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Introduction: Mesenchymal stem cells (MSCs) have a paracrine impact and may regenerate a variety of tissues. This represents 
a new prospect in cell-based stroke treatment. Several in vitro and in vivo investigations have demonstrated the neuroprotective and 
neurogenesis properties of MSCs and their secretome.
Purpose: This review provides a comprehensive analysis of the therapeutic effects of MSCs and their secretome on stroke models 
in vitro and in vivo.
Methods: A coverage evaluation is undertaken in accordance with PRISMA-ScR principles. The selection procedure includes the 
identification of items. Scopus site, PubMed and ScienceDirect, are used for in vitro and in vitro research, including electronic 
searches. The search terms include “ischemic stroke” or “MCAO”, “MSC”, “secretome”, and “neurogenesis” or “angiogenesis”. The 
searches are limited to English-language articles with full text availability.
Results: After selecting 390 papers from two search engines, 94 publications satisfied the review criteria for using MSCs and 
secretomes for ischemic stroke treatment. We comprehensively review both in vitro and in vivo studies, analyzing aspects such as the 
source and treatment of MSCs and secretomes, as well as administration, dosage, and mechanisms of therapeutic effects in stroke 
models.
Conclusion: MSC and secretome therapy for stroke have shown promising results in both in vitro and in vivo models. Exploration of 
alternative MSC sources, refining of isolation techniques, transfection of various proteins, and combination with herbal medicine are 
all efforts to improve the preclinical model. This work can be used as a reference for preclinical researchers to help with research 
design and translational research in clinical trials.
Keywords: middle cerebral artery occlusion (MCAO), conditioned medium/CM, secretome, mesenchymal stem cells (MSC), stroke 
ischemic

Introduction
Mesenchymal stem cells (MSCs) can be obtained from various sources such as adipose tissue, umbilical cord, bone 
marrow, iPSC-MSC and peripheral blood.1–7 Bioactives secreted by MSCs have a paracrine effect because they contain 
various proteins that play a role in the neurogenesis process such as brain derived neurotrophic factors/BDNF, 
neurotrophic growth factor/NGF, and stromal derived factor-1/SDF-1.8–10 The angiogenesis process in the penumbral 
area also helps the neurogenesis process so that vascular endothelial growth factor/VEGF is urgently needed, which can 
be supplied by MSC secretions.11 The effects of neuroprotection through inflammatory pathways, apoptosis, and 
autophagy are also important effects to continue researching.12,13 The role of EVs, exosomes and microRNAs contained 
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in MSC secretome/conditioned medium (CM) is a factor in the effectiveness of therapy considering that it is a regulator 
of various genes.14,15

Mesenchymal stem cells and their secretomes provide paracrine effects, especially for ischemic stroke.16 MSCs play 
a role in the regeneration of the blood-brain barrier (BBB) linkage in brain tissue, which can suppress inflammation so 
that the neuroregeneration and neuroprotection processes can take place properly.17,18 The bioactive role of MSC 
secretomes and methods to increase their potential in angiogenesis, neurogenesis, and neuroprotection in ischemic stroke 
therapy continue to be carried out in vivo and in vitro.19–21 This is because, while experimental investigations have been 
successful, systematic review studies looking at clinical trials of MSC treatment in stroke patients have not yielded 
meaningful benefits. Several systematic reviews of clinical trials found that MSC therapy did not result in substantial 
improvements in ischemic stroke patients. The heterogeneity of data, including MSC sources, doses, replications, and 
delivery, as well as patient severity, all contributed to variances in therapeutic success.22–24

Currently, there is a gap in translational research from preclinical trials to clinical trials that must be bridged to 
address clinical trial issues. This study will examine the literature on the effects of MSC and secretome therapy in vitro 
and in vivo, numerous efforts to optimize MSC and its secretome to have an impact on the therapeutic effect, as well as 
its potential pharmacological use in ischemic stroke models. This study is planned to serve as a reference for researchers 
conducting preclinical trials to support the success of subsequent clinical trials.

Materials and Methods
We conducted this scoping review according to the Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses extension for Scoping Reviews (PRISMA-ScR) statement and based on the Joanna Briggs Institute/JBBI 
guidelines.25,26 We formulated the research objectives and questions by referring to the Problem, Concept and Contest 
(PPC), as problem: model stroke ischemic. Concept: MSC and MSC secretomes for stroke ischemic therapy, and contest: 
in vitro and in vivo study. The research question was “What types of MSCs and their secretomes have been used for 
ischemic stroke therapy in preclinical trials?”. The aim of this review was to provide a comprehensive analysis of the 
therapeutic effects of MSCs and their secretomes on stroke models in vitro and in vivo.

Search Strategy
The article searches strategy takes a thorough approach to finding relevant research articles. Advanced search techniques, 
including “AND” and “OR” operators, are employed to filter results. The search by PICO is ((((((Ischemic Stroke[MeSH 
Terms]) OR (stroke[Title/Abstract])) OR (brain ischemic[Title/Abstract])) OR (Middle Cerebral Artery Occlusion[Title/ 
Abstract])) OR (MCAO[Title/Abstract])) AND ((((((((mesenchymal stem cells[MeSH Terms]) OR (mesenchymal stem 
cell[Title/Abstract])) OR (MSC[Title/Abstract])) OR (secretome[Title/Abstract])) OR (Conditioned medium[Title/ 
Abstract])) OR (Exosomes[Title/Abstract])) OR (Extracellular vesicles[Title/Abstract])) OR (EVs[Title/Abstract]))) 
AND ((((neuroprotection[MeSH Terms]) OR (angiogenesis[Title/Abstract])) OR (autophagy[Title/Abstract])) OR (neu-
rogenesis[Title/Abstract])). The search focuses on electronic resources like ScienceDirect and PubMed.

Study Selection
Inclusion criteria for this scoping review include in vitro and in vivo research articles, with ischemic stroke models using 
MSC and/or with MSC secretome in English, last 10 years, and full English text availability. Based on these inclusion 
criteria, clinical trial research studies with only abstracts are available.

Data Extraction
Two independent reviewers carefully choose articles and extract data based on inclusion criteria to ensure the scoping 
review is complete and accurate. The table summarizes the evaluation results for further analysis. Journal articles are 
obtained using both electronic and manual searches. The abstract is initially picked based on its relevance to the study 
topic. The second stage comprises additional selection based on the article’s substance and adherence to inclusion and 
exclusion criteria. Finally, data from qualifying articles is extracted and processed for analysis.
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Results
Study Inclusion
The PRISMA diagram (Figure 1) illustrates the systematic selection process of articles for a scoping review. Originally, 
a total of 390 articles were obtained from two search engines: PubMed and ScienceDirect. After undergoing screening 
and selection based on inclusion and exclusion criteria, as many as 134 articles considered suitable for review. 
Furthermore, 134 selected articles were thoroughly read and analyzed for extraction relevant data. Characteristics of 
inclusion were compiled and presented in Tables 1–4.

