakthroughs in Biochip Technologies
In recent advances, a biochip allows hundreds of samples to be analyzed simultaneously with high efficiency, thereby 
making it possible for detecting multiple HPV subtypes.99 A DNA microarray system utilizing a bipolar integrated circuit 
photodiode array (PDA) chip, through a gold nanoparticle-mediated silver enhancement technique, improved the detection 
limit from 1.2 nM to 30 pM and expanded the range of detectable DNA concentrations by adjusting the silver development 
time.100 Chen et al’s study presented an innovative nanoparticle probe, featuring gold magnetic particles modified with 
polyethyleneimine and hyperbranched polyether polyol, which exhibited low fouling and high stability in complex 
biological systems, and have been successfully applied for the sensitive and selective fluorescence detection of high-risk 
HPV genotypes 18 and 16 in buffer and whole serum, demonstrating strong linearity and low detection limits (Figure 1D).91

QDs for HPV DNA Detection
Types of QDs
QDs, as intricate assemblies of atoms and molecules, can be crafted from a single semiconductor material or 
a combination of multiple semiconductors.101 Predominantly, QDs are composed of atoms from IIB-VI, III–V, or IV– 
VI groups of the periodic table that have 1~10 nm size dimensions, with CdY (Y represents S, Se, Te) being a common 
choice, alongside composite and multilayer structures.102–104 QDs mainly encompasses four primary types: mononuclear, 
core-shell, doped, and alloyed. Mononuclear QDs, characterized by a high density of surface defects, typically exhibit 
low quantum yield and inferior luminescence stability. In contrast, the latter three categories of QDs have been 
engineered to address and ameliorate these deficiencies. QDs transcend conventional notions of “dots”, as they consist 
of hundreds to thousands of atoms, yet confine their internal electron motion to a very limited spatial scale.101 This 
unique confinement endows QDs with distinctive physical and chemical properties, most notably their exceptional optical 
characteristics. These attributes have catapulted QDs to the forefront of applications in in vitro diagnostics and live cell 
imaging, underscoring their broad potential and value in the biomedical sciences.105–107

Preparation of QDs
The preparation of QDs has undergone significant refinement over the years, converging on two predominant methodol-
ogies: physical and chemical approaches, with the latter frequently taking precedence in contemporary practice. Within 
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the chemical domain, two principal strategies have emerged for the fabrication of QDs: one is to synthesize them in 
organic systems using colloidal chemistry, and the other is to synthesize them in aqueous solutions.

Metal Organic Compound Synthesis Method
The metal-organic compound synthesis method refers to the method of preparing QDs based on the high-temperature 
cracking reaction between organic compounds and inorganic metal compounds or organic metal compounds in the 
presence of ligands. This approach is a significant breakthrough in the early field of QD research. In a seminal work in 
1993, Bawendi et al108 pioneered the synthesis of highly luminescent CdSe QDs, employing dimethyl cadmium (Cd 
(CH3)2), trioctylphosphine selenide (TOPSe), and trioctylphosphine oxide (TOPO) as precursors within a coordinated 
solvent system. The insolubility of CdSe nanoparticles in methanol allows for the acquisition of nanoparticles with 
favorable quantum yield through a simple centrifugation process post-methanol addition. Nonetheless, this technique is 
encumbered by several significant limitations, including intricate procedural steps, the challenging control of reaction 
conditions, and the use of highly toxic and flammable precursors. These constraints have impeded the broader adoption 
of this method in the synthesis of CdSe QDs, suggesting that researchers need to make improvements in synthesis 
methods and reaction reagents to synthesize QDs with higher quality.

