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Purpose: To establish prediction models using Shapley Additive exPlanations (SHAP) and multiple machine learning (ML) 
algorithms to identify clinical features influencing hepatic arterial infusion chemotherapy (HAIC) resistance and survival in patients 
with hepatocellular carcinoma (HCC).
Patients and Methods: We recruited 286 patients with unresectable HCC who underwent HAIC. Patients were divided into training 
and validation datasets (7:3 ratio). eXtreme Gradient Boosting (XGBoost) was used to build the preliminary resistance prediction 
model. The SHAP values explained the importance of the clinical features. Recursive Feature Elimination with Cross-Validation 
(RFECV) was used to select the optimum number of features. Seven ML methods were used to construct further resistance prediction 
models, and ten ML algorithms were employed to establish the survival prognosis models.
Results: The areas under the curve (AUC) of the XGBoost model were 1.000 and 0.812 for the training and validation groups, 
respectively. SHAP identified 27 of the 38 clinical features affecting resistance, with pre-HAIC treatment being the main factor. 
RFECV showed the best model performance with six features (pre-HAIC treatment, tumor size, HBV DNA, alkaline phosphatase 
(AKP), prothrombin time (PT), and portal vein tumor thrombosis (PVTT)). Random Forest had the best performance among the seven 
ML algorithms (AUC=0.935 for training, AUC=0.876 for validation). The combination of Stepcox [forward] and Gradient Boosting 
Machine was the best for predicting survival (AUC=0.98 in training, AUC=0.83 in validation). Based on the above clinical 
characteristics, patients were categorized into high-risk and low-risk groups based on the median risk score, and it was found that 
these characteristics also performed well in the prognostic model for predicting the survival of patients with HCC.
Conclusion: Pre-HAIC treatment, tumor size, HBV DNA, AKP, PT, and PVTT are effective predictors of post-HAIC resistance and 
survival in patients with unresectable advanced HCC.
Keywords: interpretable AI, treatment response prediction, prognostic modeling, hepatocellular carcinoma outcomes

Introduction
Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, is the third leading cause of cancer- 
related death globally. It is estimated that approximately 850,000 new cases emerge annually.1 While liver transplantation 
is theoretically an optimal treatment approach, its implementation is hindered by several factors, including the shortage 
of liver donors and the physical condition of the patients.2 Consequently, liver resection has become the standard 
treatment for HCC. However, a substantial number of patients do not qualify for surgery due to conditions such as 
multiple tumors or liver dysfunction.3 For those with unresectable or advanced HCC, multitargeted tyrosine kinase 
inhibitors (TKIs) such as sorafenib and lenvatinib have been regarded as the standard first-line systematic treatment.4 In 
recent years, immune checkpoint inhibitors (ICIs) have revolutionized HCC treatment. The combination of atezolizumab 
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(anti-programmed death-ligand 1, anti-PDL1) and bevacizumab (anti-vascular endothelial growth factor) has demon-
strated superior efficacy in improving overall survival (OS) in patients with HCC, leading to its approval by the Food and 
Drug Administration (FDA).5,6 Additionally, the combination of sintilimab (anti-PD1) and IBI305 (a bevacizumab 
biosimilar) has also shown remarkable therapeutic effects in clinical trials.7 Despite significant progress in ICIs therapy 
across multiple cancers and efforts to enhance the clinical benefits of HCC immunotherapy, the immune response 
remains limited, and the majority of patients still face drug resistance and disease progression.8,9

Hepatic arterial infusion chemotherapy (HAIC) serves as an alternative treatment for intermediate and advanced 
HCC, utilizing catheter technology to deliver chemotherapeutic drugs directly to tumors via the hepatic artery.9,10 

Clinical trials have shown that the combination of HAIC and FOLFOX (fluorouracil, leucovorin, and oxaliplatin) 
significantly enhanced survival rates in patients with unresectable HCC when compared to transarterial chemoemboliza-
tion (TACE).11,12 Furthermore, research conducted by Zhao et al revealed that OS in the HAIC-FOLFOX group was 
nearly twice as favorable as that in the sorafenib group, with a median OS of 10.8 months versus 5.7 months (hazard ratio 
[HR] 0.343; 95% confidence interval [CI], 0.219 to 0.538; P < 0.001).13 In addition to these findings, HAIC has also 
achieved promising results when used in conjunction with targeted immunotherapy.14,15 In summary, HAIC is an 
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effective therapeutic option for patients with advanced unresectable HCC. However, owing to disease progression such as 
metastasis and tumor enlargement, there remains a certain probability of resistance in patients following HAIC treatment.

