
O R I G I N A L  R E S E A R C H

Early Elevation of Monocytic-to- 
Polymorphonuclear Myeloid-Derived Suppressor 
Cells Ratio in Critical Illness is Associated with 
Favorable Clinical Outcomes
Lijing Jia, Ling Long, Huawei Wang, Chen Ge, Ze Zhang, Zhiyang Zhang, Heling Zhao

Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China

Correspondence: Heling Zhao, Email 90030201@hebmu.edu.cn

Background: Myeloid-derived suppressor cells (MDSCs), comprising polymorphonuclear (PMN-MDSCs) and monocytic subsets 
(M-MDSCs), are immunosuppressive immature myeloid cells implicated in disease progression and prognosis across multiple 
pathologies.
Purpose: To investigate the clinical significance of early MDSCs subset expansion in critical illness and identify novel prognostic 
biomarkers for risk stratification.
Patients and Methods: This prospective study enrolled 85 critically ill adults (APACHE II ≥15), stratified into survivors (n=47) and 
non-survivors (n=38). MDSCs subsets were quantified via flow cytometry. Concurrent measurements included lactate, IL-6, CRP, 
lymphocyte subsets, and Tregs. Primary outcomes were 28-day all-cause mortality and secondary infection rates.
Results: Survivors exhibited significantly higher M-MDSCs% (median [IQR]: 4.824 [1.863–9.776] vs 2.503 [1.480–5.224], P<0.05) 
and elevated M-MDSCs/PMN-MDSCs ratios (122.166 [34.220–307.500] vs 28.324 [5.042–88.128], P<0.01). Patients with 
M-MDSCs/PMN-MDSCs ratios ≥85.765 demonstrated markedly lower mortality (23.08% vs 59.19%; hazard ratio [HR] = 3.530, 
95% confidence interval [CI]: 1.668–7.467, P<0.001), with the low-ratio group exhibiting a 2.56-fold higher mortality risk. 
A combined stratification model (M-MDSCs/PMN-MDSCs + APACHE II score) revealed a 7.48-fold increase in mortality in the low- 
ratio/high-APACHE II subgroup compared to the high-ratio/low-APACHE II subgroup (86.36% vs 11.54%, P<0.001).
Conclusion: Elevated levels of M-MDSCs in the early stages of critical illness may exert protective effects. The ratio of M-MDSCs/ 
PMN-MDSCs demonstrates predictive value for 28-day mortality, positioning it as a potential biomarker for prognostic assessment, 
but further multicenter studies are still needed to validate it.
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Introduction
The initial discovery of immune suppressive cells originating from myeloid precursors dates back to the 1980s, when 
researchers investigating cancer patients identified a population of functionally suppressive myeloid cells.1,2 These cells 
were provisionally termed Natural Suppressor Cells (NSCs) and Immature Myeloid Cells (IMCs) based on their develop-
mental origin and immunosuppressive characteristics. Following two decades of characterization efforts, the scientific 
community formally adopted the nomenclature “Myeloid-Derived Suppressor Cells” (MDSCs) in 2007 to standardize 
research terminology.3

MDSCs are currently classified into two principal subtypes based on morphological and phenotypic criteria: polymorpho-
nuclear MDSCs (PMN-MDSCs) resembling granulocytes, and monocytic MDSCs (M-MDSCs) sharing features with 
monocytes.4 Immunophenotyping reveals distinct surface marker profiles: human PMN-MDSCs are characterized by 
CD33+CD11b+CD15+HLA-DRlow expression, while M-MDSCs exhibit CD33+CD11b+CD14+HLA-DRlow markers.5 
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Additionally, researchers have identified a minor population (<5% of total MDSCs) of developmentally primitive cells 
designated as early-stage MDSCs (e-MDSCs).6 These precursor cells emerge during initial disease progression and display 
a unique CD33+CD11b+HLA-DRlowCD14−CD15− profile, lacking both granulocytic and monocytic differentiation markers.7

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immunosuppressive cells that 
undergo pathological expansion during chronic inflammatory conditions and carcinogenesis. These cells exert multi-
faceted pro-tumorigenic effects through immune evasion mechanisms, tumor angiogenesis promotion, and direct support 
of malignant progression.8 Emerging evidence indicates that MDSCs also demonstrate significant expansion in acute 
inflammatory pathologies, including trauma, burn injuries, and sepsis.9,10

Critically ill patients often manifest a spectrum of immune dysregulation ranging from partial functional impairment 
to complete immune paralysis. This immunological disturbance can lead to cellular damage, progressive organ dysfunc-
tion, and ultimately multi-system failure. The co-occurrence of hyperinflammation and immunosuppression - a hallmark 
of critical illness - constitutes a pathophysiological paradox wherein both pro-inflammatory and anti-inflammatory 
pathways are simultaneously activated. Although these dual processes may temporally overlap, their etiological drivers, 
molecular mechanisms, and clinical trajectories demonstrate distinct characteristics.

