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Objective: This study aimed to develop and validate a machine learning-based model for predicting systemic inflammatory response 
syndrome (SIRS) in pediatric patients undergoing percutaneous nephrolithotripsy (PCNL) and to establish a prediction platform 
specifically tailored for this population.
Methods: We retrospectively analyzed clinical data from 410 pediatric patients who underwent PCNL at the People’s Hospital of 
Xinjiang Uygur Autonomous Region between January 2013 and September 2024. The dataset was split into training and validation 
sets using a 7:3 ratio based on positive samples. The Synthetic Minority Over-sampling Technique (SMOTE) was applied to overcome 
class imbalance in the training set, while feature selection was performed using a combination of LASSO regression and Boruta 
algorithms. Eight advanced machine learning algorithms were employed to construct predictive models. The best-performing model 
was selected based on multiple performance metrics. Additionally, we validated an existing adult model to assess its effectiveness in 
the pediatric population and compared it with our model. Shapley Additive Explanations (SHAP) analysis was utilized to determine 
feature importance and model decision basis. Finally, we developed a prediction platform specifically for pediatric patients.
Results: The postoperative SIRS incidence was 20.24%. The LightGBM algorithm demonstrated superior predictive performance, 
achieving an area under the curve (AUC) of 0.8576 and an F1 score of 0.6154. The existing adult models showed lower predictive 
accuracy in the pediatric cohort (AUC values of 0.7420 and 0.7053). Analysis of SHAP values indicated that operation time, stone 
burden, preoperative hemoglobin, preoperative monocyte count, and hydronephrosis were the five most critical features affecting 
predictions. We established a prediction platform specifically designed for the pediatric population.
Conclusion: The LightGBM-based model effectively predicts postoperative SIRS in pediatric PCNL patients, providing a tailored 
tool for this population. The online prediction platform might be useful to guide clinical decision making.
Keywords: pediatric, percutaneous nephrolithotripsy, kidney stones, systemic inflammatory response syndrome, machine learning, 
clinical prediction platform

Introduction
While pediatric kidney stones remain comparatively uncommon, their global incidence demonstrates an upward trend 
annually, leading to considerable healthcare-associated costs.1–3The treatment and management of pediatric patients with 
kidney stones is more complex than that of adults due to several factors including high recurrence rates, co-existing 
metabolic abnormalities, and anatomical differences in the kidney and perirenal tissues.4,5 These factors often necessitate 
frequent surgical interventions. The miniaturization of endoscopic instruments used for percutaneous nephrolithotripsy 
(PCNL) has facilitated its increasing application in the treatment of pediatric kidney stones.6,7 The International Alliance 
of Urolithiasis (IAU) guidelines recommend PCNL as the primary surgical procedure for pediatric patients with stones 
larger than 2 cm or complex upper urinary tract stones.8
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Pediatric PCNL has gained widespread acceptance among urologists for treating kidney stones in pediatric patients 
due to its small dilatation channel, high safety profile and high stone-free rate.9 However, postoperative complications, 
especially Systemic inflammatory response syndrome (SIRS), should not be ignored. SIRS, a systemic inflammatory 
response caused by severe infections, trauma, and surgical procedures, is strongly associated with poor prognosis and 
significantly increased mortality risk.10 SIRS is one of the most common complications after PCNL, maintains a high 
incidence (9.8–43%) despite preoperative antibiotics.11 As the initial stage in sepsis progression, it is closely linked to its 
development. Furthermore, sepsis is one of the leading causes of perioperative mortality after PCNL, with mortality rates 
ranging from 20% to 42%.12,13 Therefore, early identification of high-risk pediatric patients during the “therapeutic 
window” between SIRS onset and sepsis development and timely intervention are key to reducing the incidence of sepsis 
and mortality after PCNL. However, it is noteworthy that although the study of post-PCNL SIRS is more mature in 
adults, there is a virtual void of similar studies in the pediatric population.12–15

