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Background and Objective: Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) poses a significant threat to male urinary 
health and has an unclear pathogenesis. High-mobility group box 1 (HMGB1), a danger-associated molecular pattern that has been 
identified as a key mediator in various inflammatory diseases. However, its role in CP/CPPS remains unclear. This study aimed to 
investigate HMGB1’s potential contributions to the pathogenesis of CP/CPPS, offering new perspectives for innovative treatments.
Materials and Methods: We have successfully extracted prostate antigens from Sprague–Dawley rat prostate tissue and established an 
experimental autoimmune prostatitis (EAP) mouse model in non-obese diabetic (NOD) mice. Subsequently, EAP mice were treated with 
recombinant HMGB1 protein (rmHMGB1) or the HMGB1-specific inhibitor glycyrrhizin for 14 days. Behavioral test was performed to assess 
the chronic pelvic pain. Hematoxylin and eosin (H&E) staining was employed to assess the extent of inflammatory cell infiltration in the 
prostate, and enzyme-linked immunosorbent assay (ELISA) was performed to assess levels of inflammatory cytokines. Co- 
immunofluorescence was used to analyze the functional phenotype of macrophages and spatial localization of HMGB1 in prostate of EAP 
mice. To further validate these findings, we conducted in vitro experiments. In these experiments, lipopolysaccharide (LPS) was used to induce 
an inflammatory environment in RAW264.7 cells. Interventions included administering rmHMGB1, silencing HMGB1 gene expression with 
siRNA, and treating cells with the TRAF6 inhibitor C25-140. After interventions, Western blot and immunofluorescence were employed to 
evaluate the impact on M1 macrophage polarization and inflammation.
Results: In this study, we demonstrate that HMGB1 is highly expressed in the prostate tissues of EAP mice. Treating EAP mice with 
rmHMGB1 significantly increased prostate histological scores (2.83 vs 1.83, p < 0.05) and the sensitivity to pain stimuli, as evidenced by 
a higher response frequency to von Frey filament stimulation at 4 g (68.33% vs 53.33%, p < 0.05). This treatment also increased the levels of 
inflammatory proteins IL-6 and TNF-α. In contrast, suppressing HMGB1 with glycyrrhizin significantly reduced inflammation, as indicated by 
decreased histological scores (0.50 vs 2.17, p < 0.05), and attenuated pain sensitivity, as evidenced by a lower response frequency to von Frey 
filament stimulation at 4 g (30.83% vs 52.50%, p < 0.05). Glycyrrhizin treatment also reduced IL-6 and TNF-α levels. Furthermore, the 
proportion of CD11b+iNOS+ cells, indicative of M1 macrophage polarization, was significantly reduced after glycyrrhizin treatment. In vitro, 
HMGB1 can regulate the activity of TRAF6 by partially modulating its ubiquitination and degradation, thereby amplifying TRAF6-mediated 
NF-κB activation, promoting M1 macrophage polarization, and exacerbating inflammation.
Discussion and Conclusions: HMGB1 can enhance TRAF6-mediated NF-κB activation, thereby driving M1 macrophage polariza-
tion and exacerbating prostate inflammation in EAP mice. Inhibiting HMGB1 expression with glycyrrhizin can suppress M1 
polarization of macrophages to alleviate prostate inflammation. This study suggests that targeting the HMGB1/TRAF6/NF-κB 
signaling pathway may be an effective therapeutic approach for CP/CPPS.
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Introduction
Prostatitis is among the most frequently encountered conditions in urological practice. According to epidemiological 
data, the prevalence of prostatitis-like symptoms ranges from 2.2% to 9.7%, with an average incidence rate of 8.2%.1 

According to the classification established by the National Institutes of Health (NIH), prostatitis is divided into four 
categories. Among these, Type III CP/CPPS is the primary form of prostatitis, comprising over 90% of all cases.2 It 
presents with a diverse symptomology, including persistent pelvic discomfort, urinary difficulties, sexual dysfunction, 
fatigue, and memory impairment, significantly impacting the health and quality of life of affected individuals.3–5 Due to 
the complex pathogenesis of CP/CPPS, effective treatment strategies remain limited. Numerous studies have suggested 
that the pathogenesis of CP/CPPS may be associated with multiple factors, including autoimmune imbalances, neuro-
genic factors, psychosocial stress, direct infection.6–8

CP/CPPS often lacks an identifiable bacterial etiology. Recent advancements in the field have highlighted the pivotal 
role of autoimmune mechanisms in the pathogenesis and progression of CP/CPPS, positioning them as a focal point of 
contemporary research endeavors. Traditionally viewed through the lens of its secretory functions, the prostate gland also 
possesses a remarkably robust immune apparatus. It contains a diverse array of immune cells, including macrophages, 
T and B lymphocytes, and mast cells, predominantly localized within the gland’s stromal compartments.9,10 This immune 
surveillance system suggests a protective role against pathogens. However, its dysregulation may significantly contribute 
to the chronic inflammation seen in CP/CPPS. Pathological examinations of prostate tissues from CP/CPPS patients have 
consistently shown significant infiltration of neutrophils, monocytes, and T lymphocytes.11,12 These findings are 
supported by studies documenting an increased presence of these cells, along with macrophages and B lymphocytes, 
in prostatic fluid and semen samples of affected individuals.13,14 These observations highlight the critical role of these 
immune cells in initiating and sustaining the inflammatory response characteristic of CP/CPPS.