Characteristic of Included Studies
These articles include in vivo test articles, in vitro test studies, and both. In the in vivo test describe allogenic approaches 
that involve bone marrow-derived MSCs. Meanwhile, the remaining articles used human MSCs (xenografts), primarily 
using mice as stroke model animals. Most researchers used allogeneic MSCs from adipose and bone marrow, whereas 
xenografts used human MSCs from umbilical cord and fat tissue. In stroke models, most transplants deliver MSCs, but 
some also deliver CM (six article) and exosomes/EVs (26 article). The use of MSCs for stroke therapy has been modified 
in many ways, including hypoxia, gene transfection, and the addition of herbal medicine.80

The in vivo test employs the middle cerebral artery occlusion (MCAO) stroke model, whereas the in vitro test uses 
the oxygen glucose deprivation (OGD) approach. For in vitro studies, the researchers used cell lines as well as primary 
cultures from mouse brain tissue. In the in vivo test, various concentrations were delivered intravenously, intra-arterially, 

Records identified from:
PubMed, Google Schoolar
(n = 390)

Records removed before screening:
Duplicate records removed (n =5)

Records screened (n =385) Records excluded
(n = 201)

Reports sought for retrieval
(n = 184)

Reports not retrieved
(n = 10)
Review or systematic review 
(n=20)

Reports assessed for eligibility
(n = 114)

Reports excluded:
Wrong population (5), wrong 
intervention (n=15)
More 10 years

Studies included in review
(n = 94)
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Figure 1 The study selection flow chart. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Scoping Review (PRISMA-ScR) flow chart depicts the 
amount of data identified, included, and eliminated during the various rounds of a systematic review.
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intranasally, and intracerebral. Similarly, in vitro testing of therapeutic models using co-culture or growing secretome or 
EVs at specific doses. The researchers discovered that using MSCs as well as EVs or secretions resulted in angiogenesis, 
neurogenesis, and neuroprotection. This neuroprotection is demonstrated by the influence on anti-inflammatory, anti- 
apoptosis, and haemostasis processes via autophagy. Only modest neuroprotective effects, particularly in autophagy, were 
seen in this investigation (9 studies).

Neuroprotection, Angiogenesis, and Neurogenesis Effect of Therapy
This study used a scoping review to determine the administration method, dose, and therapeutic effects of MSC-CM for 
stroke therapy. This investigation revealed that there are still a few research reports on intra-arterial delivery, with three 
articles reporting from various sources of MSC and doses. The dose was 5x105-1x106, and the sources were PBMC, 
adipose tissue derived mesenchymal stem cells/AD-MSC, and bone marrow derived mesenchymal stem cells/BMMSC 
from humans and rats. For in vivo testing, use the MCAO rodent model. According to the current review, MSC have been 
shown in vitro to reduce inflammation, and in vivo, their therapeutic effect can decrease apoptosis, increase angiogenesis, 
and neurogenesis (Table 1).

Table 2 shows that intravenous injection was more frequently reported in the MCAO model, both transient and 
permanent. The stroke model was tested in vitro using the oxygen glucose deprivation/OGD approach. 
Lipopolysaccharide/LPS induction was employed to produce an inflammatory response. Therapies using MSC, MSC- 
CM and extracellular vesicles/EVs including exosomes at various doses have been reported with intravenous 
administration.

Intranasal treatment has also been used in stroke models with MCAO in rats and mice. However, analogous research 
demonstrating therapeutic efficacy in stroke models is still rare. The various cell sources make it challenging to choose 
the optimum cell type for intranasal MSC therapy (Table 3). Stroke therapy through intracranial has been reported. The 
use of in vitro models with cell lines such as SH-SY5Y and BV2 can be used to see the effects of neuroinflammation, 
neuroprotection through apoptotic and autophagy pathways (Table 4).

Mesenchymal stem cell/ MSC treatment and secretome have a neuroprotective impact through paracrine actions, 
which helps to decrease inflammation and apoptosis while promoting autophagy.29,40,82 In addition to the up and down 
regulation of gene expression and protein markers, TTC is used to measure the infarct area. Several studies have found 
that therapy resulted in a reduced infarct area than sham control, indicating a neuroprotective effect.40,45

Neurogenesis and angiogenesis are characterized by several markers of neuronal differentiation and blood vessel 
development.83–85 In in vitro, it may be demonstrated with HUVEC cells and neural progenitors, as well as other and 
primary cells.36,50 In in vivo mouse experiments, post-therapy analysis was performed by examining the increase in 
neuronal differentiation and blood vessel creation using the Y maze, Morris water, and rotarod.40,75,76

Table 1 Characteristic of Included Studies (Administration via Intra Artery)

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/Cell Method Dose Marker Final Effect

1. Otsu et al, (2023)1 In vivo Rat Ischemic Xenograft HuPBMC -hypoxia  
(1.106/0,5µL via IA)

miR-155, HIF-1α, VEGF,  
TGF-β1, TGF-β2, IL-1β,  
TNF-1α

Neurogenesis 
and angiogenesis

In vitro Primary mouse 
microglia

OGD

2. Liu et al, (2019)27 In vivo Rat MCAO Allognic Rat BMMSC transfected 
mitochondria. (0.5 × 106/ 
10µL MSCs via common 
carotid artery)

TTC, Annexin V, DsRed2 
+/Hoechst 33342,

Angiogenesis

3. Oh et al, (2015)28 In vivo Rat MCAO Xenograft Human AD-MSC  
(5x 105 /5 mL via IA)

hNu, Nestin, MAP2, NeuN, 
GFAP, DCX, ED1, Behavior 
test, VEGF, BDNF,Nestin, 
type III btubulin

Neuroprotective
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Table 2 Characteristic of Included Studies (Administration via Intravenous)

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/Cell Method Dose Measure/Marker Final Effect

1. Kuang et al, (2020)29 In vivo Mice MCAO 12 hrs Allogenic miR-125/Evs from mice ADMSC  
(2x103 −105 via femoral vein)

p53, LC3-I, LC3-II, NeuN, MTT, TTC Neuroprotection

In vitro Fetus mice -primary 
cortical neuron

OGD 4, 8, 10 hrs Co-culture ADMSC 24 hrs

2. You et al, (2023)28 In vivo Mice MCAO 1,5 hrs Xenograft hMSC-derived Apoptotic vesicles  
(1.6 mg/kg via IV)

iNOS, Agr1, TNF-α, IL-1β, IL-4. IL-6, 
IL-10, TGF-β, PC-12, Bcl2/Bax, MAP, 
MMP-9,