Machine learning has been extensively applied in various areas of the biomedical field, including disease diagnosis, 
prognosis prediction, and medical image analysis.16–18 In comparison to traditional regression algorithms, machine 
learning excels at identifying nonlinear relationships and addressing high-dimensional spatial problems in data, achieving 
high accuracy and strong generalization capabilities. Pediatric patients present unique challenges including smaller 
sample sizes, age-dependent immune responses, and threshold effects in surgical stress reactions that conventional linear 
models cannot adequately capture. Li et al and Zhang et al had successfully developed prediction models for SIRS after 
PCNL in adults using machine learning methods; however, their predictive performance has not been validated in 
pediatric patients.13,19 Therefore, our study aimed to compare the predictive performance of multiple machine learning 
algorithms for SIRS after pediatric PCNL, utilizing preoperative and surgery-related clinical data. Additionally, we 
sought to identify the key predictive factors and compare the performance of our model with existing adult models by 
directly evaluate two established adult PCNL-SIRS models in our pediatric cohort using identical validation protocols. 
Ultimately, we aimed to develop a straightforward and reliable prediction platform for this population, which may 
provide a scientific basis for urologists to enhance perioperative management.

Methods
Study Population
We retrospectively analyzed clinical data from 463 pediatric patients (aged ≤14 years) with non-contrast CT confirmed 
kidney stones who underwent primary PCNL at the Department of Urology, People’s Hospital of Xinjiang Uygur 
Autonomous Region between January 2013 and September 2024. We excluded the following pediatric patients to 
minimize confounding factors affecting the occurrence of postoperative SIRS: Preoperative presence of SIRS or other 
serious infectious disease; prior kidney surgery on the affected side; history of bilateral PCNL during study period; 
urological malformations such as polycystic kidneys, horseshoe kidneys or isolated kidneys; with tumors, blood system 
or immune system diseases; and with incomplete clinical data or missing follow up after operation. This study followed 
the principles of the Declaration of Helsinki and was conducted in accordance with the ethical standards of the Medical 
Ethics Committee of our hospital. The research flowchart is shown in (Figure 1)

Data Collection
We collected data based on previous relevant studies, clinical experience, and data accessibility, demographic characteristics 
included age, gender, and body mass index (BMI). Preoperative data included temperature, heart rate, respiratory rate, white 
blood cell count (WBC), hemoglobin (HB), neutrophils (N), lymphocytes (L), monocytes (M), platelets (PLT), hematocrit 
(HCT), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), systemic 
immune inflammatory index (SII), prognostic nutritional index (PNI), urine nitrite, urine WBC, urine culture, serum 
creatinine, urea nitrogen, uric acid, cystatin, albumin, fibrinogen, stone burden (length × width × π × 0.25), hydronephrosis, 
and presence of staghorn stones. Patients with positive preoperative urine culture, positive urine nitrite, and positive urine 
WBC underwent surgery after negative conversion. All patients received prophylactic antibiotics preoperatively. Surgery- 
related data included the location, size, and number of channels, whether a nephrostomy tube was placed, operation time, and 
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whether blood transfusion was required. Postoperative data were uniformly measured at 6 a.m. on the first day after surgery 
and included WBC, temperature, heart rate, respiratory rate, and arterial carbon dioxide partial pressure (PCO2).

SIRS is diagnosed in pediatric patients who meet at least two of the following four criteria, with one criterion being 
an abnormal temperature or leukocyte count: 1. temperature >38.5°C or <36°C; 2. mean heart rate >2 standard deviations 
(SD) above the normal range for age or mean heart rate <10th percentile for age; 3. mean respiratory rate >2 SD above 
the normal range for age; 4. leukocyte count that is either elevated or depressed for age (excluding chemotherapy-induced 
leukopenia) or >10% immature neutrophils.20

Data Preprocessing
We employed random sampling of positive instances to divide the patients into a training set (287 patients) and 
a validation set (123 patients), maintaining a 7:3 ratio. This method ensures that positive samples are adequately 
represented in both sets. Due to the low percentage of patients who developed postoperative SIRS, we applied the 
Synthetic Minority Over-sampling Technique (SMOTE) to the training set. this approach aims to enhance model learning 
and mitigate performance bias from class imbalance.21 We applied Min-Max normalization to continuous variables and 
one-hot encoding to categorical variables based on the reference intervals for various age groups in children. (Table S1)