Notably, patients with sepsis, major trauma, or severe infections typically exhibit concurrent elevation of inflamma-
tory mediators and immunosuppressive markers. A pivotal clinical study revealed that trauma patients demonstrate three 
characteristic immunological alterations within hours post-injury: 1) significant elevation of pro-inflammatory cytokines 
(IL-6) and chemokines (IL-8), 2) paradoxical upregulation of the anti-inflammatory cytokine IL-10, and 3) marked 
downregulation of HLA-DR expression on circulating monocytes.11 This rapidly developing immunosuppressive state, 
occurring synchronously with systemic inflammation, underscores the complexity of immune homeostasis disruption in 
critical care settings.

Despite well-established understanding of myeloid-derived suppressor cells (MDSCs) in tumor immunology, critical 
knowledge gaps persist regarding the functional characteristics of different MDSCs subsets during early critical illness. 
The temporal dynamics of PMN-MDSCs and M-MDSCs expansion, their molecular mechanisms in immune regulation, 
and ultimate prognostic value remain underinvestigated. To address these unresolved issues, we conducted this study 
aiming to elucidate the clinical significance of early MDSCs expansion in critically ill patients, thereby providing 
evidence for clinical decision-making and optimizing prognostic evaluation.

Methods
Study Design and Setting
This prospective observational cohort study was conducted at the intensive care unit (ICU) of Hebei General Hospital, 
a tertiary academic medical center. The protocol was prospectively registered with the Chinese Clinical Trial Registry 
(Registration ID: ChiCTR2300079024) and received ethical approval from the Institutional Review Board of Hebei 
General Hospital (Ethical Approval Code: 2023–410). The study adhered to the ethical principles outlined in the 
Declaration of Helsinki. Written informed consent was obtained from all participants or their legal representatives 
prior to study enrollment.

Study Population
Study Population Between March 2024 and July 2024, consecutively admitted ICU patients meeting predefined criteria were 
stratified based on 28-day survival outcomes into survivors and non-survivors (Figure 1). Inclusion criteria required: 1) age 
≥18 years; 2) APACHE II score ≥15; and 3) informed consent. Exclusion criteria comprised: 1) pregnancy; 2) active 
malignancy; 3) organ transplant recipients; 4) HIV-positive status; and 5) prior use of corticosteroids or immunosuppressants.

Data Collection and Processing
Peripheral blood samples were collected in EDTA-anticoagulated tubes within 48 hours of ICU admission. A standardized 
flow cytometry protocol utilizing a BD Biosciences FACSCanto II flow cytometer with fluorescence-labeled antibodies was 
employed to quantify myeloid-derived suppressor cells (MDSCs) and their subsets: polymorphonuclear MDSCs and 
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monocytic MDSCs, as well as lymphocyte subsets and regulatory T cells (Tregs). Concurrent laboratory analyses included 
complete blood count, serum lactate, interleukin-6 (IL-6), and C-reactive protein (CRP) measurements. Patients were 
prospectively followed for 28 days to monitor secondary infections, defined as new-onset microbiologically confirmed 
infections occurring >48 hours after hospital admission. The primary endpoints included all-cause mortality and nosocomial 
infection rates.

Flow Cytometric Analysis of MDSCs
Peripheral Blood Mononuclear Cell (PBMC) Isolation

1. Density gradient preparation: A Ficoll-Paque density gradient was established by layering 1.5 mL of Ficoll- 
Paque™ PLUS (GE Healthcare) in a 15 mL conical tube.

2. Sample preparation: Whole blood was diluted 1:1 with phosphate-buffered saline (PBS) in a separate tube.
3. Gradient centrifugation: The diluted blood sample was carefully layered onto the Ficoll gradient and centrifuged at 

400 ×g for 20 min at 20°C with brake disengaged.
4. PBMC collection: The mononuclear cell layer at the plasma-Ficoll interface was aspirated using a sterile Pasteur 

pipette.
5. Cell washing: PBMCs were washed twice with PBS (2 mL per wash) through centrifugation at 300 ×g for 5 min, 

followed by resuspension in 200 μL PBS.