In the past decade, machine learning (ML) has experienced a significant surge in the medical field, particularly in 
oncology, where it has been utilized to discern data patterns and structures for disease diagnosis, prognosis, and treatment 
recommendations.16 Chen et al employed ML methods (LASSO, random forest (RF), SVM-RF, and eXtreme Gradient 
Boosting (XGBoost)) to differentiate various stemness classifications of HCC patients, thereby predicting prognosis and 
aiding in guiding clinical immunotherapy and targeted therapy strategies.17 XGBoost, a novel ML algorithm, is an 
ensemble learning algorithm based on gradient lifting decision trees. It outperforms other algorithms by continuously 
iterating and optimizing the loss function to progressively reduce the residual error.18 Other ML methods, such as support 
vector classification (SVC), multilayer perceptron (MLP), linear discriminant analysis (LDA), have also been applied in 
breast cancer, esophageal cancer and gastric cancer.19,20 However, the “black box” nature of ML often makes predictions 
ambiguous, as the importance of the features included is non-transparent, limiting the interpretability of ML methods.21 

Consequently, SHapley Additive exPlanations (SHAP) has been introduced to interpret the results of ML models. SHAP 
elucidates the importance of each feature in an ML model through visualization and quantification, thereby enhance the 
credibility of the model.22 The core concept of SHAP is to treat model predictions as a cooperative game, with each 
feature acting as a participant. The SHAP can quantify the significance of each feature by calculating its marginal 
contribution to the final prediction.23

Most current clinical trials have focused on the response to HAIC in combination with other treatments, but there is 
a paucity of reports predicting the probability of resistance and survival of patients with unresectable HCC following 
HAIC surgery. In this study, we applied the SHAP values to interpret the XGBoost model and predict the efficacy and 
survival prognosis of patients with HCC following HAIC using multiple ML algorithms.

Materials and Methods
Patients
This retrospective study was conducted at Zhongshan Hospital of Fudan University between May 2019 and March 2022, 
enrolling patients with unresectable HCC who had undergone HAIC treatment. The key inclusion criteria were as 
follows: 1) all patients had received at least one cycle of HAIC; 2) Child-Pugh grade A or B; 3) Eastern Cooperative 
Oncology Group Performance Status of 0–1; 4) adequate renal function, defined as serum creatinine ≤ 2 mg/dL; and 5) 
normal blood routine, including white blood cell count ≥ 3.0 × 109/L, platelet count ≥ 50 × 109/L, and hemoglobin  level 
≥ 100 g/L. Additionally, patients were excluded if they 1) had severe cardiovascular and cerebrovascular disease, 2) had 
other malignancies besides HCC, 3) had unavailable clinical medical records. For construction of survival models, those 
who lacked survival data were excluded. Patients who were followed-up for less than 3 months or who had visited other 
hospitals during follow-up were excluded. This study was conducted in accordance with the institutional ethics 
committee of Zhongshan Hospital of Fudan University and the Helsinki Declaration (ethics review number KY2022078).

Data Collection
We collected comprehensive clinical data including age, sex, pre-HAIC treatment, perfusion chemotherapy regimen, 
tumor number, maximum tumor size, thrombus presence, extrahepatic metastasis, tumor stage, liver function, and other 
relevant parameters. For a valid and prognostic assessment of all patients, we used disease progression (resistance/ 
ineffective) and OS as key outcome indicators. In this study, resistance to HAIC therapy was defined by disease 
progression (PD) following treatment, assessed through the following criteria: 1) RECIST criteria: Confirmed PD on 
two consecutive imaging assessments, excluding confounding factors (eg, post-procedural inflammation or necrosis). PD 
was defined as a ≥ 20% increase in the diameters of target lesion or the appearance of new lesions; 2) Serological 
progression: In patients with elevated baseline alpha-fetoprotein (AFP), a persistent rise in AFP levels after 2–3 treatment 
cycles; 3) Clinical deterioration: An increase in Child-Pugh score or development of jaundice, ascites, or hepatic 
encephalopathy. Resistance was considered if any one of the above criteria was met.
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Application of XGBoost, Logistic Regression and SHAP
We initially divided the data into a training set and a validation set at a 7:3 ratio, integrating all clinical baseline features 
into the XGBoost model for predictive model training. Subsequently, we employed SHAP to interpret the XGBoost- 
trained model and leveraged it to elucidate the importance of each feature within the model and its impact on clinical 
outcomes. SHAP values provide an approach for interpreting predictive outcomes by quantifying the contribution of each 
feature to the model’s predictions, thereby enabling a more intuitive comprehension of the model’s specific predictions. 
Logistic regression was implemented via the R package “survival”, XGBoost was implemented using the R package 
“XGBoost”, and SHAP was executed via the “shapviz” package in R, version 4.3.2.