Feature Selection
First, we utilized the random forest-based Boruta algorithm and LASSO regression for feature selection on the over- 
sampled training dataset. By selecting features identified as important by both algorithms, we enhanced the credibility of 

Figure 1 Research flowchart. 
Abbreviations: PCNL, percutaneous nephrolithotripsy; SIRS, systemic inflammatory response syndrome; SMOTE, Synthetic Minority Over-sampling Technique; Light; 
GBM, Light Gradient Boosting Machine; XGBoost, EXtreme Gradient Boosting; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; KNN, 
K-Nearest Neighbours; NB, Naive Bayes; DT, Decision Tree; AUROC, Area Under the Receiver Operating Characteristic Curve; SHAP, Shapley Additive Explanations.
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the feature selection process.22 Subsequently, to ensure there was no collinearity among the selected features, we 
performed a collinearity screening. Collinearity indicates a high correlation among multiple predictor variables, which 
can result in unstable model estimates and difficulties in interpretation. We calculated the Variance Inflation Factor (VIF) 
for the features to identify and exclude those with collinearity issues, thus ensuring the model’s stability and reliability. 
Through this comprehensive process, we ultimately identified the feature variables utilized for model construction.

Model Construction
We used eight machine learning methods: Random Forest (RF), Extreme Gradient Boosting (XGBoost), Logistic 
Regression (LR), K-Nearest Neighbors (KNN), Light Gradient Boosting Machine (LightGBM), Decision Tree (DT), 
Support Vector Machine (SVM), and Naive Bayes (NB). These algorithms are widely used in clinical data analysis due to 
their effectiveness in handling complex datasets and providing high predictive accuracy.18,23 Additionally, we assessed 
the applicability of adult models in the pediatric population and compared their performance with our model.

RF is an ensemble learning method that enhances model stability and accuracy by constructing multiple decision trees 
and aggregating their predictions through voting or averaging. RF can effectively handle high-dimensional data and is 
notably resistant to overfitting.

XGBoost is an efficient gradient boosting framework that minimizes regularized objective functions through the 
iterative construction of tree models. It optimizes the model’s predictive performance while controlling for overfitting.

LR is a linear model used to predict the probability of a classification outcome, converting the model’s output into 
probability values using a logistic function. Its strengths include the model’s simplicity and the clear statistical 
significance of its parameters.

KNN is based on a distance metric and classifies instances by identifying the K nearest neighbors in the training set to 
a new sample. The advantage of KNN lies in the algorithm’s simplicity and its adaptability to nonlinear problems.

LightGBM is a gradient boosting framework optimized with a histogram-based algorithm to enhance the learning 
efficiency of tree models. Its advantage lies in reducing computational complexity and accelerating model training.

DT constructs a model by recursively partitioning the feature space, where each node represents a decision rule for 
a feature, making the model intuitive and easy to interpret.

SVM distinguishes between different classes of data points by identifying an optimal hyperplane in the feature space. 
Its advantages include strong generalization capabilities in high-dimensional spaces and small sample cases, as well as 
adaptability to nonlinear problems.

NB is based on Bayes’ theorem, assuming that features are independent of one another and predicting categories 
using conditional probabilities of the features. Its advantages lie in the algorithm’s simplicity and high efficiency.

We employed a grid search method for hyperparameter optimization of each machine learning model, along with 
5-fold cross-validation to assess each hyperparameter combination.

Model Validation
We conducted a comprehensive evaluation of each model using a series of key performance metrics, including Area 
Under the Receiver Operating Characteristic Curve (AUROC), Accuracy, F1-Score, Specificity, and Sensitivity, ulti-
mately selecting the model with the best predictive performance as the final model. These metrics provide 
a comprehensive reflection of the models’ predictive performance and allow us to evaluate them from multiple 
perspectives. We conducted an in-depth analysis of the predictive results for the best model using the Shapley 
Additive Explanations (SHAP) method. This method accurately measures the specific contribution of each feature to 
the model’s predictions by assigning a quantitative score to each feature.24

Additional Statistical Methods
In this study, we used R version 4.4.2 and SPSS version 29.0 for statistical analysis and data visualization. Continuous 
variables that conformed to normal distribution were expressed as mean ± standard deviation and differences between groups 
were assessed using t-tests, continuous variables that did not conform to normal distribution were expressed as median and 
quartiles, and differences between groups were assessed using Mann–Whitney U-tests. Categorical variables were expressed 
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as frequencies and percentages, with differences between groups assessed using the chi-square test or Fisher’s exact test. We 
considered a two-tailed P-value of <0.05 as the significance threshold for determining statistical differences.

