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Abstract: Glioblastoma (GBM) is a malignant tumor that currently still faces challenges for a complete cure. Although GBM 
treatment has made great progress, the prognosis of patients is still poor due to interference of various factors in treatment such as the 
blood-brain barrier (BBB), grade malignancy, intra- and intertumor heterogeneity, drug resistance, and poor targeting of anti-tumor 
drugs. In recent years, with marked advances in nanotechnology, different types of nanodrug delivery systems have been developed 
and have been considered as a promising therapeutic measure to gradually overcome chemotherapy resistance and improve tumor 
targeting. Carbon dots (CDs), as a new type of therapeutic NP, have become a research hotspot of concern for many researchers in 
recent years. NPs based on CDs have high modifiability and functionalization, allowing for covalent binding with chemotherapy drugs, 
genes, immune cells and photosensitizers, effectively targeting tumor cells and reducing peripheral cytotoxicity. However, at present, 
CDs are still in the basic research stage or the preclinical exploratory research stage, and has not yet entered the clinical trial stage or 
the implementation and application stage. Here, we review the fundamental principles of CDs in the broader field of nanotechnology, 
their development history, classification, synthesis, and potential for tumor treatment. Especially in the treatment of cancer, CDs can 
not only participate in photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy, and chemotherapy, 
but also in multi-modal combination therapy. Here, we hope to provide some insights for further research. 
Keywords: glioblastoma, cancer treatment, carbon dots, therapeutic approach

Introduction
GBM is the primary brain tumor with the highest degree of malignancy. GBM is not only difficult to treat but also has 
a poor prognosis and a higher recurrence rate, accounting for approximately 70% of malignant brain tumors.1,2 Based on 
the latest statistics from the World Health Organization, the median overall survival (OS) of patients with GBM is 12 to 
16 months, and the 5-year OS rate is only approximately 5.6%.3 Current treatment for GBM usually relies on standard 
combination therapy, including surgical resection, postoperative radiotherapy, and chemotherapy.4 However, even with 
combination therapy, the median postoperative OS is only 10 to 16 months,5 as surgery cannot completely eradicate 
tumor cells, and GBM cells have a strong ability for invasion, migration, and infiltration, leading to recurrence of GBM.6 

Therefore, in addition to traditional treatment methods, it is extremely urgent to explore several feasible alternative 
treatment strategies to effectively overcome the above issues, to improve postoperative quality of life, and prolong patient 
survival time. In recent years, with the rapid advancement of nanotechnology, nano drug delivery systems (NDDSs) have 
been extensively researched, repeatedly verified and ultimately proposed for application in the treatment of GBM in 
different species.7
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In recent years, carbon dots (CDs) have been favored by researchers due to their low-cost synthesis and raw materials, 
good solubility and stability, excellent biocompatibility, low toxicity and degradability. Nowadays, they have been widely 
applied in various fields, such as drug sensing, biomarker detection and cell biological imaging8–13 Today, as a novel 
treatment method, CDs based nanoparticles (NPs) offer a feasible direction and approach for anti-tumor therapy.14–18 In 
this review, we summarize the development, characteristics, and anti-tumor mechanism of CDs NDDS proposed for the 
treatment of GBM.

Research and Development History of Carbon Dots
Looking back on the development history of CDs, they have gone through a long process. With the advancement of 
technology and the efforts of generations of scientists, they have gradually evolved from fluorescent carbon dots to new 
nano-drug delivery systems based on carbon dots with multiple functions and application characteristics. CDs were first 
surprisingly discovered in 2004. It is a new type of coupled material with a diameter of only approximately 10 nm. With 
the technological advancements in functionalization and modifiers, CDs now have the advantages and potential to be 
developed into nanomaterial carriers with anti-tumor activity.18 The development of CD has undergone three stages, 
namely, a discovery stage; an initial development stage; and a rapid development stage. The specific development process 
is as follows: Isolated fluorescent carbon in 2004; Surface passivation CDs in 2006; Fluorescent CQDs in 2010; 
Fluorescent GQDs in 2012; Fluorescent CPDs in 2013; Fluorescent β-C3N4 Nanocrystals, Fluorescent chiral CDs, and 
Fluorescent C3N QDs in 2017; Fluorescent triangle CDs in 2018. Then CDs entered a rapid stage of development, and go 
deep into various fields (Figure 1).15,19,20

Classification of Carbon Dots
Due to the multiple functions and roles of CDs, interestingly, they possess diverse appellations, such as carbon 
nanoparticles (CNPs), carbon dots (CDs), and carbon nanodots (CNDs). Multitudinous carbon-based nanomaterials 
have been delved and applied, such as carbon nanotubes (CNTs),15,20 fullerenes,21 graphene,22 graphene quantum dots 
(GQDs),23 CDs,24 carbon nanocorners (CNHs),25 carbon nanoonions (CNOs)26 and so on. Among these, CDs have 
a huge potential development trend due to their unique biological properties.18,27–34 In particular, CDs are more 
advantageous in medical applications.35,36 The classification of CDs is shown in Figure 2.37 Table 1 offers 
a comparison of CDs and other carbon-based nanomaterials.

Design of Carbon Dots
Due to the issue of the emission wavelength of CDs itself, its penetration rate in biological tissues is relatively poor, 
which thoroughly impedes their application domains. Because of the objective existence of the above-mentioned issues, 
multifarious endeavors have been carry out to enhance and improve CDs functionality, for instance, methods such as 
doping with heteroatoms and surface passivation of materials and so on.13 Most researches indicated that hetero-atom 
doping could be utilized to regulate and control the inherent traits of CDs. In addition, CDs are usually spherical in shape 
and have abundant functional groups on their surface, such as -OH, -COOH and -NH2 (amine) moieties, which equip 
CDs with good bio-compatibility and good water solubility, and the ability to form new conjugations with different 
inorganic and organic substances.45,48 Two types of CDs have been developed namely amorphous C-dots and G-Q-dots. 
The amorphous C dots are formed by simultaneous sp2 and sp3 hybridization of the carbon probes, which have the 
ability to undergo further surface modification. The G-Q dots possess hybrid sp2 nanocrystalline carbon nuclei, an 
asymmetric structure due to abundant N and O groups that perturb the carbon structure (Figure 3).49

Emerging Applications of Carbon Dots
In recent decades, research regarding the synthesis, characteristics and biological applications of CDs possess grown in 
a spiral. In terms of size and photoluminescence performance, CDs have a high degree of similarity to quantum dots (QDs). 
However, compared to QDs, CDs are relatively innocuous.50 CDs achieve relatively uniform dispersion, better stability, and 
biocompatibility.51 In addition, the fluorescence characteristics and plentiful surface functional groups of CDs allows them to 
be relatively easily modified or further functionalized.52 Combined with relatively better biocompatibility and excellent 
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stability, CDs have been involved in many research fields and have received much attention, for example, in optical, energy, 
and biological applications, especially for the treatment and diagnosis of cancer, such as analysis of pharmaceuticals and 
biomarkers, cellular bio-imaging (in-vitro and in-vivo bio-imaging),13 medical imageology, nanomedicine, drug/gene deliv-
ery, gene-targeted combined therapy, PDT, PTT, and as antibacterial agents53–56 (Figure 4)

Figure 1 Research and Development History of CDs.