HMGB1 is a highly conserved nuclear DNA-binding protein with diverse biological functions, including the promotion of 
nuclear DNA damage repair, immune regulation, and enhancement of autophagy.15 Previous studies have identified elevated 
HMGB1 expression in prostate epithelial cells and inflammatory cells in patients with benign prostatic hyperplasia combined 
with prostatitis.16 Nevertheless, the precise role and function of HMGB1 in CP/CPPS remain unclear. Numerous studies have 
indicated that HMGB1 can activate the NF-κB signaling cascade by interacting with receptors like advanced glycation end 
products (RAGE), toll-like receptor 2 (TLR2), and TLR4. This activation results in the upregulation and subsequent secretion 
of pro-inflammatory cytokines such as IL-1β, IL-2, and TNF-α, from monocytes, macrophages, neutrophils, and other 
immune cells. These inflammatory factors, in turn, can stimulate immune cells to secrete HMGB1, creating a positive 
feedback loop within a certain range.17,18 This feedback loop may explain why CP/CPPS is difficult to treat, highlighting the 
importance of investigating the role of HMGB1 in the mechanisms of CP/CPPS.

Materials and Methods
Mice and EAP Induction
This experiment utilized male NOD mice, aged 6 to 8 weeks, obtained from the Jiangsu GemPharmatech Co., Ltd. (Jiangsu, 
China). Sprague-Dawley rats, weight 250 to 320g, obtained from Chongqing Enbi Biotechnology Co., Ltd (Chongqing, 
China). All experimental subjects were housed in a controlled, pathogen-free environment at the Animal Research Facility of 
Chongqing Medical University. The experimental procedures involving animals were scrutinized and subsequently endorsed 
by the Institutional Animal Care and Use Committee (IACUC) at the same institution (IACUC-SAHCQMU-2024-00058). 
The welfare of laboratory animals was ensured in accordance with the guidelines of the “Experimental Animal Welfare 
General Rules” (GB/T 42011–2022), and the “Guidelines for Ethical Review of Laboratory Animal Welfare” (GB/T 
35892–2018). Additionally, the 3R principles (Replacement, Reduction, Refinement) were strictly followed to minimize 
the use of animals and reduce their suffering. The EAP mouse model was established following established methods.19,20 

Sprague-Dawley rats for the preparation of prostate protein antigens. After euthanasia, the rats’ prostates were harvested, 
cleaned, and homogenized on ice using a grinder containing sterile PBS with an equal weight of 0.5% Triton X-100 (P0096, 
Beyotime Biotech, Jiangsu, China) and protease inhibitors. The supernatant was used to emulsify with complete Freund’s 
adjuvant (CFA; Sigma--Aldrich, St. Louis, MO, USA) in a 1:1 ratio, forming a stable “water-in-oil” emulsion. This antigen 
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emulsion was used to immunize NOD mice at multiple subcutaneous sites (bilateral inguinal areas, shoulders, and tail base) 
with a total volume of 150 μL/mouse. Immunizations occurred on days 0 and 28, with the control group receiving CFA 
injections at the same sites.21 Mouse-derived recombinant HMGB1 (rmHMGB1) protein (#50913, Sino Biological) was 
intraperitoneally injected daily at 500 ng/mouse for 14 consecutive days after the second immunization. The control group for 
HMGB1 experiments received an equal volume of 0.9% saline (vehicle for rmHMGB1). Glycyrrhizin (HY-N0184, MedChem 
Express), a small-molecule antagonist of HMGB1, was given intraperitoneally at 5 mg/kg daily for 14 days following 
the second immunization. The control group for glycyrrhizin experiments received the same solvent mixture (5% DMSO, 
40% PEG300, 5% Tween 80, and 50% sterile water) without glycyrrhizin. The rmHMGB1 protein was dissolved in 0.9% 
saline, while glycyrrhizin powder was prepared in 100% DMSO as a stock solution and diluted to a working concentration 
using a mixture of 5% DMSO, 40% PEG300, 5% Tween 80, and 50% sterile water. On day 42 post-induction, mice were 
subjected to behavioral tests, then euthanized to collect blood and prostate tissues for subsequent analysis. Protein concentra-
tion was adjusted to 50 mg/mL and stored at −80°C.