Results
Population Characteristics
We ultimately included 410 eligible pediatric patients, with a mean age of 6.44 ± 3.94 years, among whom 237 (57.8%) 
were boys. Postoperatively, 83 patients developed SIRS, resulting in an incidence rate of 20.24%. Based on the 
occurrence of SIRS postoperatively, we divided the patients into two groups. The two groups showed significant 
differences across multiple clinical parameters. Patients with SIRS had larger stone burdens (median 207.35 vs 
123.21 mm², p<0.0001), longer operation times (95 vs 75 min, p<0.0001), and higher rates of hydronephrosis 
(60.24% vs 22.94%, p<0.0001) and staghorn calculi (48.19% vs 12.23%, p<0.0001). Urinary markers also differed 
significantly, with SIRS patients exhibiting more frequent positive urine cultures (38.55% vs 23.24%, p=0.0047), nitrites 
(33.73% vs 14.07%, p<0.0001), and leukocytes (77.11% vs 62.39%, p=0.0118). Procedural characteristics revealed SIRS 
cases more often required multiple access channels (14.46% vs 3.67%, p=0.0002) and nephrostomy tube placement 
(75.90% vs 59.63%, p=0.0061). The baseline information of the patients is shown in (Table 1).

Table 1 Clinical Characteristics of Pediatric Patients with and Without Postoperative SIRS

Variables Total (n=410) Without SIRS (n=327) With SIRS (n=83) P-value

Age (years) 6 (3–10) 6 (3–10) 6 (2.5–10.5) 0.8346

Stone burden (mm2) 127.43 (84.31–202.95) 123.21 (84.16–174.55) 207.35 (87.96–410.33) <0.0001

Operation time (min) 80 (70–95) 75 (70–95) 95 (82.5–105) <0.0001

Preoperative WBC (109/L) 8.5 (6.6–11) 8.43 (6.6–10.93) 8.53 (6.56–11.95) 0.5392

Preoperative N (109/L) 3.67 (2.72–5.08) 3.64 (2.71–5.06) 3.81 (2.78–5.17) 0.6771

Preoperative L (109/L) 409.38 (261.15–600.78) 402.93 (260.76–607.35) 422.44 (276.98–563.32) 0.9396

Preoperative M (109/L) 1.15 (0.73–1.67) 1.18 (0.74–1.7) 1.11 (0.72–1.59) 0.5172

Preoperative SII 3.18 (2.35–4.74) 3.13 (2.36–4.6) 3.33 (2.37–5.41) 0.3498

Preoperative NLR 107.83 (78.34–142.38) 108.47 (79.25–143.67) 106.55 (77.06–139.94) 0.5344

Preoperative PLR 6.51 (4.86–9.06) 6.45 (4.87–8.99) 6.74 (4.87–9.31) 0.4930

Preoperative LMR 58.24 (53.37–65.96) 58 (53.24–65.12) 60.3 (53.87–68.22) 0.1775

Preoperative PNI 0.51 (0.38–0.72) 0.51 (0.38–0.71) 0.54 (0.36–0.75) 0.7910

Preoperative PLT (109/L) 359 (296–432.5) 355 (294–425) 370 (306.5–475.5) 0.1920

Preoperative HB (g/L) 121.08±13.28 121.64±12.88 118.88±14.61 0.1181

Preoperative HCT 0.37±0.04 0.38±0.04 0.37±0.04 0.0743

Serum creatinine (μmol/L) 32.67 (25.34–40.15) 32 (25.15–39.5) 34.32 (25.81–42.53) 0.2561

Urea nitrogen (mmol/L) 4.83±1.47 4.81±1.46 4.95±1.51 0.4382

Serum uric acid (μmol/L) 228.23±63.82 226.85±64.77 233.67±60 0.3642

Serum cystatin (mg/L) 0.9 (0.78–1.07) 0.92 (0.78–1.09) 0.86 (0.78–1.02) 0.2221

Serum albumin (g/L) 41.8±3.38 41.78±3.34 41.87±3.56 0.8335

(Continued)
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Table 1 (Continued). 