Anti 
inflammatory

In vitro PC 12 cell, BV2 microglia, 
BCECs

OGD 2 hrs, LPS, 
Scratch assay dan 
matrigel tube 
formation

3. Gregorius et al, (2021)30 In vivo Mice MCAO Xenograft hBMMSC-EVs normoxia and hypoxia  
(2x106/200µL via IV)

miR-126-3p, miR-140-5p, let-7c-5p, 
miR-186-5p, miR-370-3p, miR-409-3p, 
tube formation, migration assay, MTT

Angiogenesis

In vitro BCECs/hCMEC/D3 Transwell Migration 
Assay, Tube 
Formation Assay

4. Son et al, (2023)31 In vivo Rat tMCAO Xenograft 3D hWJ-MSC-EVS (3x107-10¹0 EVs/rat via IV) Histone H2A.Z, histone H3, lamin A/ 
C, miR-27a-3p and miR-132-3p, Ki67, 
MRI

Neurogenesis

5. Han et al, (2023)32 In vivo Mice MCAO Allogenic 3D and 2D BMMSC-Exo (100μg/100μL via IV) TNF-α, IL-6, IL-10, CD31, TGF-β1, 
TCC

Neuroprotection 
and angiogenesis

in vitro Cell line BV2 LPS

6. Yang et al, (2017)15 In vivo Mice Focal cortical 
ischemic

Allogenic Mice BMMSC-Exo/miR-124 (12 mg via IV) Sox2, Hoechst, Nestin, DCX, Neurogenesis

7. Lu et al, (2023)5 In vivo Mice MCAO Xenograft hiPSC-MSC-Exo (100 µg Exo via IV) VEGF, CXCR4, Calnexin, Tubulin, SDF-1 Angiogenesis

In vitro HT-22 murine 
hippocampal

OGD 2 hrs hiPS-MSC-EV (100 µg/mL)

8. Tang et al, (2022)33 In vivo Rat MCAO Allogenic BMMSC tibia femur + stroke serum  
(2x106 via IV)

TTC, Tunnel, BDNF, NeuN, DCX, 
Brdu, HGF, NGF, VEGF, IL-1β, IL-6, 
TNF-α

Neuroprotective

9. Zhang et al, (2023)34 In vivo Mice aged MCAO Xenograft hBMMSC (1x106 via vein tail) CD31, Brdu, MAP2, Brdu, rotarod, 
water maze

Angiogenesis

10. Moon et al, (2018)35 In vivo Rat tMACO Allogenic 
and 
xenograft

Rat and human BMMSC The rMSCEVs or fibro- 
EVs (30 μg/rat) or hMSCs (1–2 × 106 cells via IV)

VEGF, HIF-1alfa, TGFbeta, PDGF, 
Angiopoetin1,

Angiogenesis

In vitro HUVEC Tube formation assay

11. Sheikh et al, (2019)36 In vivo Rat MCAO Xenograft Silencing IL-1β in B10 cell (clone of immortalized 
bone marrow cells).  
(3x106/100µL cell via the jugular vein)

IL-1β, VEGF, TGFβ, NeuN, 
Angiogenin1/2, PDGF, TNF-α

Angiogenesis

In Vitro A human microglia cell line 
(HMO6)

OGD 4 hrs

(Continued)
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Table 2 (Continued). 

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/Cell Method Dose Measure/Marker Final Effect

12. Mu et al, (2019)6 In vivo Rat MCAO Xenograft hATMSC (2x106/mL via tail vein) TTC, GFAP, RECA-1, Rogers’Test, 
Cylinder Test, StickyLabelTest

Angiogenesis

13. Zhang et al, (2023)37 In vivo Rat MCAO Xenograft VCAM-1+ hUC-MSCs (1x106 via a tail vein) CCK-8, VCAM-1, NLRP3, Caspase1, 
TNF-α, IL-6, IL-1β, and IL-18

Neuroprotection 
and angiogenesis

In vitro Cell line SH-SY5Y OGD

14. Wang et al, (2022)38 In Vivo Mice MCAO Xenograft hBMMSC-Evs or MSC-sEVs (2×106/200µL via IV) TUNEL+ cells, NeuN, CD45, CD31, 
leukocytes, Ly6G+PMNs, and ICAM-1

Neuroprotection

In Vivo Mice MCAO Human urine-derived stem cells/USC-Exos 
(1x10¹¹ via IV)

15. Lee et al, (2020)39 In Vivo Rat MCAO Xenograft HuUC-MSC + transfected CCL2  
(1 × 106/0.5 mL via tail vein)

TTC, Cresyl Violet, CCL2, CCR2, 
NeuN, BrdU, RECA, VEGF, GFAP, Iba- 
1, ED1, iNOS, CD206, and DCX

Neurogenesis, 
angiogenesis

16. Zhou et al, (2021)40 In Vivo Rat MCAO Allogenic MSC- Salidroside (p-hydroxyphenethyl-β- 
D-glucoside, Sal) and MSC pretreated with 
0.75 μg/mL salidroside) (10 × 106 cells/10µL via 
caudal side of the frontal fontanel)

Behavioral tests, TTC, CCK-8, 
Annexin V

Neuroprotection

17. Hu et al, (2022)41 In Vivo Rat MCAO Allogenic Rat BMMSC-Exos (25 µg/100µL PBS via tail vein) VEGF, VEGFR2, Ang-1, and Tie-2 
Neurological function, TTC, VEGF, 
scratch assay, transwell migration, tube 
formation

Angiogenesis

In vitro HUVEC Transwell Migration 
Assay, Tube 
Formation Assay, 
Scratch Wound 
Healing Assay

18. Xu et al, (2020)42 In Vivo Mice tMCAO Allogenic Mice ADMSC-Exo (MADMSC transfected 
CircAkap7 (400 µg of protein via vein tail)

