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Objective: This study aims to address inequalities in mild cognitive impairment (MCI) risk among Chinese middle-aged and older 
adults by developing an integrated learning framework to predict MCI risk and identify key contributing factors.
Methods: Using CHARLS data of 4626 participants, we developed a convolutional neural network-bidirectional long short-term 
memory-attention (CNN-BiLSTM-Attention) model to capture the temporal and spatial features of MCI progression. SHAP (Shapley 
Additive Explanations) analysis quantified feature importance and enhanced interpretability, while mediation analysis explored causal 
pathways, particularly focusing on the role of education. Model performance was compared with eight other frameworks, including 
LSTM-based models, using Receiver Operating Characteristic (ROC) curves and classification metrics.
Results: The CNN-BiLSTM-Attention model demonstrated relatively promising predictive performance (AUC: 0.7317), with 
moderately high sensitivity (0.6902) and a high negative predictive value (NPV) of 0.9414. Education emerged as the most critical 
predictor, followed by Instrumental Activities of Daily Living (IADL) and gender. Mediation analysis revealed that education 
influenced MCI risk indirectly through health insurance, social interaction, physical activity, and depression.
Conclusion: We present an interpretable, data-driven framework for predicting MCI risk while uncovering key inequality factors, 
particularly the pivotal role of education. The model’s robust performance and interpretability highlight its potential to inform public 
health strategies and interventions aimed at addressing inequalities in dementia risk.
Keywords: mild cognitive impairment, inequality, integrated learning, CNN-BiLSTM-Attention, SHAP analysis, Mediation analysis

Introduction
Mild cognitive impairment (MCI) is a clinical syndrome that represents an intermediate stage between normal aging and 
early dementia, characterized by noticeable cognitive decline while daily functional abilities remain relatively intact.1,2 

Although memory impairment is the hallmark of MCI, it may also involve mild deficits in attention, language, executive 
functions, or visuospatial abilities. These cognitive deficits are underpinned by early pathological changes in brain regions 
such as the hippocampus, entorhinal cortex, and prefrontal cortex, which are known to be particularly vulnerable in the 
progression from normal aging to dementia.3 MCI is widely regarded as a high-risk state for dementia, particularly in the 
early stages of neurodegenerative diseases such as Alzheimer’s disease. Studies indicate that 15% of individuals with MCI 
progress to dementia within one year, and this rate increases to 44–64% over a three-year period.4,5 The prevalence of MCI 
increases with age, affecting 15–20% of individuals aged 60 years and older.6 In China, the situation is particularly 
concerning due to the rapidly aging population and the resulting strain on healthcare systems.7 Meta-analyses estimate that 
19% of Chinese individuals aged 60 years or older have MCI, with prevalence exceeding 30% among those aged 80 years or 
older.8–10 Disparities in healthcare access exacerbate the issue, thereby leading to higher prevalence rates in rural areas, 
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among individuals with lower levels of education, and in older populations.11,12 Recent findings suggest that such social and 
environmental disparities may not only influence diagnostic and treatment opportunities but also interact with underlying 
neural vulnerability.13 The aging population in China, coupled with socioeconomic disparities and unequal access to 
healthcare, highlights the urgent need for early identification and intervention strategies to prevent dementia progression, 
optimize healthcare resources, and reduce societal and familial burdens.

Research on the progression of MCI has increasingly incorporated machine learning techniques to enhance prediction 
accuracy and identify key risk factors. Numerous studies have combined neuroimaging data,14 clinical indicators,15 and 
biomarkers with methods such as Support Vector Machines (SVM), Random Forests (RF), and Convolutional Neural 
Networks (CNN) to predict MCI progression.16 Despite these advancements, significant challenges persist. The high 
dimensionality and noise inherent in such datasets often exacerbate the limitations of small sample sizes, increasing the 
risk of overfitting and reducing model generalizability.17 Additionally, the heterogeneity in patient data, including 
demographic and clinical variability, undermines model robustness and reliability.18 Some studies have utilized cross- 
sectional data from public databases to identify MCI risk factors.19–21 These approaches are inherently limited in 
establishing causal relationships and often fail to adequately incorporate spatial characteristics of individual patients, 
thereby compromising predictive accuracy. To address these challenges, recent research has emphasized the use of 
longitudinal data to capture dynamic changes in MCI progression. Long Short-Term Memory (LSTM) networks, for 
instance, have shown promise in modeling temporal sequences effectively by capturing time-dependent patterns in 
cognitive changes.22,23 While these models excel at describing temporal trajectories, they often fail to account for the 
complex interactions among multiple features across different time points, such as the interplay between individual 
characteristics and environmental factors. This limitation reduces their ability to fully elucidate the mechanisms under-
lying MCI progression and achieve reliable long-term predictions, underscoring the need for more comprehensive and 
interpretable modeling approaches.