TOPO is the most commonly used solvent for synthesizing colloidal nanocrystals. Common methods include 
preparing CdSe nanoparticles by mixing Cd(CH3)2 and TOPSe through nucleation, followed by maturation, annealing, 
and selective deposition to ultimately separate high-quality CdSe QDs. The particle size can be controlled by changing 
the temperature.109 Furthermore, Zhang et al110 developed a new method for producing hyperbranched Co2P nanocrystals 
with uniform size, shape, and symmetry using TOPO as a solvent and phosphorus source. The morphology of the 
nanocrystals can be controlled from a layered structure to a hexagonal symmetric structure by changing the concentration 
of surfactants. The synthesis of colloidal small-size CdS QDs is typically fraught with challenges, including low particle 
yields and the concurrent formation of byproducts such as precursor compounds (PCs) associated with magic-size 
clusters (MSC). However, Li et al111 have illuminated a novel pathway in the field. Their work demonstrates that the 
introduction of TOPO can effectively fragmentize the PCs, thereby facilitating the nucleation and growth of small-size 
QDs at room temperature. This innovation presents a groundbreaking method for the production of small-size QDs, 
eliminating the issue of PC coexistence and significantly enhancing particle yield (Figure 2A).

Aqueous Inorganic Synthesis Method
QDs synthesized via organic methods are often limited in their solubility, being soluble primarily in specific non-polar or 
weakly polar organic solvents. This limitation hinders their direct application in aqueous environments, which are 
prevalent in many analytical and biological systems. To surmount this, the surface of QDs must be modified with 
appropriate ligands, enabling their transfer into the aqueous phase for further analysis and application. In this context, the 
exploration of direct aqueous-phase synthesis of QDs is of paramount importance, promising to expand the versatility 
and applicability of QDs in scientific research and clinical diagnostics.

The direct synthesis of QDs in the aqueous phase offers several unparalleled advantages, including operational 
simplicity and cost-effectiveness compared to the intricate organic phase synthesis methods. It is characterized by high 
repeatability, minimal environmental impact, controllable surface charge and properties, excellent biocompatibility, 
suitability for mass production, and the ease of introducing functional groups. Consequently, this approach has emerged 
as a prominent research topic.113,114 Pioneering work by Sondi et al115 successfully synthesized CdSe QDs at room 
temperature by rapidly mixing aqueous solutions of either sodium selenide or selenourea with those of cadmium chloride 
in the presence of aminoglycan as stabilizing agent. While the luminescence efficiency of the resulting QDs is relatively 
low, and the preparation time for red fluorescent QDs is extended, the method’s unparalleled advantages for biological 
applications make the refinement of this aqueous phase synthesis technique highly significant. Currently, the direct 
synthesis of water-soluble QDs in aqueous phase predominantly employs water-soluble thiol reagents, such as acetic acid 
(TGA) and propionic acid (MPA), as stabilizing agents. These thiol compounds are capable of coordinating and binding 
with the metal cadmium on the QD surface, effectively repairing surface defects and enhancing the stability of the QDs. 
Concurrently, the functional groups present in thiol reagents, including NH2, COOH, and OH, act as functional 
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modification groups, which significantly improve the water solubility of the QDs.116 In recent years, methods for 
preparing water-soluble QDs using other types of reagents as stabilizers have emerged. Wang et al117 successfully 
prepared CdTe:Zn2+ QDs with strong fluorescence performance, low biological toxicity, and good biocompatibility by 
using glutathione as a stabilizer and incorporating Zn2+ ions through an aqueous inorganic synthesis method. Besides, 
Yang et al118 successfully prepared CdTexSe1-x core-shell QDs modified with mercaptopropionic acid and L-cysteine 
using a high-temperature hydrothermal synthesis method. High-quality CdxZn1-xSe and CdxZn1-xSe/ZnS core/shell QDs 
were prepared by using a one-step hydrothermal method, while the fluorescence properties and stability were signifi-
cantly enhanced after capping with a ZnS layer. The prepared products have low cytotoxicity and can also detect Hg2+ 

ions with high sensitivity and selectivity.119 These studies113,118–120 also indicate that the core/shell/shell QD structure 
with doping in the shell layer is a versatile method for synthesizing and ameliorating doped QDs.