TTC, Lamin1, NRF2, IL-6, Autophagic 
vacuoles (autophagosomes), and TNF- 
1α

Neuroprotection

In Vitro Primary astrocytes from 
the cerebral cortex of 
mice

19. Jiang et al, (2019)2 In vivo Rat MCAO Allogenic Rat CM-BMMSC treatment hypoxia and 
normoxia (250 µL via IV)

GFAP, CD-31, Akt, TTC, NeuN, 
Caspase-3, Tunnel, PI3K, Akt,

Neuroprotection

20. Diekhorst et al, (2019)43 In vivo Rat MCAO Xenograft hATMSC  
(1×106/1 mL of 0.9% NaCl via the tail vein)

GFAP, CD-31, DCX, Angiogenesis

21. Zhang et al, (2018)44 In vivo Mice tMCAO Allogenic Mice MSC +Borneol (0,5 x 106/0.2 mL sterile 
PBS via caudal vein)

NeuN, GFAP, TUNNEL, neurological 
deficits

Neuroprotective

22. Nazarinia et al (2019)45 In vivo Rat MCAO Xenograft CM-hAMMSC (1 mL IV) TTC, mTOR, LC3-I/II, Nissl, Tunnel 
assay,

Neuroprotective

23. Dumbrava et al, (2021)46 In vivo Rat young and aged MCAO Xenograft hBMMSC-Evs  
(2× 106 or 2× 107/1 mL of 0.9% NaCl via tail 
vein)

DCX, CD31, Rotating pole test, 
Cylinder test, ED1, Iba-1

Angiogenesis

24. Liu et al, (2022)47 In vivo Rat MCAO Allogenic Rat BMMSC (1×106 via the tail vein) VEGF, GDNF, TTC Neuroprotective
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25. Xiao et al, (2023)48 In vivo Mice tMCAO BMSCs-Exo were transfected with the shRNA 
against Egr2 (100 µg via the tail vein)

Annexin V, tube formation, Tunel, 
Calnexin, Bax, Bcl2, VEGF, HES1, 
eNOS,

Angiogenesis

In Vitro N2/mouse neuroblastoma 
and bEnd.3 cells/ 
endothelial cell

Tube formation Allogenic

26. Liu et al, (2018)49 In vivo Rat tMCAO Allogenic Rat BMMSC+ Icariin (ICA) (5 × 106 MSCs via tail 
vein and ICA 60 mg/kg/d via intragastric)

BDNF and VEGF, behavior, PI3K, 
ERK1/2

Neurogenesis and 
angiogenesis

27. Jiang et al, (2018)12 In vivo Murine MCAO Xenograft Rat ADSCs-Exos transfected microRNA (miR)- 
30d-5p (Exos in 0.9% saline 80 μg per 2 mL via 
IV)

Anti inflammatory cytokines IL-4, IL- 
10, and miR-30d-5p d, Beclin-1 and 
Atg5

Neuroprotection

In vitro Primary culture microglia 
from neonatal rats

OGD Allogenic Rat ADSC-Exo (10 μg/mL) under OGD 
conditions for 6 h

28. Moon et al, (2018)50 In vivo Rat tMCAO Xenogfrat hMSCs + 10% FBS, 10% normal serum (NS), or 
10% patient stroke serum (SS) (2 x 106 cells via 
IV)

VEGF, GDNF, FGF2, b-galactosidase 
(SA-b-gal), DCX

Neurorestoration

29. Xia et al, (2020)7 In vivo Rat MCAO Xenograft iMSC-sEV (1 × 10¹¹ particles/500 μL PBS via IV) MAP2, CD31, CD34, migration and 
tube formation of endothelial cells, 
Beclin-1, mTOR, p62, LC3, DCX, SVZ, 
NeuN, Tunel

Angiogenesis

In vitro HUVEC OGD and tube 
formation assay

30. Lin et al, (2017)51 In vivo Rat MCAO Xenograft hUC-MSCs (1–4 x 106/mL via IV) NeuN. DCX, Iba-1, TUNEL Neurogenesis

31. Haupt et al, (2020)52 In vivo Mice MCAO Allogenic MSC preconditioning with lithium (MSCLi-EVs) 
(2 ×106/100µL cell IV)

GFAP, NeuN, GDNF, EGF, BDNF, 
VEGF, TNF-α, CD31, NF-κB, TLR4, 
iNOS, SOX2, TBARS, Dcx, TUNEL

Neuroprotection

In vitro Astrocytes and microglia - 
new born mice

OGD EVs (2 × 106cell equivalents for each condition 
or 13.5 μg EV protein)

32. Oh et al, (2018)53 In vivo Rat MCAO Xenograft IV-hUMSCs  
(1x105 −1x106/500 μL of saline via IV)

DCX, TGF-β1, VEGF, HGF, IL1RN, 
IL1B,TNF, IL6, MMP9, IL-4, IL-10, IL- 
1ra, TUNEL, pCREB, ED-1, Iba-1, 
iNOS, and CD206

Neuroprotection

33. Choi et al, (2018)21 In vivo Rat MCAO Xenograft hUCMSC (1 × 106 cells/ 0.5 mL PBS via IV) hNu, CD63, BrdU/DCX, NeuN Angiogenesis

34. Yang et al, (2018)54 In vitro Primary rat BMECs were 
transfected with plasmids 
encoding miR-181b-5p, 
miR-212-5p, or TRPM7

4h OGD Xenograft HIF-1α, VEGF, TRPM7, VEGF, miR- 
130a-3p, miR-93-3p, miR-212-5p, miR- 
20a-5p, miR-181a-5p, miR-181d-5p, 
tube formation, migration assay

Angiogenesis

35. Xin et al, (2017)55 In vivo Rat MCAO Xenograft MSC-exosomes (miR-17-92)  
(100 µg/0.5 µL PBS via IV)

PI3K/Akt/mTOR/GSK-3β Neuroplasticity

36. Geng et al, (2019)56 In vivo Rat MCAO Xenograft Human ADSCs  
(miR-126 or miR-126 inhibitor via IV)

NeuN, Iba-1, Tunel, TNF-α, IL-1β, 
Caspase-3, miR-126

Neurogenesis

In vitro The mouse BV2 microglial 
cells

OGD for 6 hours Anti-inflammation

37. Nam et al, (2015)57 In vivo Rat MCAO Allogenic hBMMSC (2 × 106 via IV) MMP-2, NeuN, GFAP, Collagen IV Neurogenesis

(Continued)
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Table 2 (Continued). 