Variables Total (n=410) Without SIRS (n=327) With SIRS (n=83) P-value

Serum fibrinogen (g/L) 2.63 (2.17–3.26) 2.61 (2.16–3.12) 2.76 (2.34–3.74) 0.0697

BMI (kg/m2) 15.97 (14.58–17.65) 15.87 (14.53–17.35) 16.33 (14.91–18.07) 0.1601

Gender (%) 0.7992

Female 173 (42.20) 139 (42.51) 34 (40.96)

Male 237 (57.80) 188 (57.49) 49 (59.04)

Urine culture (%) 0.0047

Negative 302 (73.66) 251 (76.76) 51 (61.45)

Positive 108 (26.34) 76 (23.24) 32 (38.55)

Hydronephrosis (%) <0.0001

No 285 (69.51) 252 (77.06) 33 (39.76)

Yes 125 (30.49) 75 (22.94) 50 (60.24)

Stone side (%) 0.2378

Left 179 (43.66) 138 (42.20) 41 (49.40)

Right 231 (56.34) 189 (57.80) 42 (50.60)

Channel location (%) 0.0640

Upper calyces 93 (22.68) 82 (25.08) 11 (13.25)

Median calyces 263 (64.15) 202 (61.77) 61 (73.49)

Lower calyces 54 (13.17) 43 (13.15) 11 (13.25)

Staghorn stones (%) <0.0001

No 330 (80.49) 287 (87.77) 43 (51.81)

Yes 80 (19.51) 40 (12.23) 40 (48.19)

Urine nitrite (%) <0.0001

Negative 336 (81.95) 281 (85.93) 55 (66.27)

Positive 74 (18.05) 46 (14.07) 28 (33.73)

Urine WBC(%) 0.0118

Negative 142 (34.63) 123 (37.61) 19 (22.89)

Positive 268 (65.37) 204 (62.39) 64 (77.11)

Channel size (%) 0.0566

Ultra-micro channel 197 (48.05) 160 (48.93) 37 (44.58)

Micro channel 203 (49.51) 162 (49.54) 41 (49.40)

Standard channel 10 (2.44) 5 (1.53) 5 (6.02)

(Continued)
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Feature Selection
Our feature selection process employed a dual-algorithm approach (Figure 2): LASSO regression with ten-fold cross- 
validation reduced 34 initial variables to 15 non-zero coefficients using the λ.1se criterion (vertical dotted line at 1 
standard error above minimum cross-validated error in Figure 2A), which provides the simplest model within one 
standard error of the optimal fit. Figure 2B illustrates how feature coefficients evolved across λ values. The Boruta 
algorithm (Figure 2C) independently confirmed 29 important variables significantly exceeding shadow features’ impor-
tance threshold. Figure 2D revealed overlapping variables from both methods. We conducted a collinearity screening of 
the features (Table 2), revealing that all features had a variance inflation factor (VIF) of <5, indicating no significant 
collinearity issues. Given comparable predictive performance between the full feature set model and the top 10-feature 
model, we ultimately selected the top 10 features based on their importance ranking to optimize prediction speed and 
facilitate clinical implementation (Table 2). 18 These features included: operation time, stone burden, staghorn stones, 
hydronephrosis, hemoglobin, hematocrit, neutrophils, lymphocytes, monocytes, and SII.

Model Performance
SMOTE oversampling was exclusively applied to the training set (n=287) to create a balanced subset (n=458), while the 
validation set (n=123) retained original real-case proportions for unbiased evaluation. The results of the model 
performance evaluation are presented in (Table 3 and Figure 3B). The ROC curves and areas under the curve are 
shown in (Figure 3A). The results indicate that LightGBM performed the best in predicting SIRS after pediatric PCNL, 
achieving an AUC of 0.8758 and an F1 score of 0.6275, thus outperforming the other models. The decision curve 
analysis demonstrates that the model achieves good net benefit within a threshold probability range of 0.05 to 0.70 
(Figure 3C). Additionally, we validated the applicability of two existing adult models in the pediatric population (AUC: 
0.7420 and 0.7053, respectively), and the results indicated that our model outperformed the adult models in predicting 
SIRS after pediatric PCNL (Figure 3D).