In this study, we proposed an integrated learning framework tailored specifically for MCI to enhance the predictive 
performance of temporal data models and improve the interpretability of prediction systems. Using a large-scale 
prospective cohort dataset from China, this study focused on: 1) Designing and implementing a CNN-BiLSTM- 
Attention model that integrated spatial information into the model structure and accounted for demographic character-
istics, health status features, and social participation features to analyze the temporal progression of MCI in middle-aged 
and older adults over a two-year period, and comparing its performance with other LSTM-based models to identify the 
optimal mechanism for improving predictive accuracy and classification capabilities; 2) Applying the SHAP method to 
evaluate the contribution of individual features across nine different LSTM frameworks, and visualizing the distribution 
of feature impacts on prediction outcomes through summary and box plots to provide detailed interpretive insights, with 
a specific focus on key inequality factors such as education, gender, and rural-urban differences; 3) Conducting mediation 
analysis to uncover interactions between key features and MCI progression, while identifying risk factor combinations 
and prioritizing them for individual-level analysis. Through these comprehensive analyses, we developed an efficient and 
interpretable predictive model, offering a scientific foundation for the early detection and intervention of MCI, and 
addressing inequalities in dementia risk.

Data and Research Methods
Data Preprocessing
The China Health and Retirement Longitudinal Study (CHARLS) is a nationally representative longitudinal survey that 
examines the family and individual circumstances of adults aged 45 and older in China.24 The baseline survey was 
conducted nationwide between 2011 and 2012, with four subsequent follow-ups in 2013, 2015, 2018, and 2020. These 
surveys collected comprehensive data on family structure, economic support, health status, and healthcare service 
utilization. For this study, CHARLS data were utilized, selecting 10,920 individuals from the 17,705 baseline respon-
dents who completed all five follow-up surveys. After applying the research criteria, a final sample of 4626 valid 
participants was retained, spanning 123 geographic locations (Figure 1). Geographic location data were retrieved from 
the Gaode Map API and converted into the WGS 1984 Albers projection coordinate system for further analysis.
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Predictors
A nationwide survey on MCI among older Chinese adults, published in The Lancet,25 categorized the risk factors for 
MCI into modifiable and non-modifiable factors. Considering the existing research and the structure of the CHARLS 
data, we refined this classification to focus on predictors that reflect social and health inequalities. We further grouped 
these predictors into three categories.

Demographic Characteristics
This study included gender,26 age,27 residential area,28 education,29 marital status,30 poverty status,31 pension insurance, 
and health insurance32 as demographic predictors. These factors capture demographic and socioeconomic differences that 
contribute to disparities in MCI risk. Gender was categorized as male or female, while age was grouped into predefined 
ranges. Residential areas were classified as urban or rural, reflecting potential inequalities in healthcare access. Education 
was measured by years of schooling or educational attainment, reflecting disparities in access to resources. Marital status 
was categorized as married or single, and poverty status was assessed based on income level or economic hardship. 
Pension insurance and health insurance were evaluated in terms of both the presence of coverage and the type of 
coverage, serving as proxies for socioeconomic inequities.

Figure 1 Participant Selection Process.
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Health Status and Function
This category included various health-related factors and lifestyle predictors that influenced MCI. Chronic diseases and 
comorbidities were included as they often reflect disparities in healthcare access and management, which may contribute to 
differences in MCI risk. These conditions included hypertension,33 dyslipidemia,34 diabetes,35 cancer,36 chronic lung 
disease,37 liver disease,38 heart disease,39 stroke,40 kidney disease,41 stomach disease,42 psychiatric disorders,43 arthritis,44 