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/Cell Method Dose Measure/Marker Final Effect

38. Zhang et al, (2019)58 In vivo Rat MCAO Allogenic Rat BMSCs were transfected by the tsp4 virus/ 
TSP4-BMSC (2 × 106 /mL) via the caudal vein)

Tube formation, TSP4, VEGF, MMP2, 
MMP9, Ang-1

Angiogenesis

39. Zhang et al, (2019)59 In vivo Mice MACAO Allogenic Mice BMMSC-RGD-exo (miR-210 via the tail 
vein)

VEGF, Integrinβ, CD34 Angiogenesis

40. Sabbaghziarani et al, 
(2017)10

In vivo Rat MCAO Xenograft WJ-MSCs ± retinoic acid/RA (1 μM) ± 
triiodothyronine T3 (25 μg/kg) (1 × 106 via 
caudal vein)

RXRβ, BDNF, Sox2, IL-6, TNF-α Neuroprotective

41. Zhang et al, (2016)60 In vivo Rat MCAO Allogenic Sodium ferulate (SF) and n-butylidenephthalide 
(BP) + rat BMSC (2 × 106/mL via caudal vein)

AKT, mTOR, VEGF, BDNF, class III β- 
tubulin (Tuj1)

Angiogenesis

In vitro BMMSC +SF and BP MTT BMSC, the cells (1 × 105 cells/mL), SF (400, 200, 
100, 50, 25, 5, 1, 0.1 and 0.01 μg/mL), BP (4, 2, 1, 
0.75, 0.5, 0.25, 0.125, 0.01 and 0.001 μg/mL)

42. Zhang et al, (2017)61 In vivo Rat pMCAO Allogenic Rat BMMSC+Sodium ferulate (SF) and 
n-butylidenephthalide (BP), (2x106 cells/mL via 
the caudal vein. SF (60 mg/kg) was 
intraperitoneally, BP (10 mg/kg) was 
subcutaneously)

GFAP, VEGF, DAPI, BDNF, AKT, 
mTOR,

Angiogenesis

In vitro Astrocytes derived from 
the cortex of normal 
Rattus norvegicus and 
HUVEC

OGD, Tube 
formation

43. Yang et al, (2015)8 In vivo Rat MCAO Allogenic Rat BMMSC, IV, (5 x 106 cells/mL DMEM/F12 
medium via tail vein)

VEGF, Ki67, Hoechst 33342elabeled 
BMSC

Angiogenesis

44. Chen et al, (2017)62 In vivo Rat MCAO Allogenic Rat BMMSC hypoxia (1% O2 2,4,8,12,24 hr 
reoxygenasi 24 hr) and normoxia, N-BMSCs (2 
x 106) and H-BMSCs (2 x 1066), respectively, via 
the tail vein)

MTT, BDNF, VEGF, Caspase-3, Nestin, 
b-Tubulin, GFAP, TTC

Neurogenesis, 
angiogenesis

45. Jahromi et al, (2018)63 In vivo Rat MCAO Simvastatin and BMSCs, 3 ×106/ mL PBS via tail 
vein) and Simvastatin (40 mg/kg IP)

GFAP. KI67 Neurogenesis

46. Shen et al, (2016)64 In vivo Rat MCAO Allogenic 3-Methyl-1-phenyl-2-pyrazolin-5-one (MC-186) 
and rat BMMSC (MCI-186 3 mg/kg via IP, 
BMMSC 2 × 106 via the tail vein)

CXCR4, SDF-1 Neurogenesis

47. Gutiérrez-Fernández 
et al, (2015)65

In vivo Rat MCAO Xeno and 
allogenic

hAD-MSCs and rAD-MSCs (2 × 106 via IV) VEGF, GFAP, (synaptophysin) SYP Angiogenesis

48. Li et al, (2017)66 In vivo Rat MCAO Allogenic Tetramethylpyrazine (TMP) preconditioning 
could enhance BMSCs (1 × 106/mL PBS via the 
tail vein)

SDF-1 and CXCR4 Angiogenesis

49. He et al, (2021)67 In vivo Rat MCAO Xenograft Human olfactory mucosa mesenchymal stem 
cells (h OM-MSC) (5.0 × 106 via tail vein)

Caspase3, GOLPH3, SPCA1, LC3I, 
LC3 II, LAMP1, Akt, mTOR, PEDF

Neuroprotection

In vitro Mouse N2a cells OGD

50. Moisan et al, (2016)16 In vivo Rat MCAO Xenograft hBM-MSCs (via tail vein) MRI, FGF, VEGF, SDF1, CXCR4, 
NeuN, GFAP

Neurogenesis
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Table 3 Characteristic of Included Studies (Administration via Intranasal)

No Author (year) Study 
Design

Population Intervention Outcome

Animal/Cell Method Dose Measure/Marker Final Effect

1. Zhou et al, (2023)8 In vivo Mice tMCAO Xenograft Human iPSC-induce MSC Evs 

(5x1010 sEVs)

Ki67, NeuN, DCX, MBP, 

TrkB, ERK, CREB, CD31, 
MRI, TTC

Anti 

inflammatory

2. Pathipati et al, (2021)68 In vivo Neonatal mice tMCAO Allogenic Mice BMMSC-EVs  

(1 µg or 5 µg/1 µL) via 
intracerebroventricular (ICV) 

injection or intranasally (IN)

Iba1, GLUT1, caspase 3,  

IL-6, eotaxin, MIP-1α, IL- 
10, KC, MCP1, MIP-1alfa, 

Eotoxin

Neuroprotection

In vitro Microglial cells 
from neonatal 

cortex

Uptake MSC-EVs

3. Wei et al, (2015)69 In vivo Rat (neonatal) pMCAO Allogenic Rat BMSCs (1 × 106 cells) NeuN, collagen IV, Glut-1, 
GFAP, Behavior test

Neurogenesis

Table 4 Characteristic of Included Studies (Administration via Intracerebral)

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/ 
Cell

Method Dose Measure/Marker Final Effect

1. Yang et al, (2023)70 In vivo Rat MCAO Xenograft HuBMSCs/NC-Exos or BMSCs/miR- 

133a-3p-Exos via the brain cavity

DAKP2, AKT, Beclin1, mTOR, 

CCK8, TUNEL, TTC

Neuroprotection

In vitro SH-SY5Y OGD

2. Taei et al, (2022)45 In vivo Rat MCAO Xenograft CM hESC-MSC (5 μL in DMEM via 
Intracerebroventricular)

Bax, Bim, Bcl2, IL-1β, IL-6, IL- 
10, BDNF, GDNF, NGF, NT-3, 

CD31 and VEGF

Neuroprotection, 
neurogenesis and 

angiogenesis

3. Lam et al, (2019)4 In vivo Rat MCAO Allogenic Rat AT-MSC (0.8.106 MSCs applied 
to ipsilateral parietal cortex)

TTC, GFAP, NeuN and PCNA Neurogenesis

4. Fu eta al. (2022)3 In vivo Rat MCAO Xenograft HUMSCs (0.5x106 transplantation 

the rat’s cerebral cortex)