Cell Culture
RAW264.7 cells were obtained from CAS Cell Bank (Shanghai, China). RAW264.7 cells were cultured in DMEM 
(high glucose) with 10% FBS, 1% penicillin-streptomycin, and maintained at 37°C, 95% humidity, and 5% CO2. 
Unless specified otherwise, the LPS concentration used in experiments with RAW264.7 cells was 1 μg/mL. For 
in vitro experiments, rmHMGB1 pretreatment was performed 3 h before LPS stimulation. The interference 
sequences that specifically targeted HMGB1 (si-HMGB1:5ʹ-GACTATTAGGATCAAGCAA-3ʹ) and a negative con-
trol (si-NC) siRNA were procured from RiboBio Co., Ltd. (Guangzhou, China). According to the manufacturer’s 
instructions, RAW264.7 cells were transfected with si-HMGB1 (60 nM) or si-NC (60 nM) using Lipofectamine 
2000 (Invitrogen).

Behavioral Test
Before euthanizing the mice, pain sensitivity was evaluated using the Von Frey mechanical pain test kit. As detailed in 
previous studies,19,22 the pressure was focused on the periprostatic region, with care taken to vary the pressure sites to 
prevent desensitization. Before testing, the mice were allowed to adjust to their new surroundings for 30 minutes. Tactile 
allodynia and hyperalgesia were quantified using five distinct filaments exerting forces of 0.04, 0.16, 0.4, 1.0, and 4.0 
g on each mouse. Filaments were applied for 1–2 seconds each, with 5-second intervals, 20 times in total. The incidence 
of positive responses was calculated and statistically compared. Three behavioral manifestations were considered as 
indicative of a positive response to the stimulus; 1) sharp abdominal retraction; 2) immediate licking or scratching at the 
site of filament application; 3) a leaping response.

Hematoxylin and Eosin (H&E) Staining
Paraffin-embedded tissues were sectioned at 5 μm thickness. Sections underwent sequential treatment with xylene, 
followed by a graded ethanol series (100%, 95%, 90%, 80%, 70%) and distilled water (dH2O) for 5 minutes each to 
facilitate dewaxing and rehydration. Subsequently, sections were stained with hematoxylin and eosin in sequence. 
Microscopic images were obtained using a light microscope. Histological scoring, conducted blindly, assessed the extent 
of prostatic inflammation. Inflammation was scored on a four-point scale (0 to 3), as previously described.23 0, no 
inflammation; 1/Mild Single inflammatory cells, most of which are separated by distinct interstitial spaces; 2/Moderate 
Fused sheets of inflammatory cells without tissue destruction or lymphoid nodule/follicle formation; 3/Severe Clusters of 
inflammatory cells with tissue destruction or lymphoid nodule/follicular formation.

Immunofluorescence
Paraffin-embedded prostate tissue sections were dewaxed, rehydrated, and subjected to antigen retrieval in EDTA buffer 
(pH 8.0) using a 90°C water bath for 30 minutes with natural cooling, and subsequent PBS washes. Endogenous 
peroxidase activity was quenched with 3% H2O2 and non-specific binding blocked with 5% BSA for 30 min. The 
sections were then incubated overnight at 4°C with primary antibodies anti-HMGB1 (1:5000, GB11103; Servicebio), 
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anti-CD11b (1:5000, GB15058; Servicebio), anti-E-cadherin (1:2000, GB11082; Servicebio), anti-iNOS (1:2500, 
GB11119; Servicebio) After three washes with PBS, the slides were incubated at room temperature for 50 minutes 
with an HRP-conjugated goat anti-rabbit IgG secondary antibody (1:500, GB23303; Servicebio). TSA signal amplifica-
tion was performed by sequential incubation with iF488-Tyramide (1:500, G1231; Servicebio), CY3-Tyramide (1:500, 
G1223; Servicebio). Finally, the nuclei were counterstained with DAPI for 10 minutes, and the slides were visualized 
using an Olympus FV3000 microscope. For cellular immunofluorescence staining, cellular fixation was conducted in situ 
on the slides for 30 minutes with 4% paraformaldehyde. Subsequently, the slides were processed following the above 
procedures. The slides were incubated overnight at 4°C with the iNOS antibody (1:100; DF7113; Affinity). After three 
rinses with PBST, the slides were incubated with Cy3 goat anti-rabbit secondary antibody (1:500, A0516; Beyotime). 
Finally, the cells were visualized using an Olympus FV3000 microscope.

RNA Isolation and Reverse Transcription-Quantitative Polymerase Chain Reaction 
(RT-qPCR)
Total RNA extraction from RAW264.7 cells was performed using TRIzol reagent (GlpBio, GK20008) following the 
manufacturer’s protocol. RNA purity and concentration were assessed with a NanoDrop 2000 spectrophotometer 
(NanoDrop Technologies). Reverse transcription was conducted using the PrimeScript™ RT reagent kit (Takara, 
Kusatsu, Japan). Quantitative PCR (qPCR) was set up in a final volume of 20 µL using SYBR Green Mix (Takara, 
Kusatsu, Japan) with primers synthesized by Sangon Biotech (Sangon, Shanghai, China). Amplification and detection 
were carried out on an ABI7500 platform (Thermo, MA, USA). Relative gene expression was quantified using the 2 
−ΔΔCT method, and GAPDH was used as an internal control to normalize the data. Each reaction was repeated four 
times. The following primer sequences were used for RT-qPCR: HMGB1 (forward) 5ʹ-GGCGAGCATCCTGGCTTATC 
-3ʹ. HMGB1 (reverse) 5ʹ-GGCTGCTTGTCATCTGCTG-3ʹ; GAPDH (forward) 5ʹ-AGGTCGGTGTGAACGGATTTG-3ʹ. 
GAPDH (reverse) 5ʹ-TGTAGACCATGTAGTTGAGGTCA-3ʹ.