and asthma.45 To ensure clarity and statistical robustness, memory disorders were excluded as predictors to avoid 
conceptual overlap with MCI. Additionally, Activities of Daily Living (ADL)46 and Instrumental Activities of Daily 
Living (IADL)47 were included as functional predictors. Functional impairments, as measured by ADL and IADL, often 
disproportionately affect individuals with limited access to healthcare or rehabilitation services. ADL consisted of six basic 
activities: bathing, dressing, transferring between bed and chair, toileting, eating, and maintaining continence. IADL 
included six daily skills: housekeeping, cooking, shopping, managing finances, taking medication, and making phone calls. 
Difficulty in performing these tasks reflects inequalities in access to resources that support independent living. Lifestyle 
predictors included smoking,48 alcohol consumption,49 sleep,50 and physical activity.51 Additionally, health-related med-
ical utilization indicators, such as outpatient visits,52 hospitalizations,53 physical examinations, and reported pain,54 were 
incorporated. These variables highlight disparities in health-seeking behaviors and access to healthcare services. 
Depression symptoms55 were assessed using the 10-item Center for Epidemiologic Studies Depression Scale (CESD- 
10), with a total CESD-10 score greater than 10 indicating a risk of depression. Mental health inequalities, often linked to 
socioeconomic and environmental factors, were considered critical for understanding MCI risk.

Social Participation
Social participation factors encompassed the frequency of social interactions and involvement in various activities.55–57 

These activities included parent-child communication, interactions with friends, participation in card and board games, 
helping friends, engaging in fitness activities, community activities, volunteer work, attending training courses, and using 
the internet. These behaviors reflect an individual’s social support network and level of community integration. 
Differences in opportunities to engage in these activities indicate inequalities in access to community resources, 
influencing social integration and ultimately affecting MCI risk.

Outcome Variable
We used cognitive functions to define MCI. CHARLS evaluated participants’ cognitive functions using a methodology 
aligned with the US Health and Retirement Study (HRS).58 The cognitive assessment encompassed four domains: 
orientation, calculation, drawing, and episodic memory. Orientation was assessed by asking participants the current year, 
month, date, season, and day of the week, with each correct response earning 1 point, for a maximum of 5 points. 
Calculation ability was measured by asking participants to perform five consecutive subtractions of 7, with each correct 
subtraction earning 1 point, totaling 5 points. Drawing ability was evaluated by instructing participants to replicate 
specified shapes, with each accurate drawing earning 1 point. Episodic memory was assessed through immediate and 
delayed recall of ten words, with 1 point awarded for each correctly recalled word, yielding a maximum memory score of 
20 points. The overall cognitive function score was a sum of these components, with a total of 31 points.

According to international consensus standards for cognitive aging59 and relevant studies,60 we defined MCI based on 
participants’ total cognitive scores compared to age-adjusted normative standards. Those scoring 1 standard deviation 
below the normative mean were classified as having MCI.

Study Design
We developed and implemented a hybrid model combining CNN, BiLSTM, and attention mechanisms to predict the risk 
of MCI among Chinese middle-aged and older adults.61 Initially, correlation analysis, Gradient Boosting Decision Trees 
(GBDT), and 10-fold cross-validation were used to select ten key features from the original dataset. Ten key variables 
were education, IADL, gender, residential area, sleep duration, card and board game activities, interactions with friends, 
physical activity, depression, and health insurance. Categorical variables were encoded into numerical representations 
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using integer encoding, and numerical variables were standardized using sklearn’s StandardScaler. All features were then 
converted into PyTorch tensors to serve as model inputs.

We used five waves of longitudinal surveys conducted in 2011, 2013, 2015, 2018, and 2020. Specifically, 70% of the data 
from the 2011, 2013, 2015, and 2018 waves were used as the training set, while the remaining 30% of the 2018 data served as 
the validation set. The 2020 data were designated as an independent test set to evaluate the model’s generalization capability.

For the model architecture, the input layer included a convolutional layer that performed local feature extraction on 
the time-series data, capturing patterns within each time step.62 The CNN layer consisted of 256 channels with a kernel 
size of 4 and appropriate padding, followed by a ReLU activation function and a dropout layer with a dropout probability 
of 0.3 to mitigate overfitting. The extracted feature sequences were subsequently fed into a BiLSTM layer. The 
bidirectional structure of the BiLSTM enabled the simultaneous capture of both forward and backward dependencies 
in the sequence data, improving the modeling of temporal features.63 Our BiLSTM consisted of two layers with a hidden 
size of 128 in each direction.