Immunostaining Protocol
The following fluorescently conjugated anti-human monoclonal antibodies were titrated in a polystyrene tube:CD15- 
FITC (clone H198), CD11b-PE (clone ICRF44), CD45-PerCP (clone 2D1), CD33-PE-Cy7 (clone WM55), HLA-DR- 
APC (clone LN3), CD14-APC-Cy7 (clone 61D3).

Staining Procedure
100 μL PBMC suspension (1×10^6 cells) was added to the antibody mixture. Vortexed gently and incubated protected 
from light for 15 min at 4°C. Washed with 2 mL PBS (300 ×g, 5 min). Resuspended in 500 μL PBS for acquisition.

302 ICU patients were admitted

214 patients met the inclusion criteria

129 patients were excluded, including pregnant 
women, malignant tumors, transplants, HIV 

infections, and patients receiving hormone or 
immunosuppressive therapy

85 patients were included in the study

Survivors Non-survivors

Figure 1 Patients enrolled in our study.
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Flow Cytometric Acquisition and Analysis
Samples were analyzed within 2 hours using a BD FACSCanto II flow cytometer (BD Biosciences) with FACSDiva™ 
software (v8.0.1). The gating strategy (Figure 2) was established as follows:

M-MDSCs: CD45+CD33+CD11b+CD14+CD15−HLA-DR−

PMN-MDSCs: CD45+CD33+CD11b+CD14−CD15+HLA-DR−

Flow Cytometric Analysis of Lymphocyte Subsets and Regulatory T Cells
Sample Preprocessing
Fresh peripheral blood was gently mixed by inversion, and 30–50 μL of the blood was aliquoted and incubated with 
fluorescence-conjugated antibodies in a light-protected environment for 15 minutes. Hemolysin was then added to lyse 
red blood cells, followed by washing steps to clarify the cells before loading onto the flow cytometer for analysis.

Gating Strategy
Based on the principles of flow cytometry, the primary cell population was gated using forward scatter (FSC, reflecting 
relative cell size) and side scatter (SSC, indicating internal structural complexity). Subsequently, lymphocytes were 
further gated using CD45 expression combined with SSC. Cell subsets were then identified based on surface-specific 
antigen expression:

Figure 2 Panels (a–f) illustrate the gating strategy for identification of MDSCs in critically ill patients.
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T lymphocytes: CD3+

Helper/inducer T lymphocytes: CD3+CD4+

Suppressor/cytotoxic T lymphocytes: CD3+CD8+

B lymphocytes: CD3−CD19+

NK lymphocytes: CD3−CD16+CD56+

Regulatory T cells (Treg): CD3+CD4+CD25+CD127low/−

Testing Methods for Other Indicators
The following indicators were tested by the hospital laboratory.

Blood Analysis (Complete Blood Count, CBC)
Principle: Automated instruments used the electrical impedance method to count red blood cells, white blood cells, and 
platelets and analyze their morphology.
Method: Anticoagulated whole blood was collected in EDTA tubes and analyzed directly using the instrument.

Interleukin-6 (IL-6)
Principle: The enzyme-linked immunosorbent assay (ELISA) was based on antigen-antibody binding for quantification.
Method:Serum was collected, added to a reagent plate, and results were detected using the instrument.

Lactate
Principle: Lactate oxidase converted lactate into hydrogen peroxide, which was detected via electrochemical sensor methods.
Method: Whole blood samples were added to test strips, and results were rapidly measured using a blood gas analyzer.

C-Reactive Protein (CRP)
Principle: The immunoturbidimetric method detected light signal changes caused by CRP-antibody complex formation.
Method: Serum samples were mixed with reagents, and turbidity was analyzed using an automated instrument.

Statistical Analysis
Statistical analyses were performed using SPSS 25.0 software. Data distribution was initially assessed through normality 
and homogeneity of variance tests. Normally distributed continuous variables were expressed as mean ± standard 
deviation (SD) and compared using analysis of variance (ANOVA) for intergroup comparisons, while non-normally 
distributed quantitative data were summarized as median with interquartile range (IQR) and analyzed via non-parametric 
methods (eg, Mann–Whitney U-test). Categorical variables were described as frequency (%) and compared using chi- 
square tests. The predictive performance of indicators was evaluated by receiver operating characteristic (ROC) curve 
analysis, with the area under the curve (AUC) quantifying discriminative ability; optimal cutoff values were determined 
by maximizing Youden’s index, and corresponding sensitivity and specificity were calculated. Survival outcomes were 
presented using Kaplan-Meier curves. A two-tailed p-value < 0.05 was considered statistically significant for all analyses.