Feature Selection
Recursive Feature Elimination with Cross-Validation (RFECV) is a robust feature-selection tool that integrates RFE with 
CV to ascertain the optimal number of features. The RFE iteratively selects features by considering progressively smaller 
sets and systematically eliminating the least important sets. RFECV enhances this process by performing RFE within 
a CV loop, ensuring that the reduction in features does not compromise model performance. The process stops when 
further feature reduction leads to a decline in the performance. The dataset was randomly split into 10 equal subsets. 
Initially, all features were included in the model. Then, based on feature importance, the least important features were 
iteratively removed. In each iteration, one-fold was used for validation and the remaining nine for training. This was 
repeated 10 times, with each fold serving once as the validation set. By assessing model performance across iterations, 
the optimal feature subset was identified. RFECV was implemented using the “sklearn” library in Python version 3.7, 
which provides a systematic approach for feature selection that balances model complexity with predictive accuracy.

Construction of Resistance Prediction Models
After partitioning the data into training and validation sets at a 7:3 ratio, we constructed resistance prediction models for 
patients undergoing HAIC treatment. We used a total of 7 ML methods: “Naïve Bayes (NB)”, “svmRadialWeights”, 
“RF”, “kk-nearest neighbor (kknn)”, “Adaptive Boosting (Adaboost)”, “LogitBoost” and “cancerclass”. These models 
are based on the features selected through the REFCV. Following the data partitioning, we employed 10-fold cross- 
validation via the R package “caret” to train and evaluate these models, identifying the optimal one. Subsequently, the 
sensitivity of the models was assessed using a Receiver Operating Characteristic (ROC) curve. This process was 
implemented using the R package “mime” in R, version 4.3.2.

Construction of Survival Prediction Models
Using the same set of features, we evaluated their performance in survival prediction models. We employed an ensemble 
of 10 ML algorithms (CoxBoost, Lasso, Stepwise Cox, plsRcox, Ridge, Enet, SurvivalSVMS, Gradient Boosting 
Machine (GBM), SuperPC, and RSF) to construct the survival models. Subsequently, all patients in the training set 
were stratified into high- and low-risk groups based on the median risk score. Kaplan-Meier (K-M) survival analysis was 
conducted to compare the OS between the high-risk and low-risk groups. This analysis was performed using the 
R package “mime” in R, version 4.3.2. In addition, survival risks were calculated using CoxPH function from the 
R package “survival”, and the forest plot for visualization were created with the R package “forestploter”.

Statistical Analysis
Continuous variables that followed a normal distribution were reported as mean ± standard deviation (SD). For 
continuous variables that did not follow a normal distribution, the data were reported as medians, and normality was 
verified through histograms. Parametric continuous variables were compared using Student’s t-test, while non-parametric 
variables were analyzed using the Mann–Whitney U-test or Kruskal–Wallis test. Categorical variables are represented as 
counts and percentages and were analyzed using χ²-tests or Fisher’s exact tests when necessary. Survival curves were 
plotted using the K-M method and compared using the multivariate Log rank test. The HR for the events was calculated 
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using the Cox proportional hazards model. All statistical tests were two-tailed, and statistical significance was set at P < 
0.05. All analyses and calculations were performed using Python version 3.7 and R version 4.3.2.

Results
Clinical Characteristics
A total of 461 patients with unresectable HCC who underwent HAIC were included in the study. We excluded those who 
were followed up for less than three months or who had visited other hospitals during follow-up. Patients with 
incomplete clinical data were also excluded. A total of 286 participants were enrolled in this study. The clinical 
characteristics of the study participants are summarized in Table 1.