Notably, hydrothermal synthesis has been extensively utilized for fabricating multifarious QDs, catering to 
a multitude of applications. For instance, Paul et al121 introduced a one-pot hydrothermal synthesis of gelatin quantum 
dots (GeQDs) with high photoluminescence quantum yield and remarkable stability, which were successfully applied for 
cell imaging across various clinical cell types, demonstrating their potential as non-toxic biomarkers for stable and long- 
term fluorescent imaging. Regarding carbon dots (CDs), Xian et al’s study successfully synthesized red fluorescent CDs 
with high quantum yield and monochromaticity using a hydrothermal method, revealing a logarithmic correlation 
between their aggregation-induced emission wavelength and concentration.122 Furthermore, Gao et al123 ulteriorly 
proposed nitrogen-doped CDs as a versatile ratiometric fluorescence probe for the visual detection of hypochlorite and 
thiosulfate, which offers high sensitivity, selectivity, and biocompatibility, paving the way for the development of 
efficient fluorescent probes for visual detection and biomedical applications. Intriguingly, sulfur quantum dots (SQDs) 

Figure 2 (A) Schematic drawing for our comprehension on the use of TOPO to fragmentize the PC that has formed in a prenuclation stage sample to facilitate the 
nucleation and growth of colloidal small-size CdS QDs with enhanced particle yield and without the coexistence of the PC and/or MSCs. Reproduced from Li L, Zhang J, 
Zhang M, et al. Fragmentation of Magic-Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures. Angew 
Chem Int Ed Engl. 2020;59(29):12013–12021. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.111 (B) Schematic diagram of the synthesis and multifunctional 
applications of N-SiQDs. Reproduced from Wang YF, Pan MM, Song YL, et al. Beyond the fluorescence labelling of novel nitrogen-doped silicon quantum dots: the reducing 
agent and stabilizer for preparing hybrid nanoparticles and antibacterial applications. J Mater Chem B. 2022;10(36):7003–7013. © 2022 Royal Society of Chemistry.112 (C) 
This schematic represents the key features of QDs that are critical for HPV detection, emphasizing their size-adjustable luminescence, tunable emission for wavelength 
specificity, and robust photostability. It also illustrates the integration of QDs with various materials to form composite structures, enhancing their application in biosensing 
through magnetic separation, carbon and graphene interfaces, and metal-organic frameworks.
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have emerged as promising candidates, distinguished by their low toxicity and exceptional luminescent capabilities. Most 
recent research by Shen et al synthesized red-light-emitting SQDs with high fluorescence efficiency and stability via 
a one-step hydrothermal process, demonstrating their potential as luminophores for fluorescence and ECL analysis, as 
well as for bio-labeling and imaging applications, by leveraging the use of an etching agent to tune emission and 
resorcinol to enhance ECL intensity.124 Wang et al125 presented a novel H2O2-assisted top-down synthesis of SQDs with 
high photoluminescence quantum yield and color tunability, enabling the creation of down-conversion white light 
emitting diodes with excellent color rendering, and highlighting the potential of these eco-friendly, water-soluble 
SQDs as luminescent materials derived from abundant precursors. Silicon quantum dots (SiQDs) have thoroughly proven 
their utility, underscored by their fluorescent properties. Wang et al’s research presented the one-pot hydrothermal 
synthesis of nitrogen-doped silicon quantum dots (N-SiQDs) with multifaceted applications, including bacterial imaging 
due to their biocompatibility and fluorescence, the synthesis of N-SiQDs-stabilized gold nanoparticles with enhanced 
catalytic performance, and intrinsic antibacterial activity against both Gram-positive and Gram-negative bacteria, thereby 
expanding the horizons for SiQDs in nanocomposite and biomedicine applications (Figure 2B).112

Application of QDs in HPV DNA Detection
Conventional virus detection methods often suffer from low sensitivity and specificity, long time consumption, and high 
cost. Rapid, efficient, selective, and sensitive virus detection remains problematic. As shown in Figure 2C, QD has 
a series of remarkable characteristics, making it more suitable for detecting HPV.126–130 A summary of the QDs-based 
developed biosensors for HPV detection is provided in Table 2.