Model Interpretation
We employed the SHAP method to quantify the contribution of each feature to the model’s predictions. We visually 
presented the SHAP values of various features (Figure 4A), where each point corresponds to a sample, and its position 
indicates the SHAP value for that sample on a specific feature. The color gradient from yellow to purple represents the 
magnitude of the feature value for each sample, thereby intuitively revealing the positive or negative impact of the feature 

Table 1 (Continued). 

Variables Total (n=410) Without SIRS (n=327) With SIRS (n=83) P-value

Number of channels (%) 0.0002

1 386 (94.15) 315 (96.33) 71 (85.54)

2 24 (5.85) 12 (3.67) 12 (14.46)

Nephrostomy tube indwelled (%) 0.0061

No 152 (37.07) 132 (40.37) 20 (24.10)

Yes 258 (62.93) 195 (59.63) 63 (75.90)

Blood transfusion (%) 0.0595

No 384 (93.66) 310 (94.80) 74 (89.16)

Yes 26 (6.34) 17 (5.20) 9 (10.84)

Abbreviations: WBC, white blood cell; N, neutrophil; L, lymphocyte; M, monocyte; SII, Systemic immune inflammatory Index; NLR, neutrophil- 
lymphocyte ratio; PLR, platelet-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; PNI, Prognostic nutritional Index; PLT, platelet; HB, hemoglobin; 
HCT, hematocrit; BMI, body mass index.
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on the model’s predictions. For example, individuals with longer operation times were more likely to develop postoperative 
SIRS compared to those with shorter operation times, and conversely, individuals with lower hemoglobin were more likely 
to develop postoperative SIRS compared to those with higher hemoglobin. Furthermore, we constructed a bar chart 
illustrating feature importance rankings (Figure 4B), assessing the significance of each feature to the model’s predictions 
by calculating the mean absolute values of their SHAP values. The top five identified features were operation time, stone 
burden, preoperative hemoglobin, preoperative monocyte count, and hydronephrosis. To understand the model’s decision- 
making process at the individual level, we conducted a detailed interpretability analysis of representative samples 
(Figure 4C and D).

Construction of Web Platform
We developed a web-based prediction platform using the LightGBM algorithm to assist clinicians in predicting the risk 
of postoperative SIRS in pediatric patients undergoing PCNL (https://sirspredict.shinyapps.io/lightgbm/). By entering the 
relevant values for each variable in the predictive variables panel, users can assess the risk of postoperative SIRS and 
visualize the contributions of each factor to the outcome, thereby enabling targeted preoperative prophylaxis (Figure 5).

Figure 2 Results of feature screening. (A) Feature screening based on the LASSO regression, the dashed line indicating the lambda value for the model where the evaluation 
metrics are in the range of the best value by one standard error (lambda.1se). (B) LASSO regression screening feature trajectories. (C) Boruta feature importance analysis. 
(D) common features between Boruta and LASSO.
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Table 2 Variable Variance Inflation 
Factors and Rank of Importance

Variables VIF Importance

Stone burden 3.26 30.34

Operation time 1.82 26.57

Preoperative HB 2.65 20.05

Preoperative HCT 2.77 17.51

Preoperative SII 4.04 17.15

Preoperative L 2.67 16.37

Preoperative M 2.37 16.25

Staghorn stones 2.50 13.52

Hydronephrosis 1.23 13.26

Preoperative N 3.96 12.98

Urea nitrogen 1.12 11.93

BMI 1.15 10.51

Stone side 1.03 7.32

Gender 1.12 6.10

Channel size 1.24 5.72

Abbreviations: VIF, Variance Inflation Factors; HB, 
hemoglobin; HCT, hematocrit; SII, Systemic immune 
inflammatory Index; L, lymphocyte; M, monocyte; N, 
neutrophil; BMI, body mass index.