Table 1 Clinical characteristics of the study population

Characteristic Effective  
(N=208)a

Resistance  
(N=78)a

p-valueb

Age (years) 56 (49, 65) 58 (52, 63) 0.6

Gender 0.01

Male 186 (89%) 77 (99%)

Female 22 (11%) 1 (1.3%)

Pre_HAIC treatment <0.001

Ablation 26 (13%) 12 (15%)

Hepatectomy 5 (2.4%) 33 (42%)

No 82 (39%) 5 (6.4%)

TACE 95 (46%) 28 (36%)

HAIC times >0.9

1 82 (39%) 34 (44%)

2 59 (28%) 25 (32%)

3 39 (19%) 11 (14%)

4 15 (7.2%) 5 (6.4%)

5 4 (1.9%) 1 (1.3%)

>5 9 (4.4%) 2 (2.6%)

Initial chemotherapy 0.4

Full dose 53 (25%) 24 (31%)

Reduced dose 155 (75%) 54 (69%)

Combine targeted therapy 107 (51%) 35 (45%) 0.3

Combine immunotherapy 74 (36%) 21 (27%) 0.2

After_HAIC treatment 0.005

Ablation 2 (1.0%) 1 (1.3%)

Comprehensive cancer therapy 26 (13%) 6 (7.7%)

(Continued)
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Table 1 (Continued). 

Characteristic Effective  
(N=208)a

Resistance  
(N=78)a

p-valueb

Hepatectomy 1 (0.5%) 0 (0%)

No 151 (73%) 46 (59%)

TACE 28 (13%) 25 (32%)

Lesion number 0.083

1 25 (12%) 3 (3.8%)

2 5 (2.4%) 2 (2.6%)

3 178 (86%) 73 (94%)

Tumor size (cm) 8.6 (6.0, 12.7) 4.7 (3.0, 6.8) <0.001

Branchor/hepatic vein tumor thrombus (+) 135 (65%) 27 (35%) <0.001

Portal vein tumor thrombus (+) 89 (43%) 14 (18%) <0.001

Superior mesenteric vein tumor thrombus (+) 2 (1.0%) 1 (1.3%) >0.9

Lymph node metastasis (+) 76 (37%) 23 (29%) 0.3

Pulmonary metastasis (+) 27 (13%) 12 (15%) 0.6

Bone metastasis (+) 6 (2.9%) 4 (5.1%) 0.5

Adrenal metastasis (+) 11 (5.3%) 2 (2.6%) 0.5

HBsAg (+) 170 (82%) 65 (83%) 0.8

HBeAb (+) 160 (77%) 60 (77%) >0.9

HBcAb (+) 197 (95%) 75 (96%) 0.8

HBV DNA (10^2) 78 (0, 1,056) 0 (0, 102) <0.001

Anti_virus treatment 160 (77%) 66 (85%) 0.2

HCV (+) 7 (3.4%) 0 (0%) 0.2

AFP (µg/L) 1,009 (48, 18,350) 134 (7, 6,680) 0.004

APT (mAU/mL) 11,600 (1,210, 60,750) 2,565 (120, 30,900) 0.001

PT (s) 13.10 (12.30, 13.80) 12.40 (11.90,13.00) <0.001

PLT (10^9/L) 149 (101, 216) 123 (98, 165) 0.007

Neutrophil (10^9/L) 3.30 (2.40, 4.60) 3.05 (2.10, 4.00) 0.082

Lymphocyte (10^9/L) 1.05 (0.70, 1.50) 1.10 (0.90, 1.50) 0.094

Monocyte (10^9/L) 0.49 (0.34, 0.67) 0.43 (0.33, 0.58) 0.12

TB (μmol/L) 16 (11, 24) 13 (10, 20) 0.006

DB (μmol/L) 6.2 (3.9, 10.0) 3.9 (2.5, 6.5) <0.001

ALT (U/L) 40 (28, 58) 39 (26, 53) 0.5

AST (U/L) 63 (43, 109) 47 (31, 79) 0.003

(Continued)
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Clinical Feature Explanation Based on SHAP
XGBoost and Logistic Regression Prediction Model
We divided the entire patient cohort into training and validation datasets in a 7:3 ratio. XGBoost was trained using 38 candidate 
variables, without feature elimination or extraction. Figure 1A shows the performance of the model, with an area under curve 
(AUC) of 1.000 for the training set and an AUC of 0.812 for the validation set. This indicates that the XGBoost-trained prediction 
model exhibits excellent sensitivity and accuracy when all the features are incorporated. In addition, the AUC of the prediction 
model constructed by logistic regression was 0.731 in the training group and 0.727 in the validation group (Figure 1B). This 
means that compared with the traditional prediction model, the XGBoost model has better performance.