Western Blot Assays
Western blot analysis involved extracting total cellular protein using Beyotime Biotech lysis buffer (Jiangsu, China), 
supplemented with a comprehensive inhibitor cocktail and PMSF. Denaturation was achieved by 30-minute incubation at 
95°C, followed by separation on 12.5% SDS-PAGE and transfer to polyvinylidene fluoride (PVDF) membranes. After 
1-hour blocking with 5% skim milk at room temperature, membranes were incubated with primary antibodies overnight 
at 4°C. The following primary antibodies were used: anti-HMGB1 antibody (1:500, AF7020; Affinity), anti-TRAF6 
antibody (1:500, AF5376; Affinity), anti-IL-6 antibody (1:1000, DF6087; Affinity), anti-iNOS antibody (1:2000, 80,517- 
1-RR; Proteintech), anti-TNF-α antibody (1:500, AF7014; Affinity), NF-κB p65 (1:1000, #8242; CST), phospho-NF-κB 
p65 (1:1000, #3033; CST), GAPDH (1:5,000, 10,494-1-AP; Proteintech), and α-tubulin (1:5,000, AF7010; Affinity). 
After washing, the membranes were incubated with secondary antibodies for 2 hours. Visualization was achieved using 
BeyoECL Moon (P0018FS, Beyotime Biotech, Jiangsu, China). The band density was quantified using the Image 
J software (National Institutes of Health).

Enzyme-Linked Immunosorbent Assay (ELISA)
Serum concentrations of IL-6 and TNF-α in mice were measured utilizing ELISA kits specified for IL-6 (CSB-E04639m) 
and TNF-α (CSB-E04741m), both sourced from Cusabio. The assays were conducted in strict accordance with the 
protocols supplied by the manufacturer.

Protein Immunoprecipitation Assay
RAW264.7 cells were transfected with siRNA targeting HMGB1, followed by stimulation with LPS (1 μg/mL) and 
MG132 (0.35 μM) for 6 hours. Cells were lysed in immunoprecipitation lysis buffer with protease inhibitors and PMSF, 
incubated on ice for 30 minutes, and centrifuged at 12,000 × g for 15 minutes at 4°C. For immunoprecipitation, 1 mg of 
protein was incubated with TRAF6 antibody (4 μL, AF5376; Affinity) overnight at 4°C, and the remaining lysate was 
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used as the input control. Protein A/G magnetic beads (40 μL, #A1002; Abmart) were added and incubated overnight at 
4°C, followed by four-time PBS washes. Immunoprecipitated proteins were eluted using SDS-PAGE loading buffer 
mixed with IP lysis buffer, heated at 95°C for 10 minutes, and analyzed by Western blot.

Statistical Analysis
Statistical analysis was performed using unpaired, two-tailed Student’s t-test for comparison between two groups, and 
a one-way ANOVA with Bonferroni post hoc test was used for comparison among multiple groups. A two-way ANOVA 
analysis of variance was used to compare the two-factor experimental data. The Kruskal-Wallis nonparametric test was 
used to compare ranked data among multiple groups. GraphPad Prism version 6.0 software (GraphPad Software, San 
Diego, CA) was used for all the analyses. Results are expressed as mean ± standard deviation (SD). P < 0.05 was 
considered statistically significant. In the figures, “ns” indicates P > 0.05; *indicates P < 0.05; **indicates P < 0.01; 
***indicates P < 0.001;****indicates P < 0.0001.

Results
HMGB1 Is Upregulated in the Prostate of EAP Mice
To investigate the expression changes and spatial localization of HMGB1 in prostate of EAP mice, co- 
immunofluorescence analysis was performed. The results showed significant co-localization of HMGB1 with macro-
phage marker CD11b (Figure 1A) and epithelial cell marker E-cadherin (Figure 1B) in the mouse prostate. The average 
fluorescence intensity of HMGB1 in macrophages and epithelial cells was compared in the prostate of EAP mice versus 
normal mice. We found a higher intensity of HMGB1 in both macrophages and epithelial cells in the prostate of EAP 
mice versus that of the normal mice (Figure 1C). The result was further corroborated by Western blot, and showed 
significantly elevated HMGB1 levels in prostate of EAP mice (Figure 1D and E). Since macrophages, particularly the M1 
subtype, are key players in inflammatory responses, their role in HMGB1 expression was further examined in vitro. M1 
macrophages were stimulated with LPS, and HMGB1 levels were measured over time. The results demonstrated a time- 
dependent increase in HMGB1 expression in M1 macrophages (Figure 1F and G). These results indicated that HMGB1 is 
highly expressed in both EAP mice and M1 macrophages, suggesting a potential role of HMGB1 in driving the 
inflammatory and pathological processes of CP/CPPS.