To further enhance the model’s ability to focus on critical time steps, an attention mechanism was integrated. The 
attention module consisted of two sequential linear layers: the first mapped the concatenated BiLSTM outputs to an 
intermediate space of size 128 using a Tanh activation; the second produced scalar attention weights for each time step, 
which were then normalized using a softmax function to compute the context vector.64 Finally, the processed features were 
passed through a fully connected layer and a sigmoid activation function to produce the predicted probability of cognitive 
function decline. During the model training process, binary cross-entropy was used as the loss function, aiming to minimize 
prediction error. We used the Adam optimizer with an initial learning rate of 0.0008 and used a scheduler that reduced the 
learning rate by half every 20 epochs. Training was conducted for 200 epochs, with performance evaluated on the validation 
set at each epoch. Model parameters were saved based on the best validation loss to prevent overfitting (Figure 2).

To enhance the interpretability of the model, we combined SHAP analysis with mediation analysis. SHAP is a machine 
learning model explanation method based on the Shapley value concept from game theory, which assesses the impact of each 
feature by calculating its marginal contribution across different feature combinations.65 For SHAP analysis, the sequential 
input data were flattened into a two-dimensional array, and 100 random training samples were selected as the background data 
set. The SHAP Explainer was applied to the forward function of the model to compute SHAP values, which were reshaped to 
recover time-step and feature dimensions. Visualization was performed using summary plots and box plots to illustrate the 
importance of each feature. Subsequently, based on the identified independent variables, mediating variables, and control 
variables, we conducted a mediation analysis to explore the indirect influence pathways of key independent variables on the 
dependent variable through potential mediators (Figure 3).66 The mediation analysis was implemented using the statsmodels 
package. A bootstrap method with 5000 iterations was used to estimate indirect effects and obtain 95% confidence intervals, 
and the proportion of the indirect effect relative to the total effect was calculated. The integration of SHAP and mediation 
analysis provided complementary insights, combining quantitative feature importance with causal inference to better under-
stand the underlying mechanisms affecting MCI risk.

Results
Characteristics of MCI in Middle-Aged and Older Individuals
The K-nearest neighbors (KNN) method was used to impute missing data (Supplementary Table 1). Descriptive statistics 
were obtained from the 2020 survey, which included 4626 middle-aged and older participants. The results revealed an 
overall MCI prevalence of 13.7% (Supplementary Table 2). The prevalence of MCI among female participants (15.3%) 
was significantly higher than that among male participants (7.7%, p < 0.001). Individuals with lower education levels had 
a significantly higher prevalence of MCI (16.4%) compared to those with higher education levels (2.0%, p < 0.001). 
Similarly, rural participants exhibited a significantly higher prevalence of MCI (13.3%) compared to urban participants 
(5.0%, p < 0.001), highlighting potential geographic and socioeconomic disparities. Regarding health status, individuals 
with severe hypertension, dyslipidemia, and arthritis had a significantly higher prevalence of MCI (p < 0.05), whereas 
other chronic diseases did not show a significant association with MCI. Functional status analysis revealed that 
impairments in Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL), as well as the 
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Figure 2 CNN-BiLSTM-Attention Design Process.
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presence of depressive symptoms, were associated with a higher prevalence of MCI (p < 0.001), indicating the strong 
association between MCI and both physical and mental health factors. In terms of social participation, five types of social 
activities—interaction with friends, card and board game activities, helping friends, volunteer work, and using the 
internet—were significantly associated with the prevalence of MCI (p < 0.05), indicating that fostering diverse 
opportunities for social engagement may play a crucial role in mitigating cognitive decline in aging populations.

Predictive Performance of CNN-BiLSTM-Attention
We developed nine time-series models—RNN, LSTM, CNN-LSTM, BiLSTM, LSTM-Attention, BiLSTM-Attention, 
CNN-BiLSTM, CNN-LSTM-Attention, and CNN-BiLSTM-Attention—to predict the risk of MCI among Chinese 
middle-aged and older participants. The performance of these models was evaluated using ROC curves, Decision 
Curve Analysis (DCA), and multiple classification metrics, including AUC, accuracy, sensitivity, specificity, Youden 
Index, positive predictive value (PPV), NPV, and F1-score. The DeLong test was applied to compare the performance 
differences among the models in the classification task.67

The results showed that as the complexity of LSTM-based nested structures increased, the overall predictive 
performance of the models exhibited an upward trend. However, these improvements were not statistically significant 
(p > 0.05). Notably, models incorporating nested CNN within the LSTM exhibited relatively better predictive perfor-
mance, with comparatively higher AUC values observed (CNN-LSTM: AUC = 0.7405; CNN-BiLSTM: AUC = 0.7442; 
CNN-LSTM-Attention: AUC = 0.7402; CNN-BiLSTM-Attention: AUC = 0.7317) (Figure 4).