Results
Clinical Data
The study enrolled 85 critically ill patients (survivors: n=47; non-survivors: n=38) diagnosed with sepsis, traumatic 
injury, traumatic brain injury, severe acute pancreatitis, and other critical conditions (Table 1). Compared with non- 
survivors, survivors exhibited significantly lower median values for age (62.40 ± 14.91 vs 72.63 ± 11.58 years; P = 
0.001), Charlson Comorbidity Index (CCI: 5 [IQR 5–8] vs 9 [7–12.27]; P < 0.001), APACHE II score (19 [17–24] vs 26 
[23–30.25]; P < 0.001), and inflammatory biomarkers including IL-6 (119.700 [45.300–222.100] vs 205.500 [114.725-
–368.555] pg/mL; P = 0.015), lactate (2.500 [1.450–3.400] vs 3.350 [2.065–6.155] mmol/L; P = 0.033), and CRP 
(108.690 [66.440–177.300] vs 165.200 [97.230–221.325] mg/L; P = 0.036). The incidence of secondary infections was 
markedly reduced in survivors (27.66% [13/47] vs 50% [19/38]; P = 0.035). Although ICU length of stay showed no 
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intergroup difference (median [IQR]: survivors 21 [14,33] vs non-survivors 12 [5.75,20] days; P < 0.001), survivors 
demonstrated prolonged overall hospitalization duration (P < 0.001).

Differential Expression of M-MDSCs and PMN-MDSCs in Critically Ill Patients
No significant difference was observed in the proportion of PMN-MDSCs between survivors and non-survivors (median 
[IQR]: 0.049% [0.012–0.141%] vs 0.102% [0.021–0.373%]; P = 0.101). However, M-MDSCs were markedly elevated in 
survivors compared to non-survivors (4.824% [1.863–9.776%] vs 2.503% [1.480–5.224%]; P = 0.030). Notably, the 
M-MDSCs/PMN-MDSCs ratio demonstrated a pronounced disparity, with survivors exhibiting a 4.3-fold higher median 
value than non-survivors (122.166 [34.220–307.500] vs 28.324 [5.042–88.128]; P = 0.001) (Table 2).

Predictive Value of Clinical and Immunological Indicators for 28-Day Mortality in 
Critically Ill Patients
Receiver operating characteristic (ROC) curve analysis was performed to assess the prognostic utility of age, Charlson 
Comorbidity Index (CCI), APACHE II score, IL-6, lactate, CRP, M-MDSCs%, and M-MDSCs/PMN-MDSCs ratio for 28- 
day mortality (Figure 3). The APACHE II score demonstrated the strongest predictive capacity (AUC = 0.772; 95% CI: 
0.669–0.875), with an optimal cutoff value of 24.5 yielding 65.8% sensitivity and 78.7% specificity. Notably, the M-MDSCs/ 
PMN-MDSCs ratio showed significant discriminative power (AUC = 0.713; 95% CI: 0.603–0.823), achieving 63.8% sensitivity 
and 76.3% specificity at a cutoff threshold of 85.765. Other predictors with significant prognostic value included the Charlson 
Comorbidity Index (CCI; AUC = 0.735) and age (AUC = 0.725), while inflammatory-immune biomarkers demonstrated 

Table 1 Characteristics of Patients in the Survivors and Non-Survivors

Characteristic Non-Survivors Survivors χ2/t/Z p value

Number of patients 38 47 – –
Gender, male 25 30 0.035 0.851

Age (years) 72.63±11.58 62.40±14.91 −3.466 0.001*

Charlson comorbidity index(CCI) 9(7,12.25) 5(5,8) −3.777 <0.001*
APACHE II score 26(23,30.25) 19(17,24) −4.300 <0.001*

IL-6(pg/mL) 205.500(114.725,368.555) 119.700(45.300,222.100) −2.493 0.015*

Lac(mmol/L) 3.350(2.065,6.155) 2.500(1.450,3.400) −2.135 0.033*
CRP(mg/L) 165.200(97.230,221.325) 108.690(66.440,177.300) −2.095 0.036*

WBC(x109/L) 13.465 (8.795,17.283) 12.11 (8.700,18.460) −0.013 0.989
Neutrophils(x109/L) 12.430 (7.512,15.615) 10.310 (7.220,16.740) −0.194 0.846