MRI, TTC, Crystal violet, 

NeuN, Behavioral Test, GFAP,

Angiogenesis

5. Yabuno et al, (2023)71 In Vivo Rat MCAO Xenograft hBMMSC - SB623 (0.4 × 106 cells/ 

5 μL were stereotactically injected 

into the right striatum)

Behavioral tests, TTC, NGF, 

BDNF, VEGF,

Neurogenesis, 

angiogenesis

6. Wei et al, (2022)54 In Vivo Rat MCAO Allogenic Zeb2/Axin2-Enriched rat BMSC- 

Derived Exosomes  

(1x10¹¹/5 µL via lateral ventricles)

Wnt/β-catenin, and endothelin- 

3/EDNRB, TTC, PCN, BDNF, 

VEGF, SDF-1, Axin, TGF-β, 
ZEB2,

Neurogenesis

In Vitro Primary 

Cultured 
Neuron 

(PCN)

OGD-Neurit 

outgrowth

7. Kim et al, (2018)61 In vivo Rat MCAO Allogenic Rat BMMSC + Angelica gigas (AG) 
(1x106 MSC + 50 mg/kg)

Behavioral test, VEGF, Ang-1, 
Tie-2, Akt, PI3K, CD31

Angiogenesis

In vitro HUVEC Tube Formation Assay

8. Liu et al, (2024)57 In vivo Mice MCAO Xenograft Human iPSC-derived MSCs-Evs, 
iMSC-sEVs  

(1× 10¹¹ particles/500 μL PBS)

GFAP, SO2, DCX, p16, SA-β- 
gal, and Ki67

Neurogenesis

In vitro NSC mice 
fetus

OGD 1× 1010 particles/mL concentration

9. Bi et al, (2018)72 In vivo MCAO MCAO+mild 

hypotermia

Allogenic Rat BMMSC (1 × 106/ 1 mL PBS 

were injected into the left lateral 
cerebral ventricle at the depth of 

4.0 mm)

GFAP, VEGF, TTC Angiogenesis

10. Faezi et al, (2018)73 In vivo Rat MCAO Xenograft CM-hAMMSC  
(0,5 µL intraventricular)

Bax, Bcl2, Caspase-3, Neuroprotection

11. Aboutaleb et al, (2019)60 In vivo Rat MCAO Xenograft CM-hAM MSC (0.5 μL intracerebral) HGF, BDNF, VEGF, NGF, ERK1/ 

2, GF-1, angiogenin, IL-8, IL-6, 
SDF-1 and, HGF

Neurogenesis

(Continued)
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Table 4 (Continued). 

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/ 
Cell

Method Dose Measure/Marker Final Effect

12. Son et al, (2019)74 In vivo Mice MCAO Xenograft hBMMSC (0. 2 × 106/10 μL of 

neurobasal media via contralateral in 
the cerebral infarction)

Motor function, GFAP, NeuN, 

IGF-1, IGFBP-4, Akt, ERK1/2, 
Bax, Bcl2, Nestin, Vimenti, 

Sox2, GFAP, Sox10, PDGFRα, 

SLC1A2, SLC1A3, S100β, 

PAPP-A, Pax6

Neuroprotective

13. Kong et al, (2016)53 In Vitro Primary 

cortical 

neuron 
(rat)

OGD Allogenic Ratbmmsc (0.5x106 MSCs were put 

in the transwell)

RIP1 and RIP3, Beclin1, caspase- 

3, AIF

Neuroprotective

14. Neal et al, (2019)75 In Vitro Primary rat 

neuronal 
cells 

(PRNCs)

OGD/R 

+Tregs and/or 
BMSCs

Xenograft Co-cultured with Tregs and/or 

BMSCs, at concentrations of either 
800, 8000, or 80,000 cells per well

FGF-β, IL-6, Tregs (CD4þ/ 

CD25þ/FoxP3þ)

Neuroprotection

15. Wang et al, (2022)76 In Vivo Rat MCAO - MSC transfected BDNF (3 μL 
hydrogel carrying BDNF-MSCs 

(1×107 cells/mL) or MSCs (1×107 

cells/mL) into the brain)

CK8, CD31, myelin basic 
protein (MBP), NeuN, IL-1, 

BDNF, VEGF, IGF-1.

Neurogenesis and 
angiogenesis

In Vitro OGD

16. Li et al, (2020)77 In vivo MCAO Allogenic Rat BMSCs were transfected by 

CXCR4 (BMSC-CXCR4) (100 μg/ 
5µL Exo, ExoCXCR4, or of PBS was 

injected into the lateral ventricle of 

the affected hemisphere)

βtubulin, MTT, SDF-1α, 

CXCR4, Bax, Bcl3, Cell 
migration, tube formation

Angiogenesis

In vitro The bEnd.3 Cell 

migration 

and tube 

formation

17. Fang et al, (2022)48 In vitro HBMECs OGD/R Allogenic BMMSC SDF-1α/CXCR4, MTT, uPA/ 

uPAR

Angiogenesis

18. Lee et al, (2023)30 In vivo Mice MCAO Xenograft Co treatment electroacupuncture 

(EA) and tenuigenin (TE)+hMSC (0.2 

× 106/5 μL, were stereotaxically 
implanted into the left striatum)

DCX, GFAP, NeuN, Sox2, 

Behavior test

Neurogenesis

19. Lino et al, (2023)78 In vivo Rat MCAO Xenograft MNC-sEVs and MSC-sEVs (2.29 × 

109 parts per µg and 3.30 × 109 parts 
per µg of protein via intracerebral)

NeuN. GFAP, Iba-1, CD31, 

Ki67, DCX, TUNEL

Neuroprotection

20. Kawauchi et al, (2022)21 In vivo Rat MCAO Xenograft SB623 cells (4.0 × 105 cells/5 μL 

encapsulated SB623 cells, into the 
right striatum)

DCX, Behavioral tests, 

STEM101

Neurogenesis

21. Kim et al, (2018)9 In vivo Mice MCAO Allogenic Mice BMMSC+electroacupuncture 

(EA) (1X105/5µL, were 
stereotaxically transplanted into the 

lef striatum)

BDNF, NT4, VEGF, NeuN, Ki67 Neurogenesis

22. Wei et al, (2022)25 In vivo Rat pMCAO Allogenic FNDC5-overexpressing BMSCs 
(BMSCs-OE-FNDC5), (1x106 cells/ 

3 μL DMEM solution) was injected 

around the infarct)

TTC, LC3, TEM for monitor 
authophagy, TUNEL, CCK8, 

Beclin-1, p62, Bcl-2 and Bax

Neuroprotective

In vitro Astrocytes 

and 

microglia

OGD EVs (2 × 106 cell equivalents for each 

condition or 13.5 μg EV protein)