Feature Explanation Based on SHAP
Following training of the prediction model using XGBoost, we applied SHAP values to interpret the significance of each 
feature within the model. This allowed us to visually assess the impact of each feature on patient resistance outcomes and 
to quantify the importance of these features. The SHAP summary plot (Figure 2A) ranks the absolute SHAP values from 
highest to lowest for each factor, presenting 27 influential features. Pre-HAlC treatment, major tumor size, alkaline 
phosphatase (AKP), direct bilirubin (DB), alanine aminotransferase (ALT), neutrophil, total bilirubin (TB), platelet 
(PLT), and C-reactive protein (CRP) levels emerged as the primary factors influencing the model’s output results. 
Figure 2B shows the SHAP values for each sample, with each dot representing an individual sample. Yellow indicates 
a higher SHAP value, whereas purple indicates a lower value. The SHAP force plot (Figure 2C) revealed how various 
baseline clinical features collectively affected the prediction outcomes. It not only indicates whether clinical features 
promote or inhibit resistance but also provides cut-off values for each variable. For continuous variables, a positive 
SHAP direction (indicated by yellow in Figure 2C, such as albumin (ALB), HBV DNA, neutrophil, and lymphocyte) 
implies that if the feature value exceeds the threshold, the model is more likely to predict HAIC resistance. Conversely, 
a negative direction (indicated by purple in Figure 2C, such as CRP, major size, AFP, ALT, AKP, TB, prothrombin time 
(PT), AST, r_GT/GGT, and monocyte) suggests that if the variable surpasses the threshold, the model is more likely to 
predict therapeutic efficacy. Regarding categorical variables, including pre-HAIC treatment, initial chemotherapy dose, 
portal vein tumor thrombosis (PVTT), branch or hepatic vein tumor thrombus after_HAIC treatment, targeted therapy, 
and lymph node metastasis, Figure 2C highlights the conditions that have the most significant impact on the outcome. 
Specifically, HAIC was more likely to be less effective in patients who had undergone hepatectomy (pre_HAIC 
treatment=4) prior to HAIC. The probability of effectiveness is highest when the initial chemotherapy dose is full 
dose (initial chemotherapy dose = “0”), and there are no portal vein and other tumor thrombi present.

The SHAP dependence plot (Figure 3) illustrates the relationship between the SHAP values and numerical values of 
the four continuous variables and two categorical variables. Pre_HAIC treatment, PVTT, tumor size, HBV DNA load, PT 
and AKP levels significantly impact HAIC treatment effectiveness. The analysis reveals that smaller tumors exhibit high 
positive SHAP values, suggesting potential treatment resistance. In contrast, when tumor size surpasses 7.1 cm, the 
SHAP values become negative, indicating improved treatment efficacy. Lower HBV DNA load means high positive 

Table 1 (Continued). 

Characteristic Effective  
(N=208)a

Resistance  
(N=78)a

p-valueb

AKP (U/L) 161 (125, 237) 115 (93, 184) <0.001

r-GT/GGT (U/L) 178 (106, 312) 110 (43, 174) <0.001

ALB (g/L) 39.0 (35.0, 42.5) 40.0 (37.0, 44.0) 0.078

CRP (mg/L) 13 (5, 35) 6 (3, 17) 0.001

Notes: aMedian (Q1, Q3); n (%), bWilcoxon rank sum test; Pearson’s chi-square test; Fisher’s exact test. 
Abbreviations: HBsAg, Hepatitis B surface antigen; HBeAg, Hepatitis B e antigen; HBcAg, hepatitis B core antigen; HCV, Hepatitis 
C virus; AFP, Alpha-fetoprotein; APT, Abnormal prothrombin; PT, Prothrombin time; PLT, Platelet; TB, Total bilirubin; DB, Direct 
bilirubin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; AKP, Alkaline Phosphatase; r-GT/GGT, gamma-glutamyl 
transferase; ALB, albumin; CRP, C Reactive protein.
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SHAP values and likely resistance, while higher HBV DNA level leads to negative SHAP values, implying effective. 
Meanwhile, samples with higher PLT levels and elevated HBV DNA load show lower SHAP values, suggesting better 
HAIC response. Low PT values associated with positive SHAP values, indicating reduced efficacy. However, when PT 
exceeds 14s, SHAP values shift to negative, reflecting improved outcomes. In addition, larger tumor sizes and elevated 
PT values predict negative SHAP values, closely linked to HAIC effectiveness. Low AKP aligns with low positive SHAP 
values (resistance), whereas levels exceeding 150 U/L switch SHAP values to negative (effective response). Notably, 
combined high PLT and high AKP levels further reinforce negative SHAP values, underscoring HAIC sensitivity. All 
pre_HAIC therapies exhibit positive SHAP values, with hepatectomy (treatment 4) showing the highest values, 
suggesting strong resistance signals. Absence of PVTT corresponds to low negative SHAP values (favorable response), 