Figure 2 Classification of CDs.
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CDs Synthesis
Under normal conditions, the synthesis of CDs requires multifarious chemical substances and biological groups, such 
as –COOH (carboxyl groups). Because of the existence of carboxyl group, CDs have good solubility. The presence of 
functional groups gives CDs features that can be further modified or reassembled. Two common synthetic methods for 
the preparation of CDs8 are illustrated in Figure 5. That are top-down and bottom-up means. The first technique mainly 
include laser ablation, arc discharge and high energy ball milling. But above ways utilize strong chemical reagents and 
tedious conditions for synthesis.42

The second technique primarily contains hydrothermal/solvothermal synthesis, pyrolysis and electrochemical meth-
ods. However, the most crucial deficiencies of the bottom-up synthesis technique is its relative complexity, as special 
experimental instruments are required during the synthesis process and it takes a relatively long time.57 The formation of 
amide bonds is generally accomplished by covalent modification between the CD carboxyl group and the primary amine 
by EDC/NGS coupling chemistry (Figure 6).57–59

CDs-Relevant Toxicity and Remedial Methods
Before the application of CDs, its toxic effects in organisms must be considered and verified. Table 2 summarizes the 
toxicity verification of CDs in vitro. Studies have confirmed that PEG-modified CDs can significantly reduce their own 
toxic effects and thus can be used in the fields of biological imaging and medical exploration. Although in vitro studies 
have shown that CDs is non-toxic or low-toxic, we still cannot be blindly optimistic. Because, up to now, there are still 
relatively few experiments on in vivo toxicity researches (Table 3), lacking reliable data to support and verify the toxic 

Table 1 Comparison of CDs and Other Carbon-Based Nanomaterials

Type Traits Applications Limitations Refs

Graphene Comprises one atom-thick carbon 
(sp2 hybridized) sheets of six-member 

rings, providing an exposed surface 

area that is nearly twice as large as that 
of SWCNTs

Comprises one atom-thick carbon 
(sp2 

hybridized) sheets of six-member 

rings, 
providing an exposed surface area that 

is nearly twice as large as that of 

SWCNTs

Absence of metallic impurities that 
can affect accuracy of sensor; 

commercial availability of graphene 

and graphene platelets is limited

[38,39]

CNTs Unique combination of stiffness, 

strength, and tenacity compared with 
other fiber materials; high thermal and 

electrical conductivity

Can reach cytoplasm and nucleus 

through the lipid bilayer, thus have 
potential use in biosensors, biomedical 

devices, and drug delivery; greater 

ability of conjugation with various 
bioactive agents, such as peptides, 

proteins, nucleic acids, and therapeutic 

agents; greatest stability of 
nanocarriers

Severe toxicity in cultured cells, such 

as human keratinocytes, 
T lymphocytes, kidney cells, alveolar 

macrophages, and endothelial cells 

in vitro; reproduce cellular oxidative 
stresses, thus incompatible with 

biological systems; insoluble in most 

common solvents.

[40–42]

GQDs Strong and tunable 

photoluminescence; A high loading 

capacity of aromatic compounds and 
release properties; The ability to 

absorb incident radiation

Fluorescence bioimaging and 

biosensing; Diagnostic Platforms; 

Drug /gene delivery; Photodynamic 
Therapy;

Toxicity and clinical practical 

application

[43,44]

CDs Zero-dimensional nanocarriers with 

diameter<10nm; spherical nanocrystal 

design; synchronized sp2 and 
sp3 hybridization

Used for targeted drug and gene 

delivery, tumor targeting, monitoring 

of cellular trafficking, and diagnostic 
imaging

Poor stability (the stability after 

modification/ functionalization is 

better); difficult to maintain 
properties for long periods of time

[45–47]
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effects of CDs. However, we firmly believe that with technological innovation and the improvement of functionalization, 
more experiments will focus on toxicity verification in organisms.

How to Enforcing Remedies for Weakening Toxicity
It is well known that high molecular polymers such as polyacrylic acid (PAA) and branched-chain polyvinylimide (BPEI) 
themselves have certain toxic effects on living organisms. For instance, the exposure time of free PAA to CDs is at least 

Figure 3 Design of CDs with different surface functional groups.

Figure 4 Emerging applications of CDs.
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about 10 hours or more, or even longer. Due to the inevitable toxic effect, it will cause a certain degree of damage to 
cells. But how to reduce this toxic and side effect? This is a fatal problem. Experimental research has proved that the 
remedial measures for toxicity mainly involve shortening the cell incubation time and exposure time, using the minimum 
concentration of drugs or materials, and innovating technologies, including the modification of physical and chemical 
properties and surface functionalization techniques. Although the toxicity of CDs is relatively low, it can still be further 
reduced through the intervention of the techniques mentioned above. At the same time, it can also be fully modified by 
using polymers PEG (polyethylene glycol) with good bio-compatibility and amino acids, etc.

Figure 5 Two synthetic methods “top-down” and “bottom-up” are common for the preparation of CDs.

Figure 6 Simplified scheme depicting the conjugation of CDs to a chemotherapeutic agent.
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Carbon Dots Based Nanoparticles for Photothermal Therapy of Tumors
In recent years, PTT has been widely applied in the research of cancer treatment. Its principle is to convert light energy 
into heat energy to deal a devastating blow to tumors. However, a crucial factor remains to be determined, that is, how to 
ingeniously design synergistic NPs as potential photothermal transducers that can truly and effectually improve the 
efficacy of PTT in killing tumor cells. On this basis, some researchers have strategically designed, prepared, and 
characterized hollow Cu NPs (CuSCDs). These NPs displayed excellent photothermal conversion efficiency, enhanced 
biocompatibility, and reduced toxicity under 808 nm laser irradiation. After coating a CuSCD-loaded proteasome 
inhibitor with the hybridized macrophage cell membrane of the T7 peptide, CuSCDB@MMT7 achieved specific 
targeting of cancer cells, immune escape, and boosted endocytosis. In general, CuSCDB@MMT7-triggered PTT 

Table 2 In Vitro Toxicity Researches of CDs

Method Source Size Surface Cell line Monitoring Refs

Laser ablation 13C powder and 
graphite cement

4–5nm Polyethylene glycol 
-1500N

MCF 7 cell Increased cell viability [60]

Hydrothermal therapy Polyethylene glycol 2–4nm / Hep G2 cell Cell viability: 
At 100 mg/mL: 90% 
At 400 mg/mL: 49%

[61]

Hydrothermal therapy / / Pyridinic-N 
pyrrolic-N

U-87 MG 
brain cells

/ [62]

Hydrothermal therapy Citric acid and 
1,2-ethylenediamine

1–4.5nm / NIH 3T3 cells, 
HEK293 cells, 
HeLa cells, and 

MCF-7 cells

Cell viability 
At 0.25 mg/mL 

NIH 3T3 cells: 95% 
HEK293 cells: 92.4% 

HeLa cells: 97.6% 
MCF-7 cells: 95.9%

[63]

Hydrothermal Carbonization Linear PEl and citric 
acid

/ Polyethy lenic amine analog, 
1,2-ethylenediamine, 
Diethylenetriamine, 

Tetraethylenepentamine

HeLa cells Cell viability: At 
800 mg/mL: 90%

[62]

Heat reflux approach L-glutamic acid 5.42nm Polyethylene glycol 200 CT26WT and 
CAL-27T cells

Cell viability: 
At 0.1–1 mg/mL 
CT26WT: 82% 

CAL-27T 
Cells: 60%

[64]

Polymerization method α-cyclodextrin 70–80nm Hyperbranched polyglycerol using 
grafting method

A549cells Cell viability 
At 0.1 mg/mL 90%

[65]

Table 3 In Vivo Toxicity Researches of CDs

Method Source Size Surface Model Monitoring Refs

Laser ablation 13C powder and graphite 

cement

4–5nm Polyethylene glycol 

1500N

Mice 24 hours later, low accumulation 

28 days later, No monitoring 
toxic action

[60]