23. Li et al, (2021)26 In vivo Rat MCAO Allogenic Rat hypoxia BMSCs (2 × 105/10 μL 

of saline were stereotactically 

injected into the striatum of the 

ipsilateral hemisphere)

VEGF, IL-1β, TNF-α, caspase-3, 

LC3, Beclin-1, mTOR, AKT, 

p62, Bax, Bcl2, BDNF

Neuroprotection

24. Park et al, (2022)79 In vivo Mice MCAO Xenograft hBM-MSCs+ electromagnetic field 

(PEMF) (1 × 105 cells were injected 

in saline via the penis, and the cell/ 
PEMF group was exposed toPEMF  

(F = 60 hz, 10 mT)

MTT, LDH, MMP-9, TNF-α, 

IFN-γ, MAP-2, BDNF, ERK, 

Dcx, Nestin, Behavior test

Neurogenesis

(Continued)
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Table 4 (Continued). 

No Author (Year) Study 
Design

Population Intervention Outcome

Animal/ 
Cell

Method Dose Measure/Marker Final Effect

25. Huang et al, (2018)80 In vivo Rat MCAO Xenograft ADSCs-Exo (100 μg/kg/day was 

injected via the lateral cerebral 
ventricle)

TTC, TUNEL, CD63, CD81, 

PEDF, LC3, p62, caspase-3, 
caspase-9, TSC101

Neuroprotection

In vitro Cell line 

SH-SY5Y

OGD 10 μg/mL ADSC-Exo

26. Yamaguchi et al, (2018)50 In vivo Rat MCAO Xenograft Aged donor hMSC (24 and 64 years 

old 1 x 106 cells/300 mL)

Iba-1, GFAP. RECA-1, Musashi- 

1 (Msi-1), anti-human 

cytoplasmic marker STEM, 
platelet-derived growth factor 

receptor (PDGFR)-b, TOPRO- 

3, BDNF

Neuroprotection

27. Zong et al, (2017)11 In vivo Rat MCAO Allogenic The adenovirus carried VEGF into 

BMSC (Ad-VEGF-BMSC), and 

purified adenovirus was transferred 

into BMSC (Ad-BMSC) (1 × 106/ 
10 μL of DMEM via intracerebral)

VEGF, BDNF, MAP2 Neuroprotection

In vitro The mouse 

BV2 
microglial 

cells

OGD for 

6 hours

28. Sun et al, (2020)29 In vivo Rat pMCAO Xenograft HUMSC (VX-765-treated HUMSCs, 
or VX765 + MHY185-treated 

HUMSC) (1 × 105 / 3 μL to the 

center of the lesion using a micro- 

injection needle at a delivery rate of 
1 μL/min)

IL-1β, IL-6, IL-10, AMPK, 
mTOR, Tunnel, MTT. LC3II/ 

LC3I, Atg5, Beclin-1 and p62

Neuroprotection

29. Ryu et al, (2019)81 In vivo Rat MCAO Allogenic Rat ATMSC (3D angioarchitecture, 

transparent, nonsectioned brain)

DCX, Nestin, SOX2, HIF1-α, 

VEGFα, NG2, PECAM-1, 
PDGFR-β, Flt-1

Neurogenesis

30. Park et al, (2017)46 In vivo Rat MCAO Xenograft hUCB-MSCs (5.0×105/ 5 µL PBS via 
intrastriatally)

GFAP, NeuN, TGFB1, COX2, 
TNFalfa, Tunnel, Laminin, 

Behavior test

Neurogenesis

31. Wu et al, (2020)66 In vivo Rat MCAO Allogenic IONlabeled 106 MSCs in 10 μL saline 
were locally injected into the right 

CC

HGF, IGFBP-3, IGFBP-5, GDF- 
15, CCL5, CXCL2,IGF

Neurogenesis

In vitro Rat MSC Rat MSC 
+Choroid 

Plexus

30–80 ×10² rMSCs were seeded on 
a 50 μg/mL with 0.027 g Choroid 

Plexus/CP

32. Hu et al, (2019)44 In vivo Rat MCAO Allogenenic Rat BMMSC precondition hypoxia 
0.5% O2 (1 × 105 cells/cm2 for 4, 6, 

12, 24, 36, for 48 hours for hypoxic 

culture)

Tunnel, MTT, Akt, NfkB, 
caspase 3, caspase8, vimentin, 

FFOCX2 CXCR4, CXCL12, 

behavior test

Neurogenesis

33. Yang et al, (2015)47 In vivo Rat MCAO Allogenic Rat MSC-Exo (400 μg/kg exosomes), 

rat MSC (5×106 /100 μL MSCs), 

BYHWD (500 μg/kg BYHWD)

VEGF and Ki-67, dicer small 

interfering RNA (siRNA), miR- 

126, miR-222, miR-221

Angiogenesis

34. Jablonska et al, (2016)64 In vivo Rat MCAO Xenograft hUCMSC-NSC 2 μL labeled with 

CMFDA  

(2×106 via a microinfusion pump)

DCX, MMP 2/9, BDNF, GDNF, 

NT-3, CNTF, EGF, HGF, and 

IGF-1

Neurogenesis

35. Park et al, (2015)62 In vivo Rat MCAO Xenograft hUCB-MSCs  

(5.0×106/ 5 µL PBS 

intraparenchymally)

GFAP, NeuN, DAPI, laminin, 

Tunnel

Neurogenesis

In vitro Mouse N2a OGD

36. Li et al, (2019)19 In vivo Rat MCAO Allogenic Rat BMMSC + Transient receptor 

potential canonical (TRPC)  
(1 × 106/10 μL PBS)

Btubulin, Tunnel, TRPC, Neurogenesis

37. Li et al, (2019)82 In vivo Rat MCAO MSC (MSC-shRNA-NC or MSC- 

shRNA-SNHG12) 2x106/200 µL via 
stereotactically)

TTC, Tunnel, caspase 3, LC3BI, 

LC3BII, p62, Akt, mTOR, PI3K

Neuroprotective

In vitro Rat BMECs BMEC

38. Nouri et al, (2015)18 In vitro Neuron- 

hWJMSC

H2O2+ 

Deferoxamine

h WJ-MSC BDNF, VEGF, Bax, Bcl2, Akt1 Neurogenesis
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Discussion
This scoping review examined the therapeutic effects of employing MSCs, secretome, or EVs in stroke models. The 
effects on angiogenesis, neurogenesis, and neuroprotection were verified using a variety of indicators. Our scoping 
review contributes significant discoveries to the present literature. We discovered a small number of papers on 
neuroprotective benefits via the autophagy pathway.12,29,42,45,67,70,73,74,86,87 Anti-inflammatory is one of the neuropro-
tective benefits described by various researchers because cytokines, as immunomodulators, help to suppress 
inflammation.33,39,52,53,79,88,89 Anti apoptosis is more typically associated with neurogenesis effect although it is also 
related to the anti-inflammation and autophagy process.38,40,44,74,90–92