Furthermore, the overall stability improved slightly as the nested structures became more complex. The CNN-BiLSTM- 
Attention model had a relatively higher sensitivity (0.6902) and NPV (0.9414) compared to the other models, suggesting 
a potential advantage in identifying positive cases and reducing false negatives. However, its specificity was comparatively 
lower (0.6738), indicating a possible trade-off between capturing true positives and avoiding false positives (Table 1).

Feature Importance Visualization
SHAP analysis was used to evaluate the impact of key features on cognitive function prediction across nine LSTM 
models. Feature importance analysis (Figure 5) revealed that education, IADL, and gender were the most critical 
features, consistently ranking among the top three based on SHAP values for all features. Social activities, such as 
card and board game activities and interactions with friends, along with health insurance and sleep duration, made 
moderate contributions to the model’s predictive performance. In contrast, physical activity and residential area had 
relatively lower contributions. Notably, depression showed significant variability across different models, with its feature 
importance being markedly higher in the CNN-BiLSTM-Attention model compared to RNN and LSTM models. These 
differences suggest that model architecture should be considered when interpreting feature importance, as different 
architectures may capture unique aspects of feature interactions.

Figure 3 Analysis of Potential Mechanisms Underlying MCI Risk.
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The SHAP Summary Plot (Figure 6) and SHAP Box Plots (Figure 7) corroborated these findings. The SHAP value 
distributions for education, IADL, and gender across all models exhibited spindle-shaped patterns, indicating substantial 
variability in their predictive influence across different samples and a strong clustering effect. Conversely, the SHAP 
value distributions for physical activity and residential area were concentrated near zero, lacking spindle-shaped patterns, 
which indicated minimal contributions to model predictions and relatively uniform impacts across samples. These results 
underscored the robustness of key features and the limited yet consistent influence of less important features.

Mediation Analysis of Feature Effects
We controlled for gender and residential areas to assess the significant impact of education on cognitive function through 
various potential mediators, as shown in Table 2. The analysis revealed that IADL had the largest indirect effect, 
contributing 9.84% to the total effect, which was statistically significant (bootstrap 95% CI: −0.0147, −0.0108). Health 
insurance and social interaction followed, accounting for 3.39% and 2.76% of the total indirect effects, respectively. 
These results indicate that individuals with lower education levels may face greater challenges in maintaining functional 
independence and accessing essential healthcare resources, thereby amplifying their vulnerability to cognitive decline. In 
contrast, the indirect effects of physical activity and depression were relatively small, contributing 0.81% (bootstrap 95% 
CI: −0.0016, −0.0006) and 1.18% (bootstrap 95% CI: −0.0022, −0.0009) of the total effect, respectively. Additionally, the 

Figure 4 Predictive Performance of Nine LSTM Models. (A) ROC curves. (B) DCA curves.

Table 1 Classification Metrics of Nine LSTM Models

Model AUC Threshold P value Accuracy Sensitivity Specificity Youden 
Index

PPV NPV F1-Score

RNN 0.7249 0.4101 – 0.7562 0.4946 0.7916 0.2862 0.2433 0.9204 0.3262

LSTM 0.7285 0.3153 0.8453 0.6876 0.6594 0.6915 0.3509 0.2246 0.9374 0.3350

CNN-LSTM 0.7405 0.3056 0.6447 0.7131 0.6341 0.7239 0.3579 0.2373 0.9359 0.3453

BiLSTM 0.7299 0.3613 0.7887 0.7162 0.5996 0.7320 0.3316 0.2326 0.9310 0.3352

LSTM-Attention 0.7357 0.3928 0.5595 0.7445 0.5362 0.7727 0.3089 0.2422 0.9248 0.3337

BiLSTM-Attention 0.7297 0.3899 0.7976 0.7512 0.5380 0.7801 0.3181 0.2490 0.9257 0.3404

CNN-BiLSTM 0.7442 0.2549 0.2914 0.7062 0.6649 0.7118 0.3767 0.2382 0.9400 0.3507

CNN-LSTM-Attention 0.7402 0.3846 0.4048 0.7743 0.4982 0.8117 0.3099 0.2639 0.9227 0.3450