Mixed acid therapy SWCNTs, MWCNTs 
and graphite

3–4nm / Mice Nontoxic, No weight loss, or death of 
mice

[64]

Nitric acid oxidation Raw soot 1–3nm Polyethylene glycol 
2000N

Mice No abnormalities or gene toxicity [65]
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displayed the accumulation of polyubiquitinized tumor suppressor protein, which was thermally steadied at a high 
temperature induced by near-infrared light, enhancing apoptosis and decreasing tumor cell metastasis. Through a series 
of characterization monitoring, the results indicated that CuSCDB@MMT7 possessed high stability, with relatively 
considerable loading and encapsulation efficiency of 20.5% and 81.9%, respectively. Meanwhile, the monitoring 
manifested that under laser irradiation, the temperature of CuSCD can rapidly accomplish above 90°C without obvious 
attenuation, and the heat generation capacity can be maintained at a certain steady-state level. More importantly, the 
research suggested that CuSCDB@MMT7 can specifically target tumor cells and has the ability to evade immunity. 
Laboratory monitoring demonstrated no obvious signs of damage to the liver and kidneys, which provided strong 
evidence for clinical transformation. It is gratifying that CuSCDB@MMT7 can accumulate effectively at tumor sites and 
manifest an increasing trend over time, further confirming that CuSCDB@MMT7 can accumulate at tumor sites via EPR 
and active targeting.

The above studies provide strong evidence for the PTT strategy of Cu/CDs nanocomposites loaded with proteasome 
inhibitors and highlight a promising therapeutic strategy that can achieve effective clinical cancer treatment (Figure 7). 66

In summary, the evidence to date strongly supports nanodrug delivery system designed based on CDs has a very good 
prospect for the destruction of tumor cells.

Therapy and the Principle of Carbon Dots in Photodynamic Therapy
The characteristics of PDT are determined by three key elements: light source, PS, and O2. The principle of the reaction 
is that when the light source is irradiated, PS absorbs energy from the ground phase to the excited phase and reacts to 
further produce reactive oxygen species (ROS), which in turn destroy cancer cells.67 When PS receives a certain amount 
of light and absorbs a certain amount of energy, it changes directly or indirectly from the ground state to the excited state, 
and then two types of reactions can occur. The first reaction, the Type I reaction, involves the generation of hydrogen 
peroxide, superoxide anion, and hydroxyl radical.68 The second reaction, type II, differs from the first by producing 1O2 

directly through an “intersystem crossing” process (Figure 8).69 When the two types of reactions occur simultaneously, 

Figure 7 (A) Schematic illustration of the generation of proteasome inhibitor-encapsulated CuS/CDs nanocomposites (CuSCDB@MMT7). (B) Schematic illustration of the 
application of CuSCDB@MMT7 for enhanced PTT via heat-stabilization of various substrates in the ubiquitin-dependent proteasomal degradation pathway.
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the resulting H2O2, O2−, •OH, and 1O2 are defined as ROS.69–73 The Type III reaction mechanism involves a direct and 
efficient destruction of biological target molecules.74 First, when CDs are activated by a light source, the absorbed 
electron energy is excited from S0 (ground state) to S1 (singlet state), and second, the energy is released through three 
routes and returned to a relatively lower energy level (Figure 9). The first route is nonradiative emission: that is, return 
from S1 to S0 as heat. The second route is radiative emission that involves phosphorescence and fluorescence, radiative 
processes in which energy relaxation occurs and in which energy is released in the form of electromagnetic radiation 
light. The third route is to transition from S1 to the excited state T1 via an intersystem crossing (ISC). The process in the 
third route is related to the ability of T1 to initiate a radical chain reaction (type I) after transferring electrons and O2 to 
the reaction substrate and further forming ROS such as H2O2, O2− and •OH, or it may acquire 1O2 by transferring energy 
to O2 and extracting electrons from some groups (such as aromatic rings and phenols) to produce a ground state via CDs 
(Type II). The three key free radicals (H2O2, O2−,•OH, and 1O2) generated by the two approaches in the third route 
above are the significant factors for CDs to implement the PDT effect.75–78 The 1O2 generated by type II reaction is 
generally considered the most important factor responsible for the efficacy of PDT.79 However, hypoxia that can occur in 
malignant neoplasms, such as in GBM, may reduce the antitumor effects of type II PDT. Hence, type II PDT is more 
suitable for tumor environments with O2.80,81 Although type I PDT is relatively better suited to anoxic environments, as it 
generates lower cytotoxicity due to O2− and H2O2.82,83 Hypericum perforatum has been applied to overcome these issues 
and achieve the control of Type I and Type II PDT. Researchers synthesized three red carbon dots (RCDs), which possess 
similar core structures and diverse surface states, resulting in various ΔES1-T1. However, a smallerΔES1-T1 is more 
favorable for energy transfer from S1 to T1, resulting in more 1O2 production. Moreover, since the three RCDS have the 
same REDOX potential, the same O2 is produced (Figure 10).84

There are three key mechanisms by which PDT eliminates tumor cells: the first is to promote apoptosis and necrosis 
of tumor cells by inducing oxidative stress; the second is to cause vascular injury, and the final mechanism is to trigger an 
autoimmune and inflammatory response.85 In general, the key active treatment of PDT is to promote tumor cell 
apoptosis.86 To further evaluate the mechanism by which sulfur-doped carbon dots (S-CDs) conquer tumor cells, 
researchers took advantage of a Fluo-4 AM (Ca2+ probe) to calculate the effective concentration of Ca2+ entering 

Figure 8 Schematic illustration of photodynamic reactions (either type I or type II) and cell death pathways in the process of PDT.
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tumor cells. The researchers found that under laser irradiation, the green fluorescence of the S-CDs treatment group was 
more significant than that of the 5-ALA group, indicating that the 1O2 generated by the S-CDs was traced in lysosomes 
and mitochondria, mediating the release of Ca2+ from internal storage into the cytoplasm, thereby triggering apoptosis.87

Figure 9 Description of mechanisms of CDs in PDT.

Figure 10 Schematic of RCDs as nano-PSs with tunable ROS generation.
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Pang and other researchers have developed a CD with bidirectional capabilities, that is, it not only has the feature of 
targeting but also the feature of ROS generation, which is more effective in the treatment of tumors and further improves the 
efficacy of PDT.88 Some researchers have also enhanced the PDT effect of CDs by functionalizing them to improve targeting. 
The new type of CDs developed by Jia et al can overcome hypoxia and greatly enhance the therapeutic effect of PDT.89 Similar 
studies also suggest, for instance, that the multifunctional CD nanocomposites designed by Zheng et al can significantly reduce 
the limitations of hypoxia on PDT in malignant tumors.90 In their research work, it was confirmed through cell viability 
experiments that functionalized CDs can eliminate the PDT resistance induced by hypoxia, and has good growth inhibition 
effect on tumor sites at 1% O2 concentration, showing superior ability to overcome cancer hypoxia.

Carbon Dots Based Nanoparticles for Photodynamic Therapy of Tumors
PDT is an activation therapy for antitumor activity. The rise of NDDS has made a tremendous advance in the domain of 
PDT.91–93 CDs are an ideal and novel nanomaterial, considered a perfect candidate for photosensitizer delivery systems 
because of their various excellent features. Researchers have developed a novel self-luminescent PDT system, which 
aims to improve the total PDT yield with efficient absorption by optimizing the CRET step between light and 
photosensitization. When coupled with yellow light-emitting CDs (y-CDs), the performance of the photosensitizer is 
extremely enhanced, and its Soret band and Q band can be motivated directly or indirectly by CL (Figure 11), and has 
potential to be implemented in tumor therapy. The study showed the potential treatment effect on cancer cells, by 
providing a feasible method to heighten photons while reducing the toxicity of CL. This CDs-based PDT has shown 
superiority in overcoming the deficiency of penetrating radiation and curing deep lesions that are difficult to solve with 
traditional PDT.94

Overall, CDs-based NDDS has broad prospects for application in PDT therapy and has the potential for targeted 
GBM therapy. We hope to conduct further clinical studies in the future to benefit more patients with GBM.