The main application of QDs in HPV DNA detection is presented in various forms, such as fluorescence sensors, 
electrochemical sensors and the emerging carbon and silicon quantum dot detection photoelectric analysis, fluorescence 
analysis, electroanalysis and colorimetric analysis, etc.134,135,137–139 The function of quantum dots mainly depends on its 
structural regulation, including the surface of quantum dots, doping and alloying of quantum dots, and composite 
structure of quantum dots (Figure 2C). Innovative applications of QDs are also combined with traditional methods 
in situ hybridization and PCR synergies. The application of QDs-based detection technology in the diagnosis and 
monitoring of cervical cancer has demonstrated its versatility and efficiency, positioning it as a pivotal tool for future 
screening and diagnostic procedures.

Size Adjustment of QDs and HPV Detection
The luminescence mechanism of quantum dots reveals that their fluorescence properties are intrinsically linked to the 
size of the energy gap. Specifically, the width of the energy gap between the valence band and the conduction band is 
directly influenced by the size of the QDs. An innovative photoelectrochemical (PEC) biosensor, engineered with precise 
quantum size control to harness quantum confinement effects, was developed for the detection of HPV16. This was 
achieved through the CRISPR-Cas12a (Cpf1)-mediated disassembly of a Z-scheme heterojunction, leveraging the 
biosensor’s unique response to the targeted viral DNA. Li et al perfectly exploited the sensor’s ability to combine 
biomolecular recognition with photon-to-electron conversion capabilities and designed a PEC biosensor that can detect 
HPV16 by controlling the quantum size, thus improving the PEC reaction performance (Figure 3C).140

Structure Adjustment of QDs and HPV Detection
Surface Modification of QDs 
Through the use of the photoelectric analysis technique, AuNPs’ surface can accumulate metallic silver. The target DNA will 
ultimately be quantified into the corresponding electrical signal after a sequence of steps.142 The Au NP-modified Keggin- 
type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) demonstrated exceptional selectivity and 
sensitivity in target DNA detection, attributed to its outstanding PEC response (Figure 3A and B).141 Sun et al’s work 
presented a novel photoelectrochemical biosensor array (PEBA) platform for HPV genotyping that utilizes TiO2@AuNPs 
and CdS QDs-labeled DNA probes. The presence of HPV targets triggers a conformational change in the probes, altering the 
PEC signal and enabling sensitive detection with a low limit of 0.1 copies/μL across a linear range for nine HPV types 
(Figure 4).134 Researchers have crafted an ultrasensitive nanobiosensor for the detection of HPV18 by leveraging the 
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Table 2 A Summary of the QDs-Based Developed Biosensors for HPV Detection

QDs-Based Detection System Detection Type Detection Target Detection Range Detection Limit Country Year Ref.

CdTe QDs/NiTPP composite sensor FD HPV16 0.1–40 nM 62 pM CHN 2024 [131]
HPV18 0.05–40 nM 40 pM

CQDs/APTES/Au ECD HPV16 100 fM-100 nM 0.73 fM CHN 2024 [132]

Cys-GQDs LOC-Genosensor ECD E6 and E7 oncogenes - 26 fM (79.6 fM for quantification) BR 2024 [133]

SiW12@CdS QDs PEC HPV16 15–130 nM 0.8 nM CHN 2023 [134]

Zn-doped MoS2 QDs ECL HPV16 0.1–200 nM 0.03 nM CHN 2020 [135]

PDDA-GO/GQDs/DNA-gold NPs/target DNA electrode ECL Target DNA 1.0 pM-1000 nM 0.1 pM CHN 2019 [136]

MGPs-DNA target-CdTe/ZnSe core/shell QDs FD L1-HPV and HPV16 E6 - 0.0125 ng/μL CZ 2019 [137]