Lymphocyte(x109/L) 0.615 (0.408,1.155) 0.780 (0.630,1.210) −1.565 0.118

CD4+T cells(pcs/ul) 236.065 (120.250,406.000) 269.000 (154.220,477.000) −1.445 0.148
CD8+ T cells(pcs/ul) 125.000 (66.818,247.250) 180.000 (127.000,279.000) −1.569 0.117

B cells(pcs/ul) 101.655 (64.138,230.213) 163.000 (97.000,214.000) −1.684 0.092

NK cells(pcs/ul) 100.000 (49.645,171.250) 91.000 (61.000,209.000) −0.296 0.767
Treg cells(%) 6.750 (5.475,10.050) 8.000 (6.100,9.800) −1.171 0.241

Secondary infections 19(50.00%) 13(27.66%) 4.467 0.035*

Length of ICU stay(days) 7(4,11.25) 8(4,14) −0.838 0.402
Length of hospital stay(days) 12(5.75,20) 21(14,33) −4.065 <0.001*

Notes: P<0.05 indicates statistical difference. *Indicating statistical differences.

Table 2 Levels of MDSCs Subgroups in the Survivors and Non-Survivors

Characteristic Non-Survivors (n=38) Survivors (n=47) t/Z p value

M-MDSCs(%) 2.503 (1.480, 5.224) 4.824 (1.863, 9.776) −2.166 0.030*

PMN-MDSCs(%) 0.102 (0.021, 0.373) 0.049 (0.012, 0.141) −1.640 0.101
M-MDCSs/PMN-MDSCs 28.324 (5.042, 88.128) 122.166 (34.220, 307.500) −3.318 0.001*

Notes: P<0.05 indicates statistical difference. *Indicating statistical differences.
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moderate predictive performance: interleukin-6 (IL-6; AUC = 0.658), lactate (AUC = 0.635), C-reactive protein (CRP; 
AUC = 0.633), and monocytic myeloid-derived suppressor cell percentage (M-MDSCs%; AUC = 0.637; sensitivity = 63.8%, 
specificity = 60.5%).

Prognostic Stratification Based on M-MDSCs/PMN-MDSCs Ratio Cutoff Values in 
Critically Ill Patients
Critically ill patients were dichotomized into high (≥85.765) and low (<85.765) M-MDSCs/PMN-MDSCs ratio groups 
using ROC-derived cutoff values. The high-ratio group (n=39) exhibited significantly lower 28-day mortality compared 
to the low-ratio group (n=46) (23.08% [9/39] vs 59.19% [29/46]; HR=3.53, 95% CI:1.668–7.467; P<0.001), correspond-
ing to a 2.56-fold higher mortality risk in the low-ratio cohort (Figure 4 and Table 3). Compared to the low-ratio group, 
patients in the high M-MDSCs/PMN-MDSCs ratio group exhibited significantly reduced levels of total lymphocytes 
(0.570 [0.433–1.063] vs 0.850 [0.433–1.063] ×10^9/L; P = 0.006), CD4+ T cells (236.065 [130.750–396.933] vs 301.000 
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Figure 3 ROC curves for predicting the 28-day mortality rate in critically ill patients using different indicators (a) ROC curves of APACHE II score, CCl, age, IL-6, CRP, and 
Lac; (b) ROC curve of M-MDSCs%; (c) ROC curve of M-MDSCs/PMN-MDSCs ratio.
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[202.000–477.000] cells/μL; P = 0.048), CD8+ T cells (125.000 [66.818–190.953] vs 194.000 [144.000–341.440] cells/ 
μL; P = 0.001), and NK cells (76.000 [41.908–157.500] vs 118.000 [73.000–222.000] cells/μL; P = 0.013), indicating 
systemic immunosuppression associated with elevated MDSCs ratios.

Stratification of critically ill patients based on combined M-MDSCs/PMN-MDSCs ratios (low: <85.765 vs high: 
≥85.765) and APACHE II scores (low-risk: <24.5 vs high-risk: ≥24.5) identified four distinct prognostic subgroups: the 
high ratio + high APACHE II group (Group 1, 46.15% mortality), low ratio + low APACHE II group (Group 2, 41.67% 
mortality), low ratio + high APACHE II group (Group 3, 86.36% mortality), and high ratio + low APACHE II group 
(Group 4, 11.54% mortality). Notably, Group 3 demonstrated the highest 28-day mortality, exhibiting a 7.48-fold 
increased risk compared to Group 4 (86.36% vs 11.54%; hazard ratio [HR] = 7.48, 95% confidence interval [CI]: 
4.82–11.62; P < 0.001), which robustly validates the synergistic prognostic value of integrating immune profiling 
(M-MDSCs/PMN-MDSCs ratios) with clinical severity scoring (APACHE II) for mortality risk stratification in critical 
illness (Figure 5).