Photodynamic Therapy and Photothermal Therapy Combination Therapy
Single treatment often has certain limitations on the killing of tumors and often requires combined treatment to further 
increase the efficacy of treatment. Because CDs have excellent PTT and PDT characteristics, PTT and PDT treatment in 
a single NDDS can afford a relatively better treatment effect against tumors than a either PTT or PDT alone. In general, 
PS acts as PDT agents in the tumor microenvironment (TME) and can induce generation of ROS under a certain amount 
of light, to achieve effective therapeutic purposes. However, to date, the ROS generation efficiency of PS from CD has 
been significantly restricted because of its poor solvability, light instability, and other factors. Accordingly, combination 
treatment of PDT with PTT may offer relatively excellent and unique antitumor activity. Due to increased tissue oxygen 
consumption and rupture of blood flow in tumor neovascularization, local anoxia of the tumor environment further 
interferes with and limits the curative effects of PDT. Therefore, combined therapy can overcome the problem of hypoxia 
and improve anticancer activity. In contrast, combination treatment could also address PS deficiencies based only on PDT 
or PTT. To date, researchers have continuously attempted to exploit light-triggered association treatments. For example, 
Ge et al developed CDs with both PTT and PDT traits using polythiophene benzoic acid as a carbon source 
(Figure 12A).95 In addition, neoteric nanomaterials have been designed to strengthen tumor therapy through the 
combined action of PDT and PTT by studying the uptake of polymer-polygamma-glutamate (gamma-gamma- 
glutamate) (gamma-PGA) by integrating gamma-glutamyltransferase (GGT) enzymes. γ-PGA@GOx@Mn, a Cu-CD 
preparation comprise a photosensitizer and self-supplying oxygen nanoparticle obtained by glucose metabolism reacting 
glucose oxidase (GOx), Mn, Cu-CDs. γ-PGA@GOx@Mn, Cu-CDs NPs remain in a slightly acidic environment of the 
tumor for a prolonged time and can further target cancer cells. Under 730 nm laser irradiation, NPs also achieve excellent 
photothermal and photodynamic effects and could significantly alleviate tumor hypoxia through endogenous formation of 
hydrogen peroxide (H2O2), further strengthening the curative effect. The combination treatment of PDT and PTT is 
effective and deserves further study to achieve tumor cure (Figure 12B and C).96
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Carbon Dots Based Drug/Gene Delivery
Chemotherapy (CT) is the most routine treatment for all kinds of malignant tumors. However, many factors, such as the drug 
resistance mechanism of the tumor, poor targeting of the drug and the tumor barrier, seriously limit their therapeutic effects 
in vivo. Thus, various NDDS have been developed to achieve enhanced targeted therapy against tumors and reduced drug 
resistance. In this field, CDs are also used as nanocarriers to encapsulate drugs, proteins, or cellular transmembrane peptides 
that target the TME through their unique surface structure to trigger targeted-release capabilities for precise drug delivery. In 

Figure 11 Schematic of the PDT System in vivo. (A) Synthesis process of y-CDs and y-CDs-Ce6 conjugate. (B) Enhancement of therapeutic effect by optimization of CRET 
step to the photosensitizers in CL-induced y-CDs-Ce6 system. (C) The mechanism of PDT.
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Figure 12 (A) Synthetic route of PBA and CDs with simultaneous PTT and PDT capability by polymerization to carbonization. (B) Schematic illustration of starving and 
phototherapy mediated by γ-PGA@GOx@Mn, Cu-CDs NPs. (C) Schematic illustration of starving-like therapy, phototherapy, and immunotherapy mediated by γ-PGA 
@GOx@Mn, Cu-CDs NPs.
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addition to better optical imaging and efficient drug encapsulation rates, these CD nanocarriers have shown excellent 
biocompatibility, safety, and low or no toxicity. The maximum drug loading of CDs is close to 96%, and there is no obvious 
inhibition of cell growth and inflammatory reaction. For example, Feng et al developed CDs-Pt(IV)@PEG-(PAH/DMMA), 
a drug nanocellular carrier with tumor extracellular microenvironment responsiveness based on preloading of the CT drug 
cisplatin (IV), as a bioimage-guided drug delivery system (Figure 13). This research offers a viable alternative to enhance the 
potential clinical application of CDs in antineoplastic protocols.97

Figure 13 Schematic illustration for the drug delivery process of CDs-Pt(IV)@PEG-(PAH/DMMA). (A) Synthetic process of CDs-Pt(IV)@PEG-(PAH/DMMA). (B) The Drug 
release mechanism CDs-Pt(IV)@PEG-(PAH/DMMA).
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Gene therapy is a viable potential strategy for the cure of multiple tumors but demands a secure and effective vector for 
delivery. The unique properties of CDs make them an efficient novel gene carrier. Liu and his research team successfully 
developed a high-efficient dual functional nano gene vector based on polyethylenimine-passivated CDs as transfection 
agents via one-step strategy technique. Their research results indicated distinct fluorescence and better solubility with low 
cytotoxicity (The cell survival rate is approximately over 80%) and efficient in vitro DNA transfection).98

Kim et al contrasted the mechanism of PEI-functionalized C-dots (PEI-CDs), PEI-functionalized gold colloids (PEI-AU), 
and plasmid DNA (pDNA) in gene delivery through DNA transfection, and the results manifested that PEI-CDs and PEI-AU 
achieved poor fluorescence efficiency during transfection (The transfection efficiency was almost PEI25k close to approxi-
mately 1.0×107 RLU/mg protein). After the PEI-C-dots were separated from the PEI-AU, it achieved a higher concentration 
of pDNA and high fluorescence, which promotes gene transfer and transport.99 Recently, Zhang et al have also exploited 
hyaluronic acid (HA)/PEI modified C-dots (HP-CDs) for tumor targeting and gene therapy. HP-CDs are easily implanted into 
cancer cells by endocytosis. The results suggest that HP-CDs are a potential vector for gene delivery.100

To sum up, CDs possess prominent development superiority in terms of transmission, especially for drug/gene 
delivery and deserve to conduct in-depth research and delve into anti-tumor applications.

CDs-Mediated Activation of the mTOR Signaling Pathway
Reduced glutathione (GSH) is a strong antioxidant, and ROS can be eliminated by it. When cells are damaged and in an 
oxidative stress state, GSH can afford the speedy metabolic response in the first instance.101,102 In view of the excellent 
bio-safety and compatibility of CDs, CD-based NPs have found prominent application in the monitoring and cure of 
malignant tumors. However, at present, the effects of CDs on tumor proliferation and cell metabolism are not fully 
understood, especially with regard to the regulation of tumor signaling pathways. The fundamental researches have 
manifested that CDs can increase ROS levels in UM cells in a dose-dependent manner. When the CDs concentration was 
<100 µg/mL, CDS-induced ROS could further increase the proliferation of UM cells and enhance cell aggressiveness. At 
200 µg/mL, UM cells underwent further apoptosis. The addition of antioxidants reversed the proteinogenic effect of CDs. 
A concentration of 25–100 µg/mL CDs stimulate Akt/mTOR signaling, promote glutamine metabolism, and generate 
a cascade that accelerates UM cell proliferation. These data suggest that moderate subapoptotic doses of CDs facilitate 
tumorigenicity in UM cells. This feasibility study provides strong support for the combined effectiveness of ROS NPs in 
future cancer therapy (Figure 14).103

The results of the above studies provide a very useful strategy for exploring CD-mediated signaling pathways and 
provide new insight and reference for further treatment of tumors.