FRET using CdTe QDs FRET HPV18 1.0–50.0 nM 0.2 nM IR 2017 [138]

Abbreviations: APTES, 3-aminopropyl)triethoxysilane; CQDs, Carbon quantum dots; Cys, Cysteamine; ECD, Electrochemical detection; ECL, Electrochemiluminescence; FD, Fluorescence detection; FRET, Fluorescence resonance 
energy transfer; GO, Graphene oxide; GQDs, Graphene quantum dots; SiW12, Keggin-type polyoxometalate; LOC, Lab-on-chip; MGPs, Magnetic glass particles; MoS2, Molybdenum disulfide; NPs, Nanoparticles; PDDA, Poly 
(diallyldimethylammonium chloride); NiTPP, Porphyrin derivatives; PEC, Photoelectrochemical; QDs, Quantum dots.
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synthesis of water-soluble CdTe QDs. These dots were functionalized with amino-modified oligonucleotides to form QDs- 
DNA conjugates that, upon interaction with target DNA and a Cy5-labeled oligonucleotide, assemble into sandwich hybrids. 
This assembly facilitates a precise and sensitive fluorescence resonance energy transfer (FRET)-based detection assay, 
demonstrating a linear detection range from 1.0 to 50.0 nM and an impressively low limit of 0.2 nM.132

Doping and Alloying of QDs 
Doped QDs in which foreign atoms or ions are introduced into the lattice structure with new optical and electrical 
properties, are commonly used to improve their luminescence efficiency, adjust the wavelength of light emission, 
or enhance their stability. Nie et al133 developed an ECL sensor that capitalizes on the synergistic enhancement 
strategy of Zn-doped MoS2 QDs and reductive Cu(I) particles. This biosensor achieved sensitive detection of 
HPV16 DNA over a range from 0.1 nmol/L to 200 nmol/L, with a LOD as low as 0.03 nmol/L. Notably, the ECL 
signal, captured by a smartphone, can be transformed into high-resolution images through software processing. 
This innovation presents a significant potential for point-of-care HPV16 DNA testing in the future (Figure 5).

Composite Structure of QDs and HPV Detection
QDs can be further expanded by combining with magnetic materials, carbon and graphene, and metal-organic frame-
works (MOFs), presenting improved performance, or new functionalities in probe or biosensor platform for HPV 
detection (Figure 2C).

Combining with Magnetic Materials 
A novel hybridization assay for the detection of HPV16 infections has been developed, leveraging the combined advantages of 
QDs and superparamagnetic NPs. This assay offers a rapid and straightforward method that is significantly faster and more 
convenient than the conventional type-specific PCR method.136 Furthermore, researchers have developed a magnetic glass 
particle (MGP) with a DNA probe attached to its surface to hybridize with the target DNA. Eventually, the MGP probe DNA 