Figure 1 HMGB1 is increased in the prostate of EAP mice. Representative images of immunofluorescence staining for HMGB1 and markers of macrophage (A) and prostate 
epithelial cell (B). (C) Quantification of HMGB1 immunofluorescence intensity for macrophages and prostate epithelial cells in the prostate from the normal and EAP groups 
(n=6). (D and E) Western blot analysis of HMGB1 protein in the prostate tissues from the normal and EAP groups (n=3). (F and G) The HMGB1 protein levels at 0 h, 4 h, 
8 h, 12 h and 24 h after LPS-stimulated RAW264.7 were detected by Western blot and quantified (n=4). Data are shown as mean ± SD, and analyzed by unpaired, two-tailed 
Student’s t-test analysis (C and E) or one-way ANOVA analysis (G). *P < 0.01; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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HMGB1 Promotes the Progression of EAP by Enhancing M1 Polarization of Macrophages
To clarify whether HMGB1 promotes the progression of EAP by enhancing M1 polarization of macrophages, rmHMGB1 
was administered. H&E staining revealed significantly higher inflammatory cell infiltration in the prostates of 
rmHMGB1-treated mice compared to the EAP group (Figure 2A), with elevated histopathological scores (Figure 2B). 
Behavioral assessments showed significantly increased pain responses to mechanical stimulation in rmHMGB1-treated 
mice, indicating heightened pain sensitivity (Figure 2C). To clarify the changes in the number of M1 macrophages in 
prostate tissue, we employed co-immunofluorescence analyses of iNOS and CD11b. The results demonstrated a notable 
increase in M1 macrophage numbers in the rmHGB1 group (Figure 2D and E). Previous studies have highlighted the 
critical roles of pro-inflammatory cytokines IL-6 and TNF-α in the pathogenesis of CP/CPPS.24–26 Activated M1 
macrophages are known to secrete these cytokines.27 Consistent with this, we found significantly elevated levels of 
IL-6 (Figure 2F) and TNF-α (Figure 2G) in the rmHMGB1-treated group. These findings suggest that HMGB1 
contributes to inflammatory progression and chronic pain in EAP mice by promoting M1 macrophage polarization.

Suppression of HMGB1 Ameliorates EAP by Inhibiting M1 Polarization of Macrophages
To investigate the therapeutic potential of HMGB1 inhibition in EAP mice, the HMGB1 antagonist glycyrrhizin was 
used. H&E staining demonstrated a significant reduction in the number of infiltrating inflammatory cells in the prostate of 
glycyrrhizin-treated mice (Figure 3A). Correspondingly, histopathological scores in the glycyrrhizin-treated group were 
significantly reduced (Figure 3B). Moreover, these mice exhibited a significantly lower frequency of pain responses to 
mechanical stimuli, suggesting a reduction in pain sensitivity (Figure 3C). Co-immunofluorescence staining for iNOS 
and CD11b revealed a notable decrease in M1-type macrophage numbers in the glycyrrhizin-treated group compared to 
the EAP group (Figure 3D and E). Furthermore, the levels of pro-inflammatory cytokines IL-6 (Figure 3F) and TNF-α 

Figure 2 HMGB1 Promotes EAP severity. (A) Histological evaluation for the degree of inflammation for mice in the EAP and rmHMGB1 treatment groups. (B) The inflammation 
score for mice in the EAP and rmHMGB1 treatment groups (n=6). (C) Pain response test for mice in the EAP and rmHMGB1 treatment groups. (D) Representative images of 
immunofluorescence staining for iNOS and CD11b in the prostate of EAP and rmHMGB1 treatment mice. Cells were stained for iNOS (green) and CD11b (red). (E) Relative 
quantification of the numbers of CD11b+iNOS+ cells in prostate from EAP and rmHMGB1 treatment groups (n=6). (F and G) The expression levels of IL-6 and TNF-α in serum 
from EAP and rmHMGB1 treatment groups. Data are shown as mean ± SD, and analyzed by unpaired, two-tailed Student’s t-test analysis (B, E, F and G) or two-way ANOVA 
analysis (C). *P < 0.01; **P < 0.01; ****P < 0.0001.
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(Figure 3G) were significantly reduced in the glycyrrhizin-treated group. These findings suggest that glycyrrhizin 
mitigates EAP severity by reducing M1 macrophage polarization in vivo.