Tumor Microenvironment-Responsive Imaging and Synergistic Tumor Treatment by 
CDs-Based NPs
The TME is characterized by angiogenesis, acidosis, and hypoxia, and provides a suitable environment for the growth 
and erosion of tumor cells, plays a crucial role in tumor deterioration, aggressive metastasis, and drug resistance, and 
thus, offers a breakthrough for exploring new anticancer strategies.104,105

The unique properties of the TME can provide a therapeutic target available for tumor cells.106 For purpose of 
achieving precise the cure of tumors, the use of smart nanomaterials with therapeutic capabilities responsive to TME 
stimulation is currently one of the most effective methods, with visible strengths in increasing therapeutic effect and 
lessening side effects.107 Although a more substantial study has been conducted on the design and development of TME- 
triggered nanotherapy platforms, it is still highly desirable to develop an easy way to manufacture such nanotherapy- 
borne systems with satisfactory results.108 Some researchers have modified CDs (CDs-Ce6) and Cu2+ by assembling 
a photosensitizer (chlorine e6, Ce6) to prepare TME stimulus-responsive NDDS, which can not only be used for 
fluorescence imaging, but also can be applied for collaborative tumor treatment. Due to the assembly of CDs-Ce6, the 
obtained nanocomponents (called Cu/CC, NPs) reveal quenched FL and photosensitivity. FL imaging and PDT function 
are effectively restored after penetration of the tumor under TME stimulation. The introduction of Cu2+ not only provides 
an attached CDT impact by reacting with H2O2 but also eliminates GSH in tumors through REDOX reactions; therefore, 
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oxidative stress can be improved and the effect of ROS treatment can be enhanced. Cu/CC NPs can be used as a triad of 
FL-image-guided anti-tumor properties by PTT, PDT, and CDT (Figure 15).109

In summary, using CDs, we can design a nanoplatform with remarkable characteristics of TME stimulating response 
fluorescence imaging and PTT, PDT, and heat-enhanced CDT synergistic therapy, which can improve the therapeutic 
efficiency related to ROS and take advantage of the virtues of TME to effectively heighten curative effects and reduction 
of toxic and side effects.

CDs Penetrate the BBB
One of the largest impediments to the efficient remedy of gliomas is that most drugs cannot smoothly cross the blood- 
brain barrier (BBB). The unique microvascular system is a natural block that strictly limits the flow of molecules into and 
out of brain tissue. Although, tight connections between endothelial cells allow certain substances to cross the BBB. 
According to statistics, approximately 98% of small molecules and almost 100% of macromolecules cannot easily pass 
through the BBB, which strictly limits the effective concentration of glioma treatment drugs, such as temozolomide 
(TMZ).110 Nevertheless, through the ingenious encapsulation or modification of NDDS, researchers have conducted 
experiments to verify that both surface-modified or functionalized CDs and naked CDs can traverse the BBB. Adopting 
a zebrafish experiment, Li et al and Vallejo et al believed that CDs synthesized with carbon powder could not traverse the 
BBB by traditional synthesis methods, such as top-down methods. However, when modified with the iron transport 
protein, these CDs easily crossed the BBB.19,111

The presence of highly expressed transferrin receptors (TfRs) in brain endothelial cells makes them ideal targets for 
transferrin-binding CDs and other NDDSs to cross the BBB through receptor-mediated endocytosis. Although TfRs are 
generally used to promote BBB traversing, other receptors present in the BBB can also be used for delivery. These include 
angioendotheliin-2, which can penetrate the BBB and can serve to transport cargo to brain tissue or cells. Liu et al also confirmed 
that endothelin-2-modified CDs can fully penetrate the BBB of mouse C6 gliomas.112 Similarly, CDs can also be synthesized 

Figure 14 Schematic of the opposing CDs-concentration-dependent effects on tumor cell progression and metastasis.
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using the glucose transporter GLUT1 or the L-amino acid transporter 1 (LAT1), which are expressed at high levels throughout the 
BBB. Kirbas Cilinger et al proposed that fluorescein-coupled CDs prepared by glucose easily cross the BBB.113

Initially, CDs could be uniformly dispersed and permeated in all cells. Research has found that CDs can not only be 
taken up and accumulated in normal cells, but also be taken up and accumulated in malignant tumor cells, which will 
further confirm that CDs have good dispersibility and penetrability.114 However, the enhanced permeability and retention 
(EPR) effect has led miscellaneous researches to observe characteristic of the distinctive accumulation of CDs in cancer 
cells. The research of Su et al manifested that CDs firstly accumulated at the tumor microenvironment and were 
efficiently eliminated by circulatory system or metabolic system (for example, the kidney organ).115 Their research 
found that Hf-CDs have advantages such as the ability to target tumor accumulation preferentially. Meanwhile, it was 
also found that the reason why Hf-CDs can achieve rapid imaging is that CDs are highly likely to accumulate at the 

Figure 15 Schematic of (A) the synthesis process of Cu/CC nanoassemblies and (B) their features for enhancing tumor accumulation, TME stimuli-responses and synergistic 
therapy.
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tumor site. To take advantage of the targeted imaging of CDs, researchers improved the cell uptake function enhanced by 
magnetic field to promote unique accumulation. Their research indicates that CDs NPs can target tumors by EPR.116. In 
conclusion, the effect regulation of BBB penetrability, EPR effect, endocytosis and excellent penetration power jointly 
contribute to the high targeting ability of CDs for brain tumors.

The penetration ability of CPDs was evaluated by co-establishing BBB model using human endothelial and C6 cells. The 
results suggested that CPDs had a good capacity to cross the BBB. Therefore, it can be used for the diagnosis and treatment of 
brain cancer, such as GBM. In vivo and in vitro imaging of rats with orthotopic glioma indicated that the targeted potential of 
CPDs for brain tumors was further confirmed. And it is suggested that CPDs may target gliomas rather than abnormal brain 
tissues. Furthermore, CPDs can clearly depict the boundaries of brain tumors, demonstrating the feasibility of CPDs for the 
visualization and localization of brain tumor surgeries.112,117 Similarly, Mintz et al used a zebrafish model to demonstrate that 
tryptophan cd can also easily cross the blood–brain barrier. Another way for CD to cross the blood–brain barrier involves 
adsorpt-mediated cell transport, which relies on the electrostatic interaction between brain capillary endothelial cells and CD. 
The common methods for delivering cargo through BBB are displayed in Figure 16.

Through proper modification, functionalization, or covalent coupling, CDs can transport clinical chemotherapy drugs 
break through the BBB, providing new hope for the cure of various malignant tumors in the future. However, additional 
trials are needed to verify whether CDs can pierce through the BBTB, and more trials are needed to further probe and 
investigate the mechanism of penetration.