Figure 3 (A) Schematic illustration of the synthesis of POM@CdS QD composites. (B) Schematic illustration of the PEC sensor for detecting HPV 16 DNA. Reproduced from 
Cheng Y, Sun C, Chang Y, et al. Photoelectrochemical biosensor based on SiW12@CdS quantum dots for the highly sensitive detection of HPV 16 DNA. Front Bioeng Biotechnol. 
2023;11:1193052. Copyright © 2023 Cheng, Sun, Chang, Wu, Zhang, Liu, Ge, Li, Li, Sun and Zang. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY).141 (C) Schematic illustration of CRISPR-Cas12a-based PEC biodetection toward HPV-16 by disassembly of Z-Scheme heterojunction 
among TiO2, Au NPs, and CdS QDs. Reproduced from Li Y, Zeng R, Wang W, et al. Size-Controlled Engineering Photoelectrochemical Biosensor for Human Papillomavirus-16 
Based on CRISPR-Cas12a-Induced Disassembly of Z-Scheme Heterojunctions. ACS Sens. 2022;7(5):1593–1601. Copyright © 2022 American Chemical Society.140
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Figure 4 (A) Schematic illustration of the PEBA setup for HPV genotyping and a comparison between the proposed PEBA and conventional photoelectrochemical testing 
system. (B) Schematic depiction of the fabricated PEBA for detecting HPV-related genes. (C) Schematics of the PEBA assembly process. (D) Photocurrent responses of the 
PEBA toward different concentrations of synthetic HPV16 oligonucleotide standard with from 0 fM to 1 nM. Insert: the calibration curve of ΔI/I0 versus HPV16 target 
concentration. (E) Photocurrent responses of the PEBA to different concentrations of HPV DNA subtype plasmids (0, 0.6, 3, 6, 60, 300, 600 copies/μL). (F) The calibration 
curves of photocurrent responses versus the HPV DNA concentrations from 0.6 to 600 copies/μL. Error bars represented the standard deviations of three independent 
experiments. Reproduced from Sun Y, Liu J, Peng X, et al. A novel photoelectrochemical array platform for ultrasensitive multiplex detection and subtype identification of 
HPV genes. Biosens Bioelectron. 2023;224:115059. © 2023 Published by Elsevier B.V.134
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hybrid combines with CdTe/ZnSe core/shell QDs to detect HPV infection using quantum dot-nucleotide specific interactions 
(Figure 6D).144 These studies have successfully substantiated the clinical efficacy of these innovative assays. The marked 
reduction in detection time, coupled with the simplicity of the process, endows the approach with immense potential for 
clinical applications, particularly in the realm of large-scale epidemiological screening. Notably, aside from detecting HPV16, 
QDs-based biosensors can also help identify different types of HPV. A novel biobarcoded analytical method was developed to 
detect multiple DNA sequences simultaneously based on the CdSe/ZnS QDs and magnetic microparticle, offering enhanced 
sensitivity, rapid preparation, and simplified analysis compared to traditional biobarcode assays.146

Combining with Carbon and Graphene 
Carbon quantum dots (CQDs) and graphene quantum dots (GQDs) are nanomaterials with excellent biocompatibility and non- 
toxicity, featuring high charge transfer capabilities and useful for analytical detection and quantification in electrochemical 
applications.131,147 Utilizing a novel CQDs/(3-aminopropyl)triethoxysilane (APTES) composite nanofilm to enhance sensi-
tivity, researchers have developed a highly sensitive electrochemical biosensor for the detection of HPV16, with remarkable 
linear range and LOD of 100 fM-100 nM and 0.73 fM, respectively (Figure 6A–C).143 Furthermore, Léony S Oliveira et al148 

introduced an innovative electrochemical genosensor for the detection of HPV oncogenes E6 and E7. The sensor utilized 
a nanostructure based on cysteine and GQDs, which not only provided a rich environment for functional groups and surface 
area but also enhanced electrochemical properties. The sensor demonstrated high sensitivity and selectivity, with a detection 
limit of 26 fM and a quantification limit of 79.6 fM. Researchers have developed a highly sensitive ECL biosensor for DNA 
detection by harnessing the ECL properties of GQDs and a multiple cycling amplification technique, achieving good 
selectivity and high sensitivity for HPV16 DNA and showcasing potential for point-of-care screening (Figure 6E).145

Combining with Metal-Organic Frameworks (MOFs) 
Metal-organic frameworks (MOFs) exhibit great potential in applications as fluorescent sensors and luminescent 
probes.149,150 Functionalizing MOFs with QDs that possess ECL activity results in a synergistic combination that 