Figure 4 Kaplan-Meier 28-day survival curves based on high and low levels of M-MDSC/PMN-MDSCs.

Table 3 Comparison of Relevant Indicators Between High and Low M-MDSCs/PMN-MDSCs Level Groups

Characteristic High Level Group Low Level Group χ2t/Z p value

Number of patients 39 46 – –
Gender, male 22 33 2.172 0.141

Age (years) 66.10±13.410 67.72±15.270 −0.513 0.609

Charlson comorbidity index (CCI) 4.000 (3.000,5.000) 4.000 (2.000,5.000) −0.845 0.398
APACHE II score 24.000 (29.000,29.250) 21.000 (18.000,25.000) −1.715 0.086

IL-6(pg/mL) 142.950 (80.570,349.975) 137.300 (45.300,380.000) −0.317 0.751

Lac(mmol/L) 2.895 (2.000,5.020) 2.360 (1.450,3.450) −1.543 0.123
CRP(mg/L) 151.380 (98.555,219.312) 108.690 (64.300,177.300) −1.773 0.076

WBC(x109/L) 13.375 (9.393,18.562) 12.1100 (8.460,16.960) −0.688 0.492

Neutrophils(x109/L) 11.895 (7.753,16.375) 10.2600 (7.080,15.440) −0.767 0.443
lymphocyte(x109/L) 0.570 (0.433,1.063) 0.8500 (0.433,1.063) −2.757 0.006*

CD4+T cells(pcs/ul) 236.065 (130.750, 396.933) 301.000 (202.000,477.000) −1.980 0.048*

CD8+ T cells(pcs/ul) 125.000 (66.818,190.953) 194.000 (144.000,341.440) −3.184 0.001*
B cells(pcs/ul) 141.910 (68.000,218.100) 144.000 (92.000,214.000) −0.952 0.341

NK cells(pcs/ul) 76.000 (41.908,157.500) 118.000 (73.000,222.000) −2.483 0.013*

Treg cells(%) 7.750 (6.175,10.050) 6.800 (5.300,9.800) −1.319 0.187
Secondary infections 15 (38.46%) 17 (36.96%) 0.020 0.887

Length of ICU stay(days) 6.500 (4.000,13.250) 8.000 (4.000,12.000) −0.009 0.993

Length of hospital stay(days) 16.000 (8.000,23.250) 16.0000 (12.000,25.000) −1.337 0.181
Non-survivors 9 (23.08%) 29 (59.19%) 13.638 <0.001*

Notes: P<0.05 indicates statistical difference. *Indicating statistical differences.
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Discussion
Myeloid cells originate from common myeloid progenitor cells derived from hematopoietic stem cells. Under normal physio-
logical conditions, immature myeloid cells undergo rapid differentiation into dendritic cells, macrophages, and granulocytes, 
which migrate to target tissues to perform essential immune functions. In homeostasis, these immature myeloid cells lack 
immunosuppressive activity and predominantly reside in the bone marrow, with minimal presence in the peripheral circulation. 
Pathological conditions such as tumors, infections, trauma, or inflammatory disorders disrupt myeloid cell maturation, leading to 
the accumulation and systemic release of myeloid-derived suppressor cells (MDSCs). MDSCs have been extensively character-
ized in cancer biology, where their elevated levels in peripheral blood and tumor microenvironments correlate with advanced 
clinical stages, reduced survival rates, and metastatic progression across multiple malignancies, including renal, breast, hepatic, 
pancreatic, non-small cell lung cancers, and lymphomas.12 Notably, circulating MDSC levels exhibit an inverse relationship with 
T-cell populations and serve as independent prognostic markers for solid tumors, irrespective of cancer type, subtype, or stage.13 

Higher peripheral MDSC proportions consistently predict poorer tumor outcomes,13 and these cells have emerged as predictive 
biomarkers for both tumor progression14,15 and therapeutic responsiveness.16

While MDSC biology in cancer is well-documented, their roles in critical illnesses—including sepsis, trauma, burns, 
and persistent inflammation-immunosuppression-catabolism syndrome (PICS)—remain poorly understood. To address 
this knowledge gap, our study focused on adult critically ill patients admitted to the ICU with APACHE II scores ≥15. 
We excluded confounding populations (pregnancy, active malignancies, transplant recipients, HIV infection, and indivi-
duals receiving immunosuppressive therapies) to isolate MDSC dynamics specific to early critical illness. This design 
enables systematic exploration of MDSC subgroup alterations during the acute phase of severe disease.