In fact, certain properties of NPs have been revealed to allow drugs to enter the central nervous system by conquering 
the BBB.118 Compared with metal-based NPs, CDs have lower cytotoxicity and superior bio-compatibility, so scholars 
have focused on it. In addition, the synthesis method of CDs is easy and the surface to volume ratio is high, which makes 
it possess a high drug encapsulation and loading rate. Due to its superior PL properties, the biological distribution of CDs 
can be monitored in vitro and in vivo studies. In addition, some CDs may be capable of piercing the BBB due to 
a number of beneficial surface properties, including low charge and amphiphilicity. In vitro and in vivo models have been 
established to verify whether CD and CDs covalent conjugate can cross the BBB. Lu et al prepared nitrogen-doped CDs 
(N-CDs) in a one-pot hydrothermal process and verified their competence to penetrate the BBB using an in vitro test 
model composed of endothelial cells and astrocytes, with satisfactory results.119 At the same time, the study also 
demonstrated that N-CDs are capable of crossing the BBB in the form of concentration and time dependence, which 

Figure 16 Schematic of the BBB and mechanisms by which CDs may cross.
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can put down to their small particle diameter ratio. In addition, the cation PEI on the surface of N-CDs also facilitates the 
infiltration of BBB.119,120

Table 4 provides research reports of functionalized CDs penetrating the BBB.

Active Targeting of Carbon Dots Based Nanoparticles
Brain tumors range from benign to malignant. Two tumors that receive a similar pathological diagnosis could differ 
enormously in their susceptibility to the treatment. Furthermore, especially in malignant tumors such as GBM, individual 
cell populations within the same tumor tissue can also present differences in the expression of gene, various proteins, and also 
may regulate a variety of signaling pathways, and may present different sensitivities to certain therapies. Effective treatments 
should consider the intertumor and intratumor heterogeneity, which highlights the importance of targeted specific tumor 
tissue interventions. To date, different types of NDDS used in diverse trials have relied on reinforced EPR. This mechanism 
depends on the passive accumulation of NPs within the tumor in that reduced vascular leakage and lymphatic drainage, 
which is a significant reason in the development of NDDS.126,127 However, the trial data showed that only a small quantity of 
the drug can accumulate in tumor tissue or cells.128 In the process of uptake of cellular CDs, two main uptake mechanisms 
are involved. The first is a passive pathway, which refers to non-receptor-mediated uptake of CDs through diffusion or 
endocytosis, whereas the other is an active pathway, which refers to transporter- and receptor-ligand-mediated uptake of CDS 
in cells.121,129,130 CDs can be covalently coupled to ligands and drug cargoes by a link-agent or electrostatic coupling, 
resulting in the release of drugs in a particular environment through a specific pH microenvironment or through reductase- 
dependent bonds. For example, disulfide bonds. To efficiently deliver drugs to specific targets, the enzyme and cascade of 
signaling pathways that target the tumor, the TME, and the cell must be considered. Understanding the expression of glioma 
subtypes will especially help researchers design CD-based drug delivery targets. Approaches to build up tumor cell 
selectivity mainly contain the use of membrane receptors, transporters, regulation of signaling pathways, and alteration of 
tumor cell metabolism and migration. Thus, tumor cells exhibit strong glycolysis and amino acid metabolism activity. By 
exploiting nanospecific biomorphology, CDs can generate targeted glycolysis. Furthermore, due to the presence of the 
glucose transporter GLUT-1 and the AA transporter LAT1 on the BBB, these CDs can penetrate the BBB for imaging and 
drug delivery, thus achieving effective treatment of glioma. Studies of T cells for the cure of cell surface antigens in 
aggressive brain tumors have identified several promising drugs targeting NP-mediated NDDS.131 The most common 
targeted antigens are shown in Table 5. Most antigen-targeted functionalized NDDS have been shown to have anticancer 
effects and may also be used for NP-mediated drug delivery. Another option for CDs-mediated brain tumor cure is to target 
the TME. Using bevacizumab to target blood vessel growth, VEGF inhibitors have been shown to prolong the life of patients 
with GBM and have achieved a cure for recurrent GBM.132 In the early years, scholars confirmed the antiangiogenic effects 
of anti-VEGF aptamer modification of CDs in animal experiments.133

Table 4 Research Reports of Functionalized CDs Penetrating the BBB

Type Size Surface Conjugated BBB Model Refs

Nitrogen-doped-CDs 2.6nm Amine (-NH2), Carboxyl (-COOH) Transwell [119]

Yellow-emissive-CDs 3.4nm Amine (-NH2), Carboxyl (-COOH) Zebrafish [121]

EDA-T-CDs 6.2nm Amine (-NH2) Zebrafish [122]

Urea-T-CDs 4.1nm Amine (-NH2), Carboxyl (-COOH) Zebrafish [122]

Saccharide-based CDs 4.0nm Carboxyl (-COOH), Hydroxyl (-OH), Carboxylate Zebrafish/Rat [123]

Protein-based CDs 8.0nm Amine (-NH2) Mice [124]

Mn-doped CDs 4.0nm Amine (-NH2), Carboxyl (-COOH), Hydroxyl (-OH) Mice [125]

IL-6-CDs 3.3nm Amine (-NH2) Mice [112]

CDs 5.7nm Amine (-NH2) Rat [38]
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Targeting immune cells is also currently considered a new treatment option for GBM. At the same time, integrin families 
that target transmembrane proteins are also a potential target for targeted drug delivery systems against GBM. A pH- 
dependent cisplatin drug has been developed that releases integrins to target CDs and shows significant tumor cell apoptosis, 
and even complete decomposition or death in a lower pH environment, thus targeting numerous levels of the TME.137

CDs have the potential for broad application in active targeting strategies, but the specific potential targeting 
mechanism and regulation of signaling pathways are not currently very clear, which is also a basic research issue that 
we need to explore and elucidate in the future.

In-Brain Multiphoton Imaging
Biocompatible fluorescent agents are a key factor in real-time in vivo imaging. The optical features of CDs 
support their feasibility for fluorescence imaging of the brain microstructure. Mesoporous vaterite NPs have been 
encapsulated with CDs to investigate the potential of a biocompatible image and the imaging efficacy of CD- 
vaterite compounds absorbed by different cells has been demonstrated. The CD-vaterite compound injected into 
mice allowed the hemodynamics within brain blood vessels to be monitored through cranial windows. These 
experimental results manifest that the platform possesses the capacity to achieve high-resolution biocompatibility 
imaging with both sensing and drug delivery capabilities (Figure 17). Finally, the interaction between CD-vaterite 
composites with MDM-DA-231 and C6 glioma cell lines using single-photon and two-photon confocal microscopy 
was evaluated. Injections of the CD-vaterite complex allowed visualization for the first time of the brain vessels of 
mice. In this way, particles in the blood can be tracked, accelerating the tracing of blood vessels and the BBB. 
Furthermore, with further improvement, the method can investigate drug–cell interactions in real time.138

In summary, CDs and vaterite coupling have strong potential as a multifunctional tool for glioma research and 
treatment, and can distinguish tumor tissue from normal brain tissue through intraoperative fluorescence agent tracking, 
and can further evaluate the heterogeneity of the neovasculature in tumor tissue. However, further research is needed 
before entering preliminary clinical trials.

Carbon Dots Based Nanoparticles for Treatment and Diagnostics of Glioblastoma
GBM is the most difficult tumor to treat and eradicate. In addition to PDT and PTT, SDT is a novel therapeutic measure, 
whose principle is to activate an acoustic sensitizer through low-intensity ultrasound to destroy the tumor. A new type of 
acoustic sensitizer was developed and delved adopting Cu-doped carbon dots (Cu-CDs) for the sonodynamic therapy of 
GBM. Cu-CDs were skillfully synthesized adopting one-step hydrothermal method using IR775 (I) and copper acet-
ylacetonate. To assess the capability of Cu-CD, the therapeutic effects of Cu-CD were tested on glioma by establishing 
U87 an in situ tumor. Surprisingly, Cu-CDs crossed the BBB and enter glioma tissue, not only in that their small 
controllable particle size but also the negative charge of Cu-CDs helped to precisely permeate the BBB and enter brain 
tumors. During the whole treatment period, no death events were observed in Cu-CD+US group, indicating that SDT has 
a powerful anti-tumor effect. The weight of the experimental mice did not change significantly, confirming the bio-safety 
of SDT in the cure of brain tumors in animal models. With such a pronounced therapeutic effect, the researchers 

Table 5 Potential Antigens and Targeted Ligands for CD-Mediated Drug Delivery to 
GBM

Targeted Molecule Role Ligand Targeting Ligand(s) Ref.