HMGB1 Promotes the Secretion of Inflammatory Mediators of Macrophages via 
TRAF6/NF-κB Activation
To explore the molecular mechanisms underlying HMGB1-mediated macrophage polarization, we conducted in vitro 
experiments using RAW264.7 cells pretreated with different concentrations of rmHMGB1 (250 ng/mL or 500 ng/mL) 
followed by LPS (1 μg/mL) stimulation. Western blot analysis revealed that iNOS expression was increased after 
rmHMGB1 treatment with LPS (Figure 4A and B). Similarly, the levels of pro-inflammatory cytokines IL-6 and TNF-α 
were also elevated in these groups (Figure 4A, C and D). Immunofluorescence further confirmed the significant upregulation 
of iNOS expression following rmHMGB1 treatment (Figure 4E). To investigate the potential mechanisms by which HMGB1 
regulates M1 macrophage polarization, we utilized bioinformatics tools (http://string-db.org/) to analyze functional protein 
interactions, leading to the identification of several candidate proteins (Figure 4F). Among these candidates, TRAF6 stood out 
due to its involvement in a variety of inflammatory diseases.28,29 Previous studies have established that TRAF6 plays a pivotal 
role in activating the NF-κB signaling pathway.30 Activation of the TRAF6/NF-κB pathway is known to drive macrophage 
M1 polarization and enhance the release of inflammatory cytokines.31 Based on these findings, we hypothesized that the 
HMGB1/TRAF6/NF-κB signaling pathway may promote macrophage M1 polarization and cytokine release. To validate this 
hypothesis, we detected TRAF6, p-NF-κB, and NF-κB protein levels in LPS-activated RAW264.7 cells pretreated with 
rmHMGB1 (Figure 4G). We found that rmHMGB1 significantly increased the expression levels of TRAF6 and p-NF-κB 
(Figure 4H and I). To further validate whether TRAF6 is essential for HMGB1-mediated activation of the NF-κB signaling 

Figure 3 Suppression of HMGB1 with glycyrrhizin ameliorates EAP severity. (A) Histological evaluation for the degree of inflammation for mice in the EAP group and 
glycyrrhizin treatment group. (B) The inflammation score for mice in the EAP group and glycyrrhizin treatment group (n=6). (C) Pain response test for mice in the EAP 
group and glycyrrhizin treatment group (n=6). (D) Representative images of immunofluorescence staining for iNOS and CD11b in the prostate of EAP and glycyrrhizin 
treatment mice. Cells were stained for iNOS (green) and CD11b (red). (E) Relative quantification of the numbers of CD11b+iNOS+ cells in prostate from EAP and 
glycyrrhizin treatment group (n=6). (F and G) The expression levels of IL-6 and TNF-α in serum from EAP and glycyrrhizin treatment groups (n=6). Data are shown as mean 
± SD, and analyzed by unpaired, two-tailed Student’s t-test analysis (B, E, F and G) or two-way ANOVA analysis (C). **P < 0.01; ***P < 0.001; ****P < 0.0001.
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pathway, we performed functional rescue experiments using C25-140, a specific TRAF6 inhibitor. The experimental results 
demonstrated that C25-140 significantly suppressed the HMGB1-enhanced phosphorylation of NF-κB (Figure 4J and K). 
These findings suggest that HMGB1 promotes M1 macrophage polarization and the secretion of inflammatory mediators via 
the activation of the TRAF6/NF-κB pathway in vitro.

Figure 4 HMGB1 promotes M1 polarization of macrophages through TRAF6/NF-κB pathway. (A) Western blot was used to detect the protein levels of iNOS, IL-6 
and TNF-α in RAW264.7 treated with rmHMGB1. Relative quantification of the protein levels of iNOS (B), IL-6 (C) and TNF-α (D) (n=4). (E) The iNOS was detected 
by immunofluorescence combined with DAPI staining for nuclei. (F) Protein-protein interaction diagram was performed by STRING website (http://string-db.org/). 
(G) Western blot was used to detect the protein levels of TRAF6, NF-κB, and pNF-κB in RAW264.7 treated with rmHMGB1. Relative quantification of the protein 
levels of TRAF6 (H), and pNF-κB (I) (n=4). (J) Western blot was used to detect the protein levels of pNF-κB and NF-κB in RAW264.7 pretreatment with the TRAF6- 
specific inhibitor C25-140 (10 μM) prior to rmHMGB1 and LPS treatment. (K) Relative quantification of the protein levels of pNF-κB (n=3). Data are shown as mean ± 
SD, and analyzed by unpaired, two-tailed Student’s t-test analysis (K) or one-way ANOVA analysis (B, C, D, H and I). **P < 0.01; ***P < 0.001; ****P < 0.0001.

https://doi.org/10.2147/JIR.S502616                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 6742

Zhou et al                                                                                                                                                                           

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://string-db.org/


Silencing HMGB1 Prevents the Secretion of Inflammatory Mediators of Macrophages 
via TRAF6/NF-κB Pathway
To further confirm the hypothesis that HMGB1 promotes the secretion of inflammatory mediators by macrophages via the 
TRAF6/NF-κB pathway, HMGB1 expression was silenced in RAW264.7 cells using siRNA. RT-qPCR and Western blot 
analyses demonstrated successful knockdown of HMGB1 at both mRNA and protein levels (Figure 5A–C). Western blot 
analysis revealed reduced levels of HMGB1, iNOS, IL-6, and TNF-α in LPS-treated RAW264.7 cells following HMGB1 
knockdown (Figure 5D–H), which was corroborated by immunofluorescence showing significantly decreased iNOS 
expression (Figure 5I). Further investigation of the TRAF6/NF-κB signaling pathway showed that HMGB1 silencing 
resulted in reduced levels of TRAF6 and p-NF-κB (Figure 5J–L). Notably, inhibition of TRAF6 with C25-140 further 
diminished NF-κB phosphorylation (Figure 5M and N). These findings further indicate that HMGB1 promotes M1 
macrophage polarization and regulates the expression of pro-inflammatory mediators such as IL-6, TNF-α via the 
TRAF6/NF-κB pathway.