Figure 5 (A) The ECL performance. (B) ECL response of the biosensor with (a) 0.1 nM, (b) 1 nM, (c) 10 nM, (d) 20 nM, (e) 50 nM, (f) 100 nM and (g) 200 nM HPV 16 DNA. 
(C) Schematic illustration of reductive Cu(I) particles catalyzed Zn-doped MoS2 QD-based ECL biosensor. (D) Visualized ECL images processed by the self-developed 
software with (a) 0.1 nM, (b) 10 nM, (c) 50 nM, (d) 100 nM and (e) 200 nM HPV 16 DNA. Reproduced from Nie Y, Zhang X, Zhang Q, et al. A novel high efficient 
electrochemiluminescence sensor based on reductive Cu(I) particles catalyzed Zn-doped MoS2 QDs for HPV 16 DNA determination. Biosens Bioelectron. 
2020;160:112217. © 2020 Elsevier B.V. All rights reserved.133
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Figure 6 (A) Schematic representation of the proposed electrochemical DNA biosensor. (B) DPV responses of the proposed biosensor with various TD concentrations for HPV- 
16 detection. (C) the correlation between DPV peak current ΔI and TD concentrations, obtained by an inserted calibration with the logarithm of the TD concentrations, error bars 
= SD (n = 3). Reproduced from Yu J, Dong C, Yang Y, et al. Electrochemical DNA biosensor for HPV-16 detection based on novel carbon quantum dots/APTES composite nanofilm. 
Microchem J. 2024;204:110949. © 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.143 (D) Optical biosensing 
system utilizing MGPs and CdTe/ZnSe QDs coupled with nucleic acid probes. Reproduced from Jimenez Jimenez AM, Moulick A, Bhowmick S, et al. One-step detection of human 
papilloma viral infection using quantum dot-nucleotide interaction specificity. Talanta. 2019;205:120111. © 2019 Elsevier B.V. All rights reserved.144 (E) Schematic representation for 
principle of sensitive DNA detection based on GQDs ECL coupled with cycling amplification technique. Reproduced from Jie G, Zhou Q, Jie G. Graphene quantum dots-based 
electrochemiluminescence detection of DNA using multiple cycling amplification strategy. Talanta. 2019;194:658–663. © 2018 Elsevier B.V. All rights reserved.145
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leverages the high accumulation and catalytic capabilities of MOFs with the luminescent properties of QDs, thereby 
significantly boosting the ECL emission.151,152 Yang et al’s study demonstrated a marked improvement in ECL efficiency 
by integrating CdTe QDs into isoreticular metal organic framework-3 (IRMOF-3), through both internal encapsulation 
and external surface decoration.152 In 2024, researchers have successfully developed an innovative “off-on” fluorescent 
sensor, leveraging the properties of water-soluble dual-color emitting CdTe QDs conjugated with ssDNA probes. The 
sensor utilizes porphyrin derivatives (NiTPP) to quench the fluorescence, enabling a highly sensitive response. In vitro 
detection of HPV16 and HPV18 demonstrated excellent linearity within the ranges of 0.1–40 nM and 0.05–40 nM, 
respectively, with detection limits reaching as low as 62 pM and 40 pM. This method has been successfully developed 
and validated using spiked urine and cervical swab samples, showcasing its capability for the quantitative and sensitive 
detection of HPV16 and HPV18 concurrently (Figure 7).153

Conclusions and Perspectives
Currently, nanotechnology has brought revolutionary changes to various fields. Among them, QDs have emerged as 
a transformative tool in the detection of HPV. Their unique optical properties, such as broad absorption spectra, size- 
tunable emission, and exceptional photostability, have made them a powerful tool for improving the accuracy and 
sensitivity of HPV detection regarding the limitations of traditional methods. The development of biosensors based on 
QDs has opened up new possibilities for the diagnosis of cervical cancer based on photoelectric analysis, fluorescence- 
based detection, and electrochemical genosensors. These biosensors can detect multiple genotypes of HPV simulta-
neously, providing more comprehensive information for screening. In addition, the combination of QDs with other 
nanomaterials, such as AuNPs, heavy-metal-free carbon and graphene, has further enhanced the detection efficiency and 
reduced the complexity of the detection process. The transition from laboratory-based testing to point-of-care testing is 
gaining momentum, with the development of portable devices and simplified protocols.