IL13Rα2 Receptor IL13 Pep-1(peptide) [134]

EGFR Receptor EGF and neuregulin GE11 Peptide [135]

GD2 Ganglioside Not identified Anti-GD2 antibody [136]

Notes: GE11 (YHWYGYTPQNVI, Mw (Molecular weight) 1540 g/mol, IP 7.67) is a dodecapeptide whose 
excellent EGFR affinity was demonstrated. GD2: Disialoganglioside 2 is a highly glycosylated sphingolipid which 
has been shown to be highly expressed in high-grade gliomas. 
Abbreviations: EGFR, epidermal growth factor receptor; IL13, interleukin.
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speculated that Cu-CD+US may initiate Cu-induced apoptosis, known as cuproptosis, in tumor cells during therapy, 
hence enhancing the total therapeutic effect of a synergistic anti-tumor way that combines SDT with the coordinated 
process of Cu-induced cell death. In addition, immunofluorescence analysis showed that the Cu-CD+US group achieved 
a considerable tumor inhibiting effect, and this phenomenon ascribe copper doping, which helps to enhance the 
sonodynamic therapy of Cu-CDs and the powerful biological influence of copper precipitation, further triggering 
tumor cell apoptosis (Figure 18).139

The marked BBB permeability and potent anti-tumor effect of Cu-CDs highlight their potential capacity in the 
targeted therapy of GBM. In the future, multi-modal schemes can be attempted to conquer GBM, such as PDT+PTT 
+SDT. The progress of CDs nanotechnology not only brings new hope for cancer treatment but also provides new ideas 
and breakthroughs for future basic and clinical research.

Early diagnosis of GBM is crucial, and early treatment is also a feasible method to heighten the prognosis of patients. 
A strategic approach involves the use of antibodies (Abs) to monitor gliofibrillary protein (GFAP) in samples. GFAP is 
specific to the brain tissue and does not exist in normal peripheral blood. Therefore, anti-GFAP antibodies can be used for 
the early diagnosis of GBM and provide some indications for early treatment. Currently, researchers have used CD-based 
fluorescent antibody nanoprobes for the early diagnosis of GBM. Proteins and antibodies labeled with fluorescent CDs 
produce a robust, light-stable diagnostic probe suitable for clinical diagnosis. The scheme relies on the coupling of 
dibenzocyclooctyl (DBCO)-functionalized CD with azide protein and promotes the linking chemical reaction of 
acetylene-azide cycloaddition (SPAAC) by binding amide coupling and strain. The new antibody CD conjugate devel-
oped by this strategy can be used for the early diagnosis of patients with GBM by experimental verification 
(Figure 19).140 The diagnostic value of CDs is compared with existing MRI (Table 6).

CD-based NDDS is a key component in the treatment of GBM, and if it is diagnosed early, it may further improve the 
prognosis of the patient and improve the quality of life of patients. The researches manifest that CDs can be used not only 
for the multi-synergistic treatment of GBM, but also for the early diagnosis of GBM via proper identification. Given the 
greater confidence in CD materials, one day CDs may serve clinical patients and improve their survival.

Figure 17 Experimental concept.
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Summary of Drug Loading Rate of CDs
The drug loading rate of nanocarriers is crucial to the therapeutic effect, and we have summarized it as shown in Table 7 
in order to provide useful information.

Challenges and Opportunities of CDs-Based NPs Against GBM
Currently, CDs are continually served as sensors, probes, drug/gene carrier and imaging devices in every field.158,159 Bio- 
modification of CDs is also broadly used for therapy of malignant diseases, such as brain cancer, especially GBM.160 

However, bio-modification of CDs could make some cells delivery infeasible because of the toxicity of the raw materials 
used to synthesize CDs.161 The mechanism of CDs metabolism and body circulation are not well understood, which 
induce toxicity in the animal or cell model.162 Some vital and critical limitations impeding its further utilization in 
clinical medicine field include toxic effect, bio-compatibility, side effect, bio-availability, immune inflammatory response 
and biodegradability and so on.163,164 The synthesis of nontoxic CDs such as bio-waste-based CDs and so on may solve 
above issues, especially toxic reaction.165,166 Recently, the broader focus in adopting natural resources in CDs synthesis 
utilizing hydrothermal carbonization (HTC) method demands a minimal experimental equipment.167–169 Furthermore, the 
approval of the regulation of CDs in the published academic papers is relatively low. At least, it has not been clinically 
approved and accepted yet, and needed to make unremitting efforts to achieve by every researcher and explorer.

According to the plasticity and modification of nanomaterials, the functionalization and covalent attachment of the 
surface could modify the physical characteristics, which could have extremely influence on their photoluminescence 
characteristics. The in vitro results indicated the strong anti-tumor features, showing them as potential replacements for 
imaging and medical applications because of the impacts of these nano-CDs purposes. CDs-based NPs have undergone 
three technological change. The first time is that they experience a relatively short circulation and accumulate in the 
spleen. This is because they lack a certain specificity and are instead more easily swallowed by the immune system. 
The second time is that CDs-based NPs are protected from the immune system, possess better solubility, and are less easy 
to gather when modified with polymer chains, such as PEG. However, the EPR effect could trigger these NPs to stay in 
particular position of the tumor microenvironment, such as tumor imaging.170 Due to a leaky, increased vascular 
permeability vascular system and the deficiency of lymphatic drainage. NPs can concentrate a specific target or tissue 

Figure 18 Schematic diagram of Cu-CDs with a long-lived triple excited state (T1) with p-n type heterojunction for brain imaging and SDT.
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of tumor. Regrettably, this influence is multifactorial hinging on tumor characteristics, the patients, and the early stage or 
later stage of tumor. Third-time NPs were further modified with all kinds of conjugates, for instance, proteins, peptides, 
DNA or RNA and gene and so on. However, these adjustments could trigger fluorescence quenching, and thereby require 
to be strictly evaluated.

Figure 19 General Antibody-CD conjugation strategy. (A) Synthetic process of antibody-CD. (B) Reagents and conditions (From I to (V).

International Journal of Nanomedicine 2025:20                                                                                   https://doi.org/10.2147/IJN.S519733                                                                                                                                                                                                                                                                                                                                                                                                   7083

Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Table 6 Differences Between CDs Imaging and MRI

Type Principle Application Advantages Disadvantages Refs

CDs CDs is a kind of zero- 
dimensional photoluminescent 

nanomaterial with particle size 

less than 10 nm, which has the 
characteristics of adjustable 

fluorescence emission and 

excitation wavelength, good 
light stability, water solubility 

and biocompatibility, and low 

toxicity. CDs performs imaging 
by absorbing and emitting 

photons and is suitable for 

fluorescence imaging in living 
organisms.

CDs imaging is mainly used for 
biological imaging, especially 

fluorescence imaging in 

organisms. Due to its good bio- 
compatibility and low toxicity, 

CDs performs well in 

fluorescence imaging of cells 
and animals in vivo, suitable for 

staining and tracking individual 

organelles inside cells. 
At present, it is mainly used in 

basic research and pre-clinical 

trials, and is in the exploration 
and research stage.

High sensitivity, good 
biocompatibility and low 

toxicity, suitable for real- 

time monitoring in living 
cells and animals.

Tissue penetration is weak and 
imaging effectiveness is limited 

for deeper tissues or larger 

organisms.