Figure 1 The ROC curves of the prediction model based on XGBoost and logistic regression (without feature selection). 
Notes: (A) The ROC curves of the model based on XGBoost. (B) The ROC curves of the model based on logistic regression. 
Abbreviations: ROC, Receiver Operating Characteristic; XGBoost, eXtreme Gradient Boosting.
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Figure 2 SHAP explanation based on XGBoost. 
Notes: (A) The SHAP summary plot displays the clinical baseline features that most significantly influence the recurrence outcome of HAIC post-surgery using the XGBoost model, ranked from highest to lowest. (B) The position of 
each feature is arranged in descending order of importance based on the model predictions, with each dot representing a patient sample, where purple indicates a lower SHAP value, and yellow indicates a higher SHAP value. (C) The 
SHAP force plot reveals how various clinical baseline features collectively affect the prediction outcome, allowing a clear understanding of the specific contribution of each feature to the prediction results. 
Abbreviations: SHAP, SHapley Additive explanations; XGBoost, extreme Gradient Boosting; REFCV, Recursive Feature Elimination with Cross-Validation; HBsAg, Hepatitis B surface Antigen; HBeAg, Hepatitis B e antigen; HBcAg, 
Hepatitis B core antigen; HCV, Hepatitis C virus; AFP, Alpha-fetoprotein; APT, Abnormal prothrombin; PT, Prothrombin time; PLT, Platelet; TB, Total bilirubin; DB, Direct bilirubin; ALT, Alanine aminotransferase; AST, Aspartate 
aminotransferase; AKP, Alkaline phosphatase; r-GT/GGT, gamma-glutamyl transferase; ALB, albumin; CRP, C-reactive protein.
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Figure 3 The dependence plots of six variables based on SHAP values. 
Abbreviations: SHAP, SHapley Additive explanations; PT, Prothrombin time; AKP, Alkaline phosphatase.
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while PVTT presence elevates SHAP values to positive (resistance). AKP levels are particularly sensitive to PVTT 
status, serving as a potential biomarker for resistance risk. These insights underscore the importance of considering these 
clinical features and their interactions with other clinical indicators when predicting HAIC therapeutic efficacy.

Feature Selection and Construction of Prediction Models
Feature Selection Based on RFECV
Figures 2 and 3 present a preliminary analysis of all included variables. However, the accuracy of the algorithm is 
questionable because no feature selection is performed. Subsequently, we applied the RFECV method to determine the 
optimal number of clinical features for predicting the outcomes. As shown in Figure 4A, the accuracy of the model 

Figure 4 Clinical baseline feature selection and prediction model construction. 
Notes: (A) Feature selection based on RFECV. (B) AUC of the prediction models built based on seven ML methods. (C) The ROC curve of prediction models built with 
“nb”, “svmRadialWeights”, “RF”, “kknn”, “adaboost”, “LogitBoost”. 
Abbreviations: AUC, Area Under the Curve; ML, Machine learning; RFECV, Recursive Feature Elimination with Cross-Validation; ROC, Receiver Operating Characteristic; 
NB, Naïve Bayes; RF, Random Forest; kknn, k-nearest neighbor; Adaboost, adaptive boosting.
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peaked when six features were included (HBV DNA, tumor size, AKP, PT, PVTT, and pre-HAIC treatment), with a mean 
test accuracy of 0.83.

Construction of Prediction Models via Different ML Methods
Next, by leveraging the features identified by RFECV, we applied seven ML algorithms to predict the resistance 
probability of patients with HCC undergoing HAIC. As depicted in Figure 4B and C, the AUC of different models 
are as follows: RF has a training AUC of 0.935 and a testing AUC of 0.876; Adaboost has a training AUC of 0.918 and 
a testing AUC of 0.865; LogitBoost has a training AUC of 0.925 and a testing AUC of 0.838; kknn has a training AUC 
of 0.908 and a testing AUC of 0.802; svmRadialWeights has a training AUC of 0.808 and a testing AUC of 0.759; and 
NB has a training AUC of 0.801 and a testing AUC of 0.762. This indicates that the inclusion of these characteristics for 
predicting resistance probability is both accurate and sensitive. The RF algorithm clearly outperformed the other 
algorithms in predicting the outcome (AUC=0.935 in the training group and 0.876 in the validation group).