The activation of myeloid-derived suppressor cells (MDSCs) follows a sophisticated dual-signal paradigm. The canonical 
pathway is triggered by potent stimuli such as pathogen-associated molecular patterns (PAMPs) or damage-associated 
molecular patterns (DAMPs), manifesting transient activation characterized by intense phagocytic activity, respiratory 
burst, and release of pro-inflammatory cytokines (eg, IL-6, TNF-α), thereby mediating inflammatory responses. Upon 
recruitment to inflammatory sites, MDSCs initially suppress acute inflammation to promote resolution. However, persistent 
pathogen presence induces chronic MDSC activation, leading to systemic immunosuppression that significantly elevates 
susceptibility to infections and tumorigenesis.17 Notably, MDSCs exhibit temporally dependent maturation of immunosup-
pressive capabilities: early-stage MDSCs (eg, during initial sepsis) predominantly display pro-inflammatory phenotypes with 
elevated nitric oxide (NO) and cytokines (IL-6, TNF-α), while late-stage MDSCs transition toward immunosuppression 
through increased secretion of anti-inflammatory mediators (Arg-1, IL-10) coupled with cellular immaturity.18 A parallel 
phenomenon is observed in trauma patients, where sustained tissue damage and concomitant pro-inflammatory signaling 

Figure 5 Kaplan-Meier 28-day survival curves based on combined stratification of M-MDSCs/PMN-MDSCs ratio and APACHE II scores:Group 1: High ratio + High APACHE 
II scores; Group 2: Low ratio + Low APACHE II scores; Group 3: Low ratio + High APACHE II scores; Group 4: High ratio + Low APACHE II scores.
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synergistically drive pathological MDSC activation, perpetuating an immunosuppressive or paralyzed immune state that 
markedly increases risks of sepsis progression, multi-organ failure, and mortality.19,20 Mechanistically, MDSCs exert 
bidirectional immunomodulation through multimodal pathways: 1) Secretion of reactive oxygen species (ROS), matrix 
metalloproteinases (MMPs), arginase-1 (Arg-1), and cytokines (IL-6, IL-1β, VEGF); 2) Downregulation of NKG2D expres-
sion on NK cells via membrane-bound TGF-β,21 coupled with Treg amplification to enhance immune tolerance;22 3) 
Competitive depletion of microenvironmental cysteine and L-arginine (via iNOS/Arg-1 pathways) to inhibit T-cell 
generation,23 alongside ROS-dependent suppression of T-lymphocyte responses;24 4) Release of soluble factors (IL-10, 
TGF-β) that impair T/NK cell proliferation, cytotoxicity, and interferon production.25

While the majority of clinical studies emphasize the detrimental role of MDSCs in disease progression,26,27 emerging 
evidence highlights their context-dependent protective potential in critical conditions. In critically ill patients, emergency 
myelopoiesis-driven expansion of MDSCs exerts protective effects by suppressing early-stage hyperinflammation,28,29 as 
these cells combat infections through pathogen phagocytosis, reactive oxygen species (ROS) production, and bactericidal 
molecule secretion while simultaneously inhibiting systemic or local inflammation triggered by pathogenic or endogen-
ous danger signals,30–32 thereby achieving dual protection through accelerated pathogen clearance and tissue preserva-
tion. Experimental models further delineate tissue-specific reparative mechanisms: MDSCs suppress neuroinflammation 
via cerebral infiltration in traumatic brain injury;33 M-MDSCs upregulate inducible nitric oxide synthase (iNOS) to 
produce nitric oxide (NO) in spinal cord injury, facilitating tissue repair through stem cell recruitment, collagen synthesis, 
and angiogenesis;34–36 MDSCs mitigate pulmonary damage in thoracic trauma by inhibiting cell-mediated inflammation 
and antigen-specific T-cell responses;37 early MDSC activation alleviates acute liver injury via downregulation of TNF-α/ 
IFN-γ and upregulation of IL-10;38 and MDSCs promote fracture healing by suppressing inflammatory T-cell prolifera-
tion while enhancing osteogenic transformation in orthopedic injuries.39