Figure 5 Silencing HMGB1 prevents the secretion of inflammatory mediators of macrophages via TRAF6/NF-κB pathway. (A–C) The silencing efficiency of HMGB1 in 
RAW264.7 was tested by RT-qPCR and Western blot. (D) Western blot was used to detect the protein levels of HMGB1, iNOS, IL-6 and TNF-α in si-HMGB1 group. 
Relative quantification of the protein levels of HMGB1 (E), iNOS (F), IL-6 (G) and TNF-α (H) (n=3). (I) The iNOS was detected by immunofluorescence combined with 
DAPI staining for nuclei. (J) Western blot was used to detect the protein levels of TRAF6, NF-κB, and pNF-κB in si-HMGB1 group. Relative quantification of the protein 
levels of TRAF6 (K), and pNF-κB (L) (n=3). (M) Western blot was used to detect the protein levels of pNF-κB and NF-κB in si-HMGB1 cells pretreatment with the TRAF6- 
specific inhibitor C25-140 (10 μM) prior to LPS stimulation. (N) Relative quantification of the protein levels of pNF-κB (n=3). Data are shown as mean ± SD, and analyzed by 
unpaired, two-tailed Student’s t-test analysis (C and N) or one-way ANOVA analysis (E, F, G, H, K and L). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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HMGB1 Inhibited Ubiquitination and Degradation of TRAF6
To investigate the potential regulatory mechanism of HMGB1 on TRAF6 protein, we performed a cycloheximide (CHX) 
chase assay to block new protein synthesis and assess the degradation rate and stability of TRAF6 protein. Time-course 
analysis revealed that TRAF6 degradation was significantly accelerated in HMGB1-silenced cells compared to controls 
(Figure 6A). These findings suggest that HMGB1 may stabilize TRAF6 by modulating its degradation process. To further 
elucidate the degradation pathway, we employed the proteasome inhibitor MG132 and the lysosomal inhibitor chlor-
oquine. Notably, MG132 treatment effectively prevented TRAF6 degradation in HMGB1-silenced cells (Figure 6B), 
indicating that HMGB1 induced TRAF6 degradation primarily via the proteasomal pathway. Additionally, immunopre-
cipitation assays demonstrated a significant increase in TRAF6 ubiquitination upon HMGB1 silencing (Figure 6C). These 
findings collectively demonstrate that HMGB1 enhances TRAF6 protein stability by suppressing its ubiquitination and 
subsequent proteasomal degradation, thereby modulating TRAF6-dependent inflammatory signaling.

Discussion
In this study, we found that HMGB1 expression was markedly elevated in the prostate tissues of EAP mice. Treatment 
with rmHMGB1 exacerbated prostatic inflammation and pelvic pain, whereas administration of glycyrrhizin ameliorated 
prostatic inflammation and pelvic pain. Our results indicated that HMGB1 promotes macrophage polarization toward the 
M1 phenotype and enhances the secretion of pro-inflammatory mediators both in vivo and in vitro, thereby contributing 
to EAP pathogenesis. Mechanistically, HMGB1 activates the TRAF6/NF-κB signaling pathway, leading to a pro- 
inflammatory M1 phenotype in macrophages, which results in increased production of IL-6 and TNF-α. Notably, 
inhibition of TRAF6 with C25-140 significantly suppressed HMGB1-enhanced NF-κB phosphorylation, further support-
ing TRAF6’s essential role in this pathway. Our findings suggest that HMGB1 can regulate TRAF6 activity via 
modulating its ubiquitination and degradation, thereby enhancing TRAF6-mediated NF-κB activation, driving M1 
macrophage polarization, and ultimately exacerbating inflammatory responses.

CP/CPPS is a complex condition characterized by pelvic or perineal pain without evidence of urinary tract infection, 
lasting for at least 3 months.32 Diagnosis of CP/CPPS primarily utilizes the NIH criteria, emphasizing symptom assessment, 
physical examinations, and exclusion of other urological conditions.2 In this context, inflammatory markers such as C-reactive 
protein (CRP), IL-6, and TNF-α have emerged as potential biomarkers for diagnosing and gauging the severity of CP/CPPS.33 

Figure 6 HMGB1 inhibited ubiquitination and degradation of TRAF6 protein. (A) TRAF6 protein was discerned by Western blot after treatment with CHX (20 μg/mL) at 0 h, 2 h, 
4 h, 8 h in si-NC and si-HMGB1 cells in the presence of LPS. (B) TRAF6 protein was discerned by Western blot after treatment with MG132 (0.35 μM) and lysosomal inhibitor 
chloroquine (50 μM) in si-NC and si-HMGB1 cells in the presence of LPS. (C) Ubiquitination level of TRAF6 was detected by Western blot si-HMGB1 cells.
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HMGB1 has been extensively studied as a contributor to the pathogenesis of various chronic inflammatory and autoimmune 
diseases. Elevated HMGB1 levels have been linked to the severity of inflammatory conditions such as rheumatoid arthritis,34 

systemic lupus erythematosus,35 and sepsis.36 In our study, we showed elevated HMGB1 expression in EAP mice and the 
pathogenic role of HMGB1 in EAP.