CNN-BiLSTM-Attention 0.7317 0.2763 0.7939 0.6757 0.6902 0.6738 0.3640 0.2228 0.9414 0.3369

Note: The DeLong test was performed to compare the performance of all models, with the RNN model serving as the reference sequence. Statistical significance was 
determined based on comparisons with the RNN model.
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indirect effect of sleep duration was not statistically significant in the bootstrap analysis (bootstrap 95% CI: −0.0003, 
0.0002). The smaller contributions of these factors may reflect underlying systemic inequalities that place individuals 
with lower socioeconomic status at a greater disadvantage.

Discussion
This study utilized five waves of longitudinal data from CHARLS to develop and implement a hybrid CNN-BiLSTM- 
Attention model for predicting the risk of MCI among Chinese middle-aged and older populations. The model integrated 
both the temporal features of time-series data and the spatial information of the samples, recognizing the impact of 
regional disparities on cognitive function. By integrating CNN, BiLSTM, and attention mechanisms, this approach 
significantly enhanced the model’s ability to capture complex temporal and spatial patterns, enabling more accurate 

Figure 5 Feature Importance of Nine LSTM Models.
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predictions of MCI risk. Compared to traditional LSTM models, the hybrid model demonstrated improved adaptability 
and predictive performance in handling high-dimensional and heterogeneous data.68

When evaluating model performance, the CNN-BiLSTM-Attention model showed significantly better predictive 
capabilities and stability than other models. This suggests that the model has a clear advantage in comprehensively 
leveraging multi-level feature information, allowing it to more effectively capture the complex factors influencing MCI. 
Compared to traditional machine learning methods, deep learning models generally exhibit higher predictive accuracy 
and generalization ability, particularly when handling large-scale longitudinal data.61,69,70 Furthermore, the model’s 
relatively high stability underscores its considerable application potential in predicting MCI risk within large-scale 
population surveys, where identifying vulnerable groups in underserved communities is critical for reducing health 
disparities. However, the model’s AUC of 0.7317 indicates that there is still room for improvement. Additionally, its 
sensitivity (0.6902) and specificity (0.6738) may limit its effectiveness in early detection, where higher sensitivity and 
specificity are often desired. This is especially relevant in practical scenarios that demand high accuracy and reliability, 
such as public health monitoring and the development of early intervention strategies.71

The feature importance analysis identified that education was the most critical factor influencing MCI, followed by 
IADL and gender. Additionally, social activities, such as interaction with friends and card and board game activities, 
significantly contribute to the prediction of MCI. These findings were consistently validated across the nine time-series 

Figure 6 SHAP Summary Plot for Nine LSTM Models (The horizontal axis represented the SHAP Value, reflecting the extent to which each feature influenced the model’s 
predictions. Larger SHAP values signified a greater impact on prediction outcomes. Positive SHAP values indicated that a feature drove the prediction towards a positive 
outcome, while negative SHAP values indicated a shift towards a negative outcome. The vertical axis listed the features used in the model, ranked in descending order of 
importance, with the most influential features positioned at the top. Red points represented positive feature values, while blue points represented negative feature values. 
The width of the point distribution reflected the variability of each feature’s influence across different samples. Wider distributions indicated greater heterogeneity in the 
feature’s impact on predictions).

https://doi.org/10.2147/RMHP.S519049                                                                                                                                                                                                                                                                                                                                                                                                                                         Risk Management and Healthcare Policy 2025:18 1802