Our clinical observations provide critical validation: In ICU patients with APACHE II scores ≥15, survivors exhibited 
significantly higher early-stage monocytic MDSC proportions (M-MDSCs%) and M-MDSCs/PMN-MDSCs ratios 
compared to non-survivors, despite comparable baseline lymphocyte subsets (CD4+, CD8+, NK cells, Tregs). Notably, 
the M-MDSCs/PMN-MDSCs ratio demonstrated superior predictive efficacy for 28-day mortality over M-MDSCs% 
alone, with discriminative performance comparable to APACHE II scores. Stratified analysis using a predefined cutoff 
(≥85.765) revealed that the high-ratio group displayed significantly reduced lymphocyte counts (CD4+, CD8+, NK cells) 
yet achieved a 46% mortality reduction compared to the low-ratio group. These findings suggest that M-MDSCs- 
dominated immunosuppressive responses may confer protection during the early phase of critical illness by modulating 
T/NK cell functionality, thereby preventing excessive immune activation and subsequent tissue damage.

Emerging evidence demonstrates that myeloid-derived suppressor cells (MDSCs) exhibit a self-amplifying mechan-
ism through cytokine network interactions: MDSCs produce IL-6, which not only promotes their own recruitment in vivo 
but synergizes with GM-CSF (granulocyte-macrophage colony-stimulating factor) and IL-13 to drive MDSC differentia-
tion and expansion.40 In vitro models confirm this regulatory loop—murine bone marrow cells cultured with G-CSF/GM- 
CSF proliferate and differentiate into M-MDSCs upon IL-6 or IL-13 stimulation,41 while human peripheral blood 
mononuclear cells (PBMCs) similarly acquire MDSC phenotypes when exposed to GM-CSF and IL-6.42 Functionally, 
PMN-MDSCs mediate antigen-specific immunosuppression,43,44 whereas M-MDSCs suppress T-cell responses through 
both antigen-specific and nonspecific mechanisms involving nitric oxide (NO) and cytokine signaling.45 Our clinical 
observations align with these mechanistic insights: Non-survivors presented with elevated IL-6, lactate, CRP, and 
M-MDSC levels alongside greater disease severity, suggesting MDSCs amplify pro-inflammatory cascades via non-
specific T-cell inhibition, thereby reinforcing their own differentiation. Survivors exhibited favorable prognostic markers, 
including younger age, lower Charlson comorbidity indices, reduced APACHE II scores, and diminished inflammatory 
markers. Mortality risk correlated strongly with advanced age, polymorbidity, and elevated IL-6/CRP. Non-survivors 
showed higher secondary infection rates, likely attributable to increased invasive interventions, gastrointestinal dysfunc-
tion, and bacterial translocation risks. While ICU stays were comparable, survivors’ prolonged hospitalization reflected 
extended convalescence from primary disease sequelae post-ICU discharge.

Critically ill patients often exhibit varying degrees of immune-inflammatory dysregulation, yet current clinical 
severity scoring systems (eg, APACHE II) lack immune-related biomarkers. This study innovatively integrated the 
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M-MDSCs/PMN-MDSCs ratio with APACHE II scores to establish a stratification model. Patients with M-MDSCs/ 
PMN-MDSCs ≥85.765 and APACHE II <24.5 demonstrated the lowest mortality rate, whereas those with M-MDSCs/ 
PMN-MDSCs <85.765 and APACHE II ≥24.5 exhibited the highest mortality. These findings confirm that this combined 
stratification strategy enhances prognostic accuracy and clinical assessment, providing an immunological dimension for 
clinical decision-making.

However, as a single-center exploratory study, several limitations must be acknowledged: 1) Restricted sample 
size; 2) Variability in blood collection timing (within 48 hours post-enrollment); 3) Potential confounding from pre- 
collection interventions affecting MDSC quantification stability. Additionally, MDSC heterogeneity and the absence of 
specific phenotypic/genomic markers46,47 pose challenges in interpreting their clinical significance, while inconsistent 
phenotypic definitions across studies hinder comparative analyses. Nevertheless, this research highlights the potential 
value of MDSC monitoring in critical care immunomodulation and lays the foundation for future multicenter validation 
studies and the development of MDSC-specific molecular markers.

Conclusions
Elevated levels of M-MDSCs during the early phase of critical illness were observed to potentially exert protective effects. 
A higher ratio of M-MDSCs/PMN-MDSCs correlated with improved patient prognosis. This ratio demonstrated predictive 
value for 28-day mortality, positioning it as a potential biomarker for assessing disease severity and predicting outcomes in 
critically ill patients. However, as a single-center exploratory study with a limited sample size, these findings required 
validation through multicenter, large-scale cohorts to confirm MDSCs as a prognostic biomarker in such patients.
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