Interestingly, we discovered a variety of articles reporting diverse methods for increasing the potency of MSCs, 
including 3D synthesis, hypoxic settings, and gene transfection.31,32,93 This is done to boost the therapeutic efficacy of 
BDNF, CircAkap7, AxCALacZ-F/RGD, and CCL2 transfection therapy, which is intended to improve migration, 
neurogenesis, autophagy, and oxidative stress.39,48,77 However, the neuroprotective impact is primarily explained by anti- 
inflammatory and apoptotic pathways, with little studies on the effects of autophagy and antioxidants. Post-reperfusion in 
ischemic stroke can cause neuronal cell death owing to oxidative stress, hence further research is needed on the effects of 
boosting endogenous antioxidants to enhance the neuroprotective impact.42,47,82,94

To stimulate the release of bioactive MSCs, the researchers treated them with hypoxia, stroke patients serum and 
herbal medicine, which increased the therapeutic efficacy via migration and neurogenesis processes.30,50,60,62,66,95,96 

Ferulic acid in the herbal content is supposed to help create a microenvironment that promotes cell survival, migration, 
and differentiation, as well as tissue connections, making it effective for mending brain tissue and recovering from an 
ischemic stroke.49,51,61,64,97–99 Herbal or antioxidant administration can be combined, although some practitioners use 
herbal extracts to boost the secretome’s bioactivity, such as promoting progenitor neuron migration to the infarct 
location.66,71,72,100–102 Bioactive neurotrophic factors derived by MSCs, like as BDNF, have also been shown to trigger 
neurogenesis from endogenous progenitor neurons.63,77,103,104 However, Zhang et al (2023) found that MSC therapy 
induces angiogenesis and oligodendrocytes, which are involved in the axon myelination process, allowing electrical 
signals to surface swiftly.34

Mesenchymal stem cell/MSC also have a function in post-ischemic angiogenesis in the infarction location, allowing 
neuroprotection to occur.27,35,36 Inducing angiogenesis with herb administration and exercise to improve post-ischemic 
stroke healing, which is influenced by enhanced miRNA production or functioning synergistically in endothelial 
progenitor migration.41,54,68,78,105 Bioactive MSCs also boost the activity of VEGF, MMP-2, and MMP-9, which all 
contribute to increased blood vessel density.57,58 Although animal research with stroke comorbidities such as hyperten-
sion, atau aged revealed that MSC therapy did not produce positive benefits.43,46

Extracellular vesicles produced by MSCs represent a novel biomarker and effective target therapy for ischemic stroke. 
These vesicles are microscopic particles attached to a lipid bilayer that allow intercellular communication and transport 
a variety of bioactive substances such as proteins, lipids, and RNA, to increase delivery to target cells, modification is 
given by adding cholesterol as drug delivery.59 EVs promote neurogenesis by upregulating microRNAs leading to brain 
tissue regeneration.15,56 Reducing inflammation by modifying the immune response, EVs may help reduce inflammation 
in the brain following a stroke.69,106 EVs can also pass the blood-brain barrier, which allows them to deliver therapeutic 
drugs directly to damaged brain tissue, enhancing their effectiveness.81,107 The inflammatory process also initiates the 
processes of neurogenesis and angiogenesis, thus helping restoration in the penumbra area.15,37,55,56,108,109

This study has significant limitations, including the lack of studies comparing MSC therapy to CM or EVs, as well as 
control and MCAO treatment. According to prior systematic evaluations, treatment groups using MSC, CM, or EVs had 
considerably better functional and biomechanical outcomes than control groups. In vitro studies revealed that the 
treatment group exhibited therapeutic effects in angiogenesis, neurogenesis, and neuroprotection. In vitro research has 
the benefit of being more controlled than in vivo experiments; yet, the autophagy effect continues to occur in vivo, 
resulting in discrepancies in outcomes. The fact that they all report varying concentrations and non-uniform delivery 
routes is concerning. Administration via the cerebral route has the benefit of reaching directly to the target organ, is 
performed by a specialist, and requires fewer MSCs and secretome.110 The intra-arterial route is also more intrusive than 
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the intravenously approach, although the intra-nasal route may be a possibility if the patient is also 
comfortable.4,8,28,111–113

This study used the idea of xenografts rather than allogeneic or autologous, hence the variances in outcomes are also 
distinct.3,65,114 In addition, the use of animal models such as rats and mice, which have very different blood circulation 
from humans, creates obstacles in becoming a reference for translational research. The limitations of animal models are 
also a barrier to translational research. Non-human primates can be used as animal models. Administration via intranasal, 
which is non-invasive but close to the target organ, is also an option for more comfortable delivery.

Finally, more research is needed to investigate the use of animal models such as non-human primates, concentration 
and dosage of MSC, secretome, and EVs to accomplish effective therapy. Information on the role of MSC-secreted 
miRNAs as therapeutic targets. Obtaining thorough knowledge regarding these aspects can improve therapy effective-
ness, hence contributing to advancement in stroke therapy.

Limitations
This study did not conduct a critical appraisal of the included studies and differences in the way data were reported in the 
articles. A systematic and comprehensive search was conducted, but only articles written in English were included, which 
limits the applicability of the review results to the English-speaking world. This study also provides insight into the 
obstacles and challenges of stem cell therapy research for stroke, especially to be a reference for translational research 
towards clinical trials. Limitations between articles are variability in sample size, study design, and outcome measures, 
which may affect the generalizability and comparability of the results. To overcome this, more rigorous future studies 
with standardized outcome measures are needed so that clinical practice findings can be a strong basis for the success of 
clinical trials.

Conclusion
In conclusion, MSC and secretome therapy for stroke has significant potential in both in vitro and in vivo models. 
Current research shows the potential of MSC and its secretome to increase neurogenesis and neuroprotection but the 
challenge is the gap in understanding to conduct translational research in optimizing stroke treatment. Exploration of 
various sources of MSC, refining isolation techniques, transfection treatments of various proteins, combinations with 
herbal medicines are efforts to improve preclinical models. Understanding of signaling pathways, mechanistics, safety, 
and effectiveness in the preclinical stage has been obtained so that further research is needed for clinical trials.
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