Table 3 Performance Evaluation Metrics of Eight Machine Learning Models and Adult 
Models in the Test Set

Model Accuracy F1-Score AUC(95 Cl) Specificity Sensitivity

LightGBM 0.854 0.654 0.872(0.799–0.945) 0.898 0.68

XGBoost 0.837 0.615 0.851(0.762–0.940) 0.888 0.64

LR 0.756 0.531 0.800(0.694–0.907) 0.776 0.68

RF 0.764 0.491 0.747(0.641–0.854) 0.816 0.56

SVM 0.821 0.421 0.698(0.559–0.838) 0.949 0.32

KNN 0.683 0.400 0.678(0.563–0.792) 0.725 0.52

NB 0.602 0.380 0.674(0.545–0.803) 0.602 0.60

DT 0.659 0.300 0.614(0.486–0.741) 0.735 0.36

Adult model1 0.715 0.386 0.742(0.631–0.853) 0.786 0.44

Adult model2 0.821 0.421 0.705(0.578–0.833) 0.949 0.32

Abbreviations: AUC, area under the curve; LightGBM, Light Gradient Boosting Machine; XGBoost, EXtreme 
Gradient Boosting; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; KNN, 
K-Nearest Neighbours; NB, Naive Bayes; DT, Decision Tree.
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Discussion
The use of PCNL in pediatric patients has become increasingly widespread. As surgical techniques continue to advance, 
postoperative infections have become the main concern regarding complications. SIRS is among the most common 
complications after PCNL and can be difficult to detect early.25,26 If left untreated, SIRS may progress to sepsis or multi- 
organ dysfunction.19 Although multiple tools exist for predicting SIRS after PCNL in adults, our study indicates that 
these methods are less effective in pediatric patients. Consequently, developing and validating a predictive model for 
SIRS after PCNL in pediatric patients, along with creating an accessible online prediction platform for individual risk 
assessment, is of significant clinical importance. Such model can be integrated into clinical data systems to automatically 
predict the risk of postoperative SIRS. The advent of artificial intelligence and machine learning has enabled the 
development of such personalized systems. To our knowledge, our study is the first attempt to utilize machine learning 
algorithms to develop a predictive model for SIRS after PCNL in pediatric patients.

Figure 3 The performance and comparison of different models. (A) ROC curve for the validation set. (B) Evaluation metrics for the validation set. (C) Decision curve 
analysis for the validation set. (D) ROC curve for comparison with adult models.
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Notable differences emerged between our findings and established adult PCNL-SIRS prediction models. While prior adult 
studies identified preoperative urine culture positivity and perioperative platelet decline as primary predictors, our pediatric 
model highlighted operation time as the dominant risk factor. Although Previous studies confirmed that prolonged operation 
time is a significant risk factor for SIRS after PCNL in adults. Our findings indicate that this risk may be even greater in the 
pediatric population.14,27 In our study, operation time was the most significantly correlated factor with the occurrence of 
postoperative SIRS. Extended operation time often leads to increased mechanical pressure on the renal pelvis, a higher risk of 
injury due to prolonged manipulation, and extended anesthesia duration. These factors may cause more severe damage to the 
fragile kidneys of pediatric patients compared to adults.28 Elevated pressure in the renal pelvis can facilitate bacterial entry into 
circulation through dilated mucosa, thus increasing the risk of infection. Additionally, elevated pressure may affect local blood 
circulation, exacerbate localized inflammatory responses, and trigger systemic inflammation. Prolonged endoscopic proce-
dures increase the risk of renal tissue damage, including laser-induced thermal injuries and direct mucosal damage from the 
endoscope. These injuries can induce local inflammation, release inflammatory mediators, attract immune cells, and intensify 
inflammation.29,30 Extended anesthesia duration may result in renal ischemia-reperfusion injury, triggering a cascade of 
oxidative stress responses and the release of inflammatory mediators, thereby increasing the risk of SIRS.31,32 Therefore, 
controlling operation time is crucial to reducing the incidence of SIRS after PCNL.