[141]

MRI MRI uses the principle of 
nuclear magnetic resonance to 

create an image of the internal 
structure of an object by 

applying radio frequency pulses 

and detecting the energy signal 
released by hydrogen atoms. 

MRI uses gradient magnetic 

fields and radiofrequency waves 
to cause hydrogen atoms in the 

body to resonate, and 

constructs images by receiving 
these energy signals.

MRI is widely used in the 
detection and early diagnosis of 

various diseases, especially in 
the imaging of the nervous 

system, skeletal system and soft 

tissue. MRI can provide high- 
resolution three-dimensional 

images, which is suitable for the 

diagnosis of tumors, trauma, 
vascular diseases, etc. 

It is mainly used in clinic.

High spatial resolution, 
capable of providing 

detailed three- 
dimensional images, 

suitable for imaging 

complex structures.

The imaging time is longer, the 
device costs more, and it needs 

to be used with caution in 
certain populations, such as 

pregnant women and children.

[142]

Table 7 Summary of Drug Loading Rate of CDs

Type Size Surface Drug DLR (wt%) Model Refs

DOX-CDs N/A Physisorbed through 
interactions such as π−π 

stacking, hydrophobic and 

van der Waals interactions

DOX 6.0 A549 [143]

CA-CD 220 ± 25.99nm Hydrogen bonding b-TC 77 N/A [144]

CDs-Oxa 2.71 ± 0.43nm Condensation reaction 

between the amino groups 

and the carboxyl group

Oxa(IV)- 

COOH

4.2 L929, HepG2 [145]

CDs−Pt(IV)@PEG 125nm Intriguing charge conversion 

to a cationic polymer

Pt(IV) 6.7 A2780 [146]

CDsRGD-Pt(IV)-PEG 31nm Intriguing charge conversion 

to a cationic polymer

Pt(IV) 4.1 MDA-MB-231 

MCF-7 cells

[147]

(Continued)
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NIR emission of CDs are of extraordinary interest. In fact, the less near-infrared light is absorbed, the deeper it 
penetrates the tissue, up to a depth of about a few centimeters. However, due to reduced absorption coefficients of scalp, 
subcutaneous adipose tissue and skull, as well as oxygenated and hypoxic blood, tissue self-fluorescence is significantly 
reduced in the near-infrared window, especially between 650 and 950nm. Therefore, NIR CDs are attractive for 
biological imaging, especially for tumor imaging during surgical removal of GBM.170 At present, researchers are 
actively exploring and studying.

In addition, one of the biggest concerns for researchers is security, especially in medical applications. First of all, it is 
necessary to go through large-scale basic tests to verify the toxicity of CDs, and how to reduce the potential toxicity of CDs 
by physical or chemical modification; Secondly, after modification, CDs-based NPs need to be evaluated again whether it 
has life-threatening toxicity, whether it has inevitable side effects, even if it has certain side effects, once the toxic side 
effects occur, how can we use other drugs to rescue or combat? This is also a key issue that we cannot avoid; Similarly, 
ethical review, inspection by quality inspection department, approval by health department, and various problems in the 
production process all require strict control by the administrative department, and no errors are allowed. Finally, entering 

Table 7 (Continued). 

Type Size Surface Drug DLR (wt%) Model Refs

PNHCDs-DOX N/A Interactions such as 

electrostatic attraction, π−π 
stacking, van der Waals force, and 

hydrophobic interaction

DOX 35.43 HepG2, SiHa 

MCF-7

[137]

CD–DOX 

conjugates

N/A Amines bind with the 

carboxylic acid via 

electrostatic interactions or 
hydrogen bonding.

DOX N/A HepG2 cells 

HL-7702 cells

[148]

P-CDs/HA-Dox 15–30nm Electrostatic self-assembly DOX 6.3 HeLa 
NIH-3T3

[149]

IL-OCDs/Cur N/A Hydrophobic interaction Cur 69.2 HeLa [150]

DOX@ACD 131±3.7nm Amphiphilic interaction DOX 14.2±0.003 A549 [151]

FA-Gd@CQDs/ 

DOX

N/A π−π stacking and 

hydrophobic interactions

DOX 74.5±3.96 HeLa, HepG2, and 

HeLung cell

[152]

pCBMA 

(CD-D/DOX)

183 ± 27nm Electrostatic interactions and 

π−π stacking

DOX·HCl 96.9 4T1 and HepG2 

cells

[153]

CDs-epi 2.6nm Conjugated Epirubicin N/A SJGBM2 

CHLA200 
CHLA266 

U87

[154]

p(CAT2-CD-BA1) 3.79nm Noninvasive adsorption DOX 84.28 HeLa [115]

CD-PEI-DOX 222.5±20.1nm Electrostatic interactions DOX 35.88 L02, MHCC-97L, 
Hep3B

[155]

DS-NA 7235±2.9nm Hydrophobicity interaction DOX 23.5 MDA-MB-435S, 
4T1

[156]

APCDs@Fe/ 
DOX-LOS

106±1.5nm π−π stacking interaction with 
large p-conjugated structure 

of APCDs

DOX 30.3±1.3 4T1 tumorbearing 
mice

[157]

Abbreviation: DLR, drug loading rate.

International Journal of Nanomedicine 2025:20                                                                                   https://doi.org/10.2147/IJN.S519733                                                                                                                                                                                                                                                                                                                                                                                                   7085

Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



the clinical stage, it is more necessary to recruit more patients to participate in the evaluation of the safety of CDs-based 
nanodrug delivery system, so that it is possible to truly enter the clinical treatment stage. For the above problems, we need 
to work hard to conquer and verify step by step. However, we firmly believe that the future of CDs must be bright.

Conclusions and Future Perspectives
GBM remains a malignant tumor that cannot be completely conquered in the world and with high morbidity and 
mortality rates worldwide that currently can not be completely conquered. Recently, the introduction of NDDS, as 
a novel treatment method, has been favored by researchers, especially with regard to CDs because of their strengths of 
cheap cost, high repeatability, better bio-compatibility, low toxicity, high-definition imaging, and powerful modification 
of tumor-specific molecular targets. This area of continues to be a research hot spot and is garnering increasing interest. 
The excellent characteristics of CDs make it a suitable treatment strategy for GBM, especially when compared with other 
NDDS, for instance, exosomes, liposomes, polydopamine, and gold NPs, nowadays, which are widely used for drug 
delivery vectors in animal models.171 Compared with the drug delivery systems mentioned above, a notable property of 
CDs are their smaller size, which helps to penetrate the BBB and even the BBTB more rapidly and efficiently; thus 
allowing easier access to tumor cells for effective killing.172,173 The size of the NPs is of particular concern to researchers 
because larger NPs may accumulate in important off-target tissues or organs, such as the spleen and liver, increasing their 
toxicity. Although, smaller NPs can be cleared more efficiently by the kidneys.173 In addition, CDs can be organically 
modified and readily modified with tumor-targeting ligands and varieties of CT drugs, genes, or immune cells57,115 

leading to specific, receptor- or transporter-mediated targeted therapy with more efficient tumor cell uptake and lowered 
off-target effects, which are critical for the treatment of GBM. In future, the characterization and synthesis of CDs and 
the availability of selective treatment options will favor the practical application of CDs in clinical efforts against GBM.

Abbreviations
BBB, Blood-brain barrier; BBTB, Blood–brain tumor barrier; CD, Carbon dots; EPR, Enhanced permeability and 
retention; NDDS, Nano drug delivery systems; OS, Overall survival; QD, Quantum dots; RCD, Red carbon dots; 
ROS, Reactive oxygen species; TfR, Transferrin receptors.
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