However, the trajectory of HPV detection technology is poised for further innovation and refinement. The pursuit of 
point-of-care testing solutions will continue, with a focus on miniaturization, user-friendliness, and cost-effectiveness. 
Long-term use could lead to the release of toxic ions, damaging cells and organs. To address this, researchers are 

Figure 7 (A) Schematic outlining the method for analyzing HPV16 and HPV18. (B) Fluorescence spectra of QDs-ssDNA reacting with NiTPP solutions of different 
concentrations (Ex=300 nm, EmgQDs=567 nm, EmrQDs=678 nm). (C) Fluorescence spectra of QDs-ssDNA reacting with different concentrations of HPV16 and HPV18 
(Inset: fluorescence changes under ultraviolet lamp). (D) Linear relationship between gQDs-gDNA and HPV16. (E) Linear relationship between rQDs-rDNA and HPV18. 
reproduced from Jiang X, Yin C, Wu M, et al. Fluorescent switch based on QDs modified DNA probe and NiTPP for simultaneous dual color sensitive sensing of HPV16 and 
HPV18. Sensors and Actuat B Chem. 2024;403:135128. © 2023 Elsevier B.V. All rights reserved.153
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exploring the development of biocompatible and non-toxic QDs.154 Protocols for QD green synthesis and surface 
modification are being optimized. For instance, coating QDs with protective layers can reduce ion release. Also, the 
development of heavy-metal-free QDs is a promising direction. These approaches can ensure the reproducibility and 
reliability of QDs-based diagnostic tools for broader application. Green synthesis methods, such as using plant extracts or 
microorganisms, can produce QDs with lower toxicity. Surface modification can introduce functional groups to enhance 
stability and reduce immunogenicity, minimizing potential adverse reactions.155,156 For instance, PEGylation of QDs has 
been shown to significantly reduce their cytotoxicity and improve their biocompatibility.157 Adverse effects, such as 
inflammatory responses or oxidative stress, should be closely monitored. Long-term animal experiments and clinical 
trials are needed to assess potential toxicity. Studies have indicated that QDs with ZnS shell and PEG coating are more 
beneficial to cell proliferation compared to naked QDs, demonstrating the effectiveness of surface modification in 
enhancing QDs’ biocompatibility and reducing toxicity.154,157

Looking ahead, several key development directions should be prioritized to further advance the field: (1) Enhanced 
novel materials and designs for QDs: The development of biocompatible and non-toxic QDs is a priority. Protocols for 
QD green synthesis and surface modification are being optimized to ensure the reproducibility and reliability of QDs- 
based diagnostic tools for the broader application. (2) Improvement in detection efficiency: By coupling various high- 
performance materials, the detection efficiency of biosensors will see continuous improvement. This will address the 
current limitations of insufficient LODs, poor stability, and meet the urgent need for efficient on-site detection and 
diagnosis. (3) Advances in multifunctional sensing: The combination of magnetic separation, microfluidic systems, and 
dielectrophoresis technologies with existing sensors is expected to yield highly sensitive sensors with multiple detection 
functions. (4) Suitability for promotion: The successful translation of QD technology from the laboratory to clinical 
settings will necessitate the ability to process a diverse range of specimens, including blood, urine, paraffin-embedded 
tissue, frozen tissue, and cytological samples. Additionally, it is essential to conduct further metabolism studies to ensure 
the safety of these technologies in humans. (5) Convergence with advanced technologies: The integration with mobile 
health technologies, artificial intelligence, and machine learning algorithms will enable promising real-time monitoring 
and data analysis, potentially transforming the way HPV and other diseases are detected and managed.

Significantly, to achieve these improvements, the role of collaborative efforts in driving research forward cannot be 
overstated. International partnerships, interdisciplinary research, and knowledge sharing will be vital in overcoming the 
remaining challenges and in translating these innovative technologies into routine clinical practice in the forthcoming years.
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