Stone burden is a significant risk factor for SIRS after PCNL, with its contribution to the model ranking second only to 
operation time. A larger stone burden typically indicates more complex surgical procedures and prolonged lithotripsy time, 
which increase the risk of surgical trauma and may trigger inflammatory responses. Additionally, large stones can easily 
obstruct the urinary outflow tract, resulting in hydronephrosis and prolonged urine retention in the kidneys. This condition 
increases the risk of bacterial proliferation and subsequent infection, while also hindering accurate assessment of potential 
infections through urine tests.19 As a result, it may mislead preoperative anti-infective strategies and elevate the risk of 

Figure 4 Interpretability analysis of LightGBM model. (A) SHAP Beeswarm Plot illustrating the contribution of each feature to the model’s predictions. Each point 
represents an instance, with colors indicating the feature value. (B) Importance Ranking Plot of Features showing the relative importance of each feature in predicting 
outcomes. (C) (D) Interpretability Analysis of Independent Sample demonstrating the model’s performance and feature contributions on a separate sample.
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postoperative SIRS. Larger stones may suggest a prolonged presence in the kidneys, leading to bacterial colonization and an 
increased risk of inflammatory responses. Therefore, special attention should be given to these pediatric patients. An 
intraoperative urine culture of the renal pelvis can be performed to inform subsequent anti-infective strategies.33,34

Hemoglobin, the primary oxygen carrier, directly affects tissue oxygenation levels. Low hemoglobin levels can cause 
tissue hypoxia, which exacerbates inflammatory responses. In the context of surgical trauma, hypoxia may further activate 
inflammatory pathways, thus increasing the risk of SIRS.35 Numerous studies indicated that hemoglobin and its derivatives 
significantly modulate immune response, indicating that hemoglobin is not only involved in oxygen transport but may also 
play a role in the body’s immune responses. Additionally, hemoglobin reduces oxidative stress, which helps maintain cellular 
function and protects against bacterial invasion.36,37 In summary, the potential mechanisms linking preoperative hemoglobin 
levels to SIRS after PCNL may include oxygenation status, inflammatory responses, immune modulation, and oxidative 
stress, among other factors. These findings emphasize the importance of preoperative assessment of hemoglobin levels.

Monocytes, crucial components of the innate immune response, are pivotal in the development of SIRS. Surgical 
trauma and tissue injury activate monocytes, resulting in the release of various inflammatory mediators, including 
interleukin-6 (IL-6), which initiates and amplifies the inflammatory response. Moreover, activated monocytes participate 
in the synthesis and expression of procoagulant factors, potentially leading to hypercoagulability and exacerbating the 
pathophysiological processes associated with SIRS.38,39 This multifaceted synergistic effect may positions monocytes as 
a driving force in the onset and progression of SIRS.

In summary, the interplay among the aforementioned risk factors underscores the complexity of managing pediatric 
patients undergoing PCNL. Each of these factors contributes to an elevated overall risk of postoperative SIRS, 
emphasizing the necessity for meticulous preoperative assessment and postoperative monitoring. Understanding these 
associations can assist clinicians in identifying high-risk patients who are at risk of developing SIRS and in implementing 
targeted preoperative optimization and postoperative management strategies to reduce the incidence of postoperative 
SIRS, thereby enhancing the surgical safety of this vulnerable population.

Figure 5 Online prediction platform based on LightGBM algorithm for predicting SIRS after pediatric PCNL.
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While this study offers valuable insights, it is not without limitations. This is a single-center, retrospective study that 
may be subject to selection bias, and the external validity of the model has yet to be validated in an independent sample. In 
the future, we plan to validate the predictive performance of the model further through multi-center, prospective studies and 
to explore additional potential risk factors to enhance both the predictive accuracy and clinical applicability of the model. 
Additionally, we will examine the applicability of the model across different clinical settings, as well as ways to translate 
these findings into practical clinical guidelines aimed at optimizing post-PCNL management in pediatric patients.

Conclusion
In this study, we compared the accuracy of eight machine learning algorithms for predicting SIRS after pediatric PCNL 
and developed a user-friendly web-based prediction platform based on the best-performing LightGBM algorithm, which 
may offer a novel scientific tool for individualized risk prediction of postoperative SIRS in the pediatric population. 
Future directions include multicenter prospective validation and clinical guideline development to optimize pediatric 
post-PCNL management.
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