Construction of Survival Models Based on Screening Results
The six clinical features selected by RFECV showed remarkable performance in predicting the risk of resistance 
following HAIC. Since the response of patients to HAIC treatment is closely related to survival, we integrated 10 
distinct ML methods, namely CoxBoost, Lasso, stepwise Cox, plsRcox, Ridge, Enet, SurvivalSVM-GBM, SuperPC, and 
RSF, to train a survival model by utilizing these features. After excluding patients lacking survival information, a total of 
260 patients were included in the survival models. Figure 5 illustrates the C-index for predicting patient survival in the 
training, validation, and entire cohorts after combining the two ML methods. We observed that the combination of 
Stepcox [forward] and GBM yielded the highest C-index (training set, 0.98; validation set, 0.83; whole cohort, 0.905), 
indicating the best accuracy (Figure 6A). In addition, we obtained the risk score for each patient using these two 
algorithms. Subsequently, we stratified the training set into high- and low-risk groups based on the median risk score. 
Thereafter, we performed K-M survival analysis to compare the OS time between the two groups. The results 
demonstrated that Stepcox [forward] and GBM enabled the six clinical factors to predict the prognosis of patients 
following HAIC treatment (Figure 6B). These findings indicate that pre-HAIC treatment, tumor size, HBV DNA, AKP, 
PT, and PVTT can not only predict the likelihood of resistance after HAIC but also predict the survival prognosis of these 
participants.

To quantify the survival risk of HCC patients, we utilized the CoxPH function and adopted a forest plot to visualize 
the risk. As shown in Figure 7, we incorporated six characteristics into the model and found that patients who had 
undergone hepatectomy before HAIC and whose tumor size≥7.1 cm had a better survival prognosis, while those with 
PVTT, HBV in the replication stage, PT≥14 s, and AKP≥150 U/L had a worse survival prognosis.

Discussion
In this study, we harnessed the SHAP value and several ML algorithms to predict the resistance and survival prognosis of 
patients with unresectable HCC following HAIC. Additionally, combining SHAP with RFECV improves the accuracy of 
the model and makes the feature selection process more transparent by revealing how features function in the model. Our 
findings highlight the importance of these analytical techniques in identifying the pivotal features that significantly affect 
patient outcomes.

HAIC has emerged as a promising treatment option for HCC, particularly in patients with advanced or unresectable 
disease. This strategy allows a higher concentration of drugs to be delivered to the tumor site, thereby increasing the local 
cytotoxic effect while minimizing systemic toxicity.9 Despite the efficacy of HAIC in combination therapies, post-
operative disease progression remains a concern.12 At this time, predicting the probability of therapeutic resistance 
through patient clinical indicators become crucial, facilitating the clinical development of prevention measures.

ML models are increasingly applied across various domains, including HCC.24 For instance, a recent study by Bo 
et al also utilized ML to predict the response to lenvatinib monotherapy for unresectable HCC, emphasizing the 
importance of integrating multiple clinical and radiomic features.25 However, the interpretability of these models has 
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become a significant research focus. SHAP, a model interpretation method grounded in game theory, offers a unified and 
effective framework to explain model predictions.

Initially, we used XGBoost to train a preliminary predictive model for the probability of resistance post-HAIC in 
enrolled participants. We then used SHAP to conduct an interpretability analysis based on XGBoost. Through SHAP, we 
gained a deeper understanding of the importance of the features included in the model and their functional dynamics. 
Subsequently, we deployed the RFECV method for feature selection by employing CV to retain the feature set with an 

Figure 5 The C-index of 10 ML algorithms in training set (Dataset1), the validation set (Dataset2) and the whole cohort after cross-combining. 
Abbreviation: ML, Machine learning.
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optimal performance. By calculating the sum of their decision coefficients, we ascertained the importance of different 
features to the score and retained the best feature combination. The results (pre-HAIC treatment approach, tumor size, 
HBV DNA, AKP, PT, and PVTT) corroborate the analysis of clinical feature importance conducted by SHAP. Moreover, 
SHAP enables a better understanding of the functionality of these features. For categorical features, we observed that the 

Figure 6 The C-index and K-M survival curve of Stepcox [forward]+GBM. 
Notes: (A) C-index of the StepCox[forward]+GBM model on both the training set (Dataset1) and validation set (Dataset2). (B) The training and validation groups were 
divided into high- and low-risk groups based on the median risk score and plotting the K-M curves of both groups. 
Abbreviations: GBM, gradient boosting machine; K-M, Kaplan–Meier method.
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conditions under which they exerted a greater impact on predicting resistance. For continuous features, we clarified their 
thresholds and their correlation with the SHAP values.