HMGB1 is predominantly localized in the nucleus of various cell types, such as macrophages and prostate epithelial 
cells, where it regulates critical cellular processes, including DNA organization, repair, and transcriptional regulation 
under physiological conditions. However, in response to inflammatory stimuli, immune cells undergo activation and 
actively release HMGB1 into the extracellular space, where it functions as a potent mediator of inflammation.37 Once 
released into the extracellular space, HMGB1 serves as a damage-associated molecular pattern, binds to receptors such as 
RAGE, TLR4 and TLR2 on immune cells and perpetuates the inflammatory response.18 This interaction enhances the 
inflammatory response, establishing HMGB1 as a key pro-inflammatory mediator. It plays a pivotal role in the 
development of various chronic inflammatory and autoimmune diseases including sepsis, rheumatoid arthritis, athero-
sclerosis, chronic kidney disease, and systemic lupus erythematosus. Moreover, HMGB1 has been implicated in 
mechanisms that promote cancer pathogenesis.38 Our study suggests that HMGB1 can establish an inflammatory 
environment within the prostate by promoting M1 macrophage polarization and inducing the production of inflammatory 
cytokines. These results suggested that HMGB1-driven inflammation may be a pathogenic mechanism in CP/CPPS.

TRAF6, functioning as an intrinsic E3 ubiquitin ligase, directly catalyzes substrate ubiquitination through its RING 
domain. Mechanistically, TRAF6 is a key signaling mediator for the IL-1 receptor and TLR superfamily, coordinating cellular 
responses to cytokines and pathogen-associated molecular patterns (PAMPs).30 Upon activation, these receptors recognize 
PAMPs and recruit the MYD88 adaptor protein, which subsequently leads to TRAF6 activation. Activated TRAF6 catalyzes 
K63-linked polyubiquitination of the TAK1 complex, forming a signaling scaffold that facilitates NF-κB activation via IκB 
kinase (IKK)-mediated phosphorylation.39 Once activated, NF-κB translocates into the nucleus, driving the transcription of 
inflammatory mediators that promote M1 macrophage polarization.31 Our data suggest that HMGB1 can enhance TRAF6 
stability. HMGB1 can enhances TRAF6 protein expression by suppressing its ubiquitination and subsequent proteasomal 
degradation. In this study, we used C25-140, which directly binds to TRAF6, blocks its interaction with UBC13, and 
suppresses K63-linked ubiquitination. We found it significantly inhibited HMGB1-induced NF-κB activation. Based on our 
findings, we propose that HMGB1 primarily modulates TRAF6 function via the TLR4 pathway by regulating its K63-linked 
ubiquitination, thereby promoting downstream TAK1/NF-κB activation. Collectively, these findings indicate that HMGB1 
may sustains inflammatory responses mainly by modulating TRAF6’s ubiquitination and stabilizing TRAF6 protein.

Since HMGB1 plays a critical role in numerous inflammatory and autoimmune disorders, multiple inhibitory 
strategies have been proposed against HMGB1, such as HMGB1 monoclonal antibodies, small molecule inhibitors (eg 
Glycyrrhizin), and natural compounds (eg Epigallocatech-in-3-gallate).38 Glycyrrhizin, a triterpene glycoconjugate 
derived from licorice roots, is known for its anti-inflammatory and antiviral effects. Studies have shown that glycyrrhizin 
binds to the HMG boxes of HMGB1 protein, effectively suppressing its chemotactic and cytokine activities.40 

Glycyrrhizin’s therapeutic effects have been assessed in various inflammatory conditions, including inflammatory 
bowel diseases,41 neuroinflammation and neurodegenerative disorders,42 and radiation-induced lung injury.43 Our 
study demonstrated the anti-inflammatory effect of glycyrrhizin in EAP mice. These findings underscore the broad 
therapeutic potential of glycyrrhizin and establish it as a promising candidate for clinical applications across a spectrum 
of inflammatory diseases.

Conclusions
This study establishes a critical role for HMGB1 in driving chronic prostatic inflammation via TRAF6/NF-κB axis- 
mediated M1 macrophage polarization, as mechanistically delineated in our proposed signaling paradigm (Figure 7). 
Targeting HMGB1 with glycyrrhizin is a promising approach to alleviate prostatic inflammation in CP/CPPS. This novel 
therapeutic strategy targeting HMGB1 may significantly improve treatment outcomes in CP/CPPS. However, further 
clinical trials are required to validate its clinical applicability.
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