Bi et al                                                                                                                                                                                

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Figure 7 SHAP Box Plots for Nine LSTM Models.
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models we constructed, further reinforcing the pivotal role of these features in predicting cognitive function.72 The 
impact of education on cognitive function has been corroborated by numerous studies, highlighting that individuals with 
lower educational attainment often face structural disadvantages, such as limited access to cognitive stimulation and 
healthcare resources, while those with higher educational attainment typically possess greater cognitive reserve, which 
can delay the onset of cognitive decline.73 Decline in daily living activities (ADL/IADL) was closely associated with 
cognitive impairment, reflecting individuals’ overall health status in terms of cognitive and functional capabilities.74 This 
decline often disproportionately affects individuals from disadvantaged socioeconomic backgrounds, who may have 
fewer resources to maintain functional independence. Social activities promote mental health and cognitive stimulation, 
thereby protecting cognitive function.75 Mediation analysis further showed that education had a significant indirect effect 
on cognitive function, mainly mediated by IADL, health insurance, and social interaction. Specifically, IADL had the 
strongest indirect effect (95% CI: −0.0147, −0.0108), followed by health insurance (95% CI: −0.0058, −0.0029), and 
social interaction (95% CI: −0.0045, −0.0027), with all effects reaching statistical significance. This indicates that 
education not only directly affects cognitive health but also indirectly promotes the maintenance of cognitive function by 
improving functional status and social support networks. It may also shape neural mechanisms, such as hippocampal 
integrity, via long-term disparities in cognitive stimulation and healthcare access.76 This finding is consistent with the 
social ecological model, which emphasizes the interaction of multi-level factors in shaping health outcomes.77

To the best of our knowledge, this is the first study to integrate the LSTM framework with SHAP and mediation 
analyses to predict the risk of MCI among Chinese middle-aged and older adults. By utilizing SHAP analysis, we 
quantified the specific contributions of each feature to the prediction results, enhancing the model’s interpretability. This 
approach provided insights into how inequalities in education and access to resources affect cognitive health. Not only 
did this improve model transparency, but it also provided valuable insights for clinical decision-making. Mediation 
analysis enabled us to examine how education influenced the occurrence of MCI through multiple pathways, highlighting 
its role in addressing disparities in cognitive health outcomes. The integration of these methodologies not only enhanced 
the model’s predictive performance but also offered valuable methodological insights for future research, showcasing 
both innovation and practical value. Furthermore, the use of large-scale longitudinal data significantly improved the 
representativeness and generalizability of the findings.78

However, this study has several limitations. First, although we employed advanced integrated learning models, the 
black-box nature of these models limited their transparency and interpretability in practical applications. Future research 
could explore more transparent model architectures or incorporate additional explanatory methods to further improve 
interpretability. Second, the cognitive assessment used in this study was a global cognition tool adapted from the HRS 
protocol, which, while practical for large-scale studies, may lack sensitivity in detecting subtle domain-specific impair-
ments such as executive function or visuospatial ability. In addition, the use of a −1 SD threshold to define MCI may 
increase the risk of false positives compared to the more conservative −1.5 SD standard commonly used in clinical 
settings. Third, while this study included multiple key features, other potential influencing factors, such as genetic and 
environmental variables, as well as the broader structural and social inequalities that affect cognitive health, may have 
been overlooked.

Table 2 Mediation Analysis of Education on Health Insurance, Social Interaction, Sleep 
Duration, IADL, and Depression

Variable Indirect  
Effect Value

Proportion of Indirect  
Effect to Total Effect

Bootstrap 95% CI

BootLLCI BootULCI

Health Insurance −0.0044 3.39% −0.0058 −0.0029
Social Interaction −0.0036 2.76% −0.0045 −0.0027

Sleep Duration −0.0001 0.06% −0.0003 0.0002

Physical Activity −0.0010 0.81% −0.0016 −0.0006
IADL −0.0127 9.84% −0.0147 −0.0108

Depression −0.0015 1.18% −0.0022 −0.0009
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Conclusion
This study developed and deployed a CNN-BiLSTM-Attention model to predict the risk of MCI among Chinese middle- 
aged and older adults, highlighting the influence of education and unequal access to resources on cognitive health. The 
model’s notable stability and promising predictive performance demonstrate its applicability to real-world population 
surveys. By integrating SHAP and mediation analyses, the study not only enhanced the model’s interpretability but also 
provided new insights into the pathways through which education affects cognitive function, highlighting the need to 
address the social and structural barriers that worsen cognitive health disparities. In addition to the model’s predictive 
performance, this study has relevant implications for clinical and public health applications. The proposed model may aid 
in the early identification of high-risk individuals in community or primary care settings, allowing for timely preventive 
interventions and personalized management plans. Furthermore, its integration into electronic health record systems 
could facilitate clinical decision making and resource allocation, particularly in settings with limited cognitive screening 
capacity. Future research could focus on refining the model architecture and exploring additional contributing factors to 
further improve the accuracy and practicality of MCI prediction. Moreover, the findings support comprehensive 
intervention strategies, such as enhancing educational opportunities and fostering social interactions, with a particular 
focus on reducing inequalities among underserved populations to alleviate the burden of MCI.
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