Finally, predictive models were constructed based on the multiple ML models. We also assessed the reliability of 
these six features in predicting the survival of patients with HCC after HAIC. We utilized pairwise combinations of ten 
different ML algorithms to predict survival. When the combination of StepCox [forward] and GBM ML algorithms was 
employed, the six features, led by the pre-HAIC treatment approach, were the most sensitive in predicting patient 
survival. These features continue to perform admirably in predict the survival of patients with HCC following HAIC 
treatment. Overall, our findings demonstrated that the pre-HAIC treatment approach, tumor size, HBV DNA, AKP, PT, 
and PVTT can effectively predict the probability of postoperative resistance and survival in patients with HCC.

For pre-HAIC treatment and PVTT, a poor HAIC effect or resistance is evident when patients have hepatectomy 
before HAIC and when there exists PVTT. Pre_HAIC treatment method is the main factor affecting the therapeutic effect 
of HAIC. Consistent with the previous research results, patients who received other treatments before HAIC, such as 
TKI, TACE and radiotherapy, had influence on the therapeutic effect of HAIC.26,27 Table 1 shows that most patients who 
underwent ablation, TACE or no other treatment before HAIC are sensitive to the treatment, while those who have 
undergone hepatectomy are prone to resistance. Some studies have shown that HAIC after TACE can be used as a rescue 
plan for HCC refractory to TACE, that is, a sequential strategy of TACE and HAIC, to improve the prognosis of 
patients.28 In addition, TACE and ablation before HAIC can be used as a combined treatment to improve the effect of 
HAIC, which may be because it can further control the residual lesions or micrometastases.29,30 For those HCC patients 
who did not receive other treatments before HAIC, the tumor cells maintained a high sensitivity to the chemotherapy 
drugs of HAIC, and the vascular anatomy was not damaged by treatments such as TACE, thus ensuring that the 
chemotherapy drugs fully reached the tumor site. However, hepatectomy may change the anatomical structure or 
blood flow distribution of the hepatic artery, affecting the drug-targeted delivery of HAIC. Previous studies have also 
indicated that Chinese patients with HCC often present with larger tumors, with the average or median tumor diameter 
being greater than approximately 10 cm.31 HAIC may be more suitable for patients with larger tumors (> 5 cm) and 
abundant blood supply.32 This aligns with the results we obtained based on SHAP. As for the negative relationship 
between HBV DNA and SHAP values, studies have shown that high levels of HBV DNA may make tumor cells more 
vulnerable to chemotherapy drugs in the immune microenvironment by suppressing the immune system, thus making 

Figure 7 The forest plot of Cox univariate analysis. 
Abbreviations: PT, Prothrombin time; AKP, Alkaline phosphatase.
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HAIC treatment more effective.33 Prolonged PT may imply abnormal coagulation leading to the formation of tumor 
thrombosis, and increased AKP may represent increased tumor load.34,35 Overall, an increase in PT and AKP may 
represent greater tumor burden, resulting in better treatment response. Furthermore, in the forest plot of our survival 
analysis, we found that when the above six clinical features were included, the effects of pre-HAIC, HBV DNA, PT, and 
AKP on HAIC resistance prediction and survival prognostic prediction results were different. This indicates that although 
these six clinical features are both influencing factors for the efficacy of HAIC and for survival outcomes, however, when 
evaluating the prognosis of HCC patients, the therapeutic outcomes of HAIC should be considered alongside other 
critical prognostic factors. Various factors should also be comprehensively considered to make the prediction more 
convincing. In conclusion, the application of ML methods and SHAP values helps us to better understand how patients’ 
clinical baseline characteristics play a role in predicting resistance and survival, which is more conducive to our 
application in practical clinical treatment.

Limitations
Although our results show that the six clinical features can predict resistance and survival probability after HAIC surgery, 
there are still some limitations to this study. First, the retrospective nature of data collection may introduce biases, and the 
sample size, although substantial, may limit the generalizability of our findings to other populations. Moreover, since 
HAIC is generally applicable to patients with a larger tumor burden, the overall condition of the included participants is 
poor, resulting in a lack of representativeness of the samples. In addition, reliance on a single-center dataset could affect 
the performance of the model when applied to diverse clinical settings. Future studies should consider larger, multicenter 
datasets to validate the robustness of our findings.

Conclusions
In patients with unresectable advanced HCC, pre-HAIC treatment, tumor size, HBV DNA, AKP, PT, and PVTT 
effectively predicted post-HAIC resistance and survival.
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