
O R I G I N A L  R E S E A R C H

Distinct Airway Microbiome and Metabolite 
Profiles in Eosinophilic and Neutrophilic Asthma
Shuang Liu1,*, Zhiwei Lin1,2,*, Jiayong Zhou3,*, Xiaojing Yang2, Liuyong You1, Qianyue Yang1, 
Tianyang Li1, Zhaoming Hu1, Xuyan Zhan1, Yueting Jiang1, Baoqing Sun 1

1Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for 
Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou 
Medical University, Guangzhou, People’s Republic of China; 2Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, 
National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, 
Guangzhou, 510120, People’s Republic of China; 3Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), 
Guangzhou, 510440, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Baoqing Sun; Yueting Jiang, Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of 
Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The 
First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China, Email sunbaoqing@vip.163.com; jyting8899@126.com

Background: Asthma is a chronic, heterogeneous disease driven by inflammatory phenotypes, primarily eosinophilic asthma (EA) 
and neutrophilic asthma (NEA). While allergen triggers are well-known, the role of the airway microbiome and metabolites in asthma 
exacerbations remains poorly understood.
Methods: We recruited 64 participants (24 EA, 20 NEA, 20 healthy controls [HC]) for the discovery cohort, with validation in an 
external cohort (10 EA, 8 NEA, 8 HC). Induced sputum samples were analyzed using 16S rRNA sequencing to profile bacterial 
composition and non-targeted metabolomics to assess airway metabolites. Random forest models identified diagnostic markers, 
validated in the external cohort.
Results: Significant shifts in airway microbiota were observed, particularly between NEA and HC, and between EA and NEA. Four 
bacterial general-Stenotrophomonas, Streptococcus, Achromobacter, and Neisseria-were consistently identified across groups. 
Veillonella was more abundant in NEA vs HC, while Achromobacter was enriched in NEA vs EA, indicating distinct microbial 
signatures. Metabolomic profiling revealed distinct pathways: pyrimidine metabolism (EA vs HC), tryptophan metabolism (NEA vs 
HC), and arachidonic acid metabolism (EA vs NEA). Microbial-metabolite correlations indicated microbiota-driven metabolic activity. 
Biomarker candidates were validated in the external cohort.
Conclusion: The airway microbiota and metabolites are intricately linked to asthma exacerbations, with distinct patterns between EA 
and NEA. These findings highlight their potential as diagnostic biomarkers and therapeutic targets for personalized asthma 
management.
Keywords: eosinophilic, neutrophils asthma, 16S rRNA amplicon sequencing, metabolomics, biomarker

Introduction
Asthma is a chronic and heterogeneous disease characterized by airway inflammation and hyperresponsiveness, mani-
festing in several inflammatory phenotypes.1,2 Among these, eosinophilic asthma (EA) and neutrophilic asthma (NEA) 
are two prominent phenotypes, each associated with distinct immune responses and clinical features.3,4 These phenotypes 
differ notably in their pathogenesis and response to corticosteroids. While EA typically responds well to corticosteroid 
therapy, NEA often exhibits steroid resistance and is frequently observed in severe asthma cases, where the use of 
macrolides may be necessary.5,6 Despite these well-characterized clinical distinctions, considerable gaps remain in 
understanding the underlying microbial and metabolic landscapes of these phenotypes. Furthermore, biomarkers to 
differentiate EA and NEA remain limited, with clinical assessments largely relying on cell counts in blood and sputum. 
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Identifying novel biomarkers for these distinct asthma endotypes could provide deeper insights into disease mechanisms 
and guide personalized treatment strategies.

Environmental triggers such as allergens and cold air are well-established contributors to asthma exacerbations.7 

However, emerging evidence supports the hygiene hypothesis, which suggests that increased microbial exposure may 
reduce asthma risk.8 The respiratory microbiota plays a critical role in shaping immune responses, and even small shifts 
in microbial composition can significantly impact host immunity due to variations in bacterial ligands and metabolite 
production.9 The respiratory tract harbors a diverse bacterial community, with substantial shifts in richness and diversity 
along its length, from the nasal cavity to the lungs.10 These microbial changes have been implicated in several respiratory 
diseases, including lung cancer,11 asthma12 and chronic obstructive pulmonary disease (COPD).9 Growing evidence 
shows microbiota significantly influence asthma development, with distinct microbial patterns observed across disease 
severity, treatments, and age groups. Severe asthma exhibits reduced microbial diversity with more Proteobacteria, while 
mild cases show altered Firmicutes/Bacteroidetes ratios.13 Asthma patients exhibit characteristic alterations in their 
microbiome following corticosteroid treatment. The oral microbiome demonstrated significant reductions in both 
Absconditabacteriales and Bifidobacterium, nasal microbiota exhibits the most significant alterations, particularly down-
regulation of Porphyromonas and Prevotella.14 Importantly, children with asthma have delayed microbiota development, 
while elderly patients show Bacteroides-dominated profiles.15 The specific role of microbiota in the pathogenesis of 
asthma, particularly in relation to distinct inflammatory phenotypes such as EA and NEA, remains poorly understood. 
Understanding the relationship between airway microbiota and asthma phenotypes could offer new insights into disease 
mechanisms and help identify prognostic markers for EA and NEA.

Metabolomics, the comprehensive study of small molecules involved in metabolic processes, has become a powerful tool 
for discovering biomarkers and elucidating disease mechanisms.16 Recent research has underscored the interplay between lung 
microbiota metabolites and respiratory health, showing that microbial-derived metabolites can influence disease progression. 
Yuan et al highlighted the correlation between the respiratory microbiome and serum metabolomics, suggesting microbial 
influence on metabolic activity.17 However, research integrating microbiome and metabolomic data in the context of distinct 
asthma phenotypes remains limited.18 Integrating microbiome and metabolomics data, particularly within the lung, could reveal 
novel pathways involved in EA and NEA pathogenesis and enhance the development of diagnostic and therapeutic strategies.

In this study, we used 16S rRNA sequencing for bacterial profiling and non-targeted metabolomics on sputum from 
EA, NEA patients, and HC. By comparing microbial and metabolite profiles, we aimed to explore distinct microbial- 
metabolite correlations. This approach sought unique pathways in asthma subtypes, potentially identifying biomarkers 
and targets. Our findings offer insights for personalized asthma management.

Materials and Methods
Study Population
Patients with diagnosed asthma were recruited from the First Affiliated Hospital of Guangzhou Medical University 
between April 2023 and June 2024. Asthma diagnosis followed the Global Initiative for Asthma (GINA) 
guidelines,19 according to fulfilment of 1 or more of the following criteria:(1) an increase > 12% in forced expiratory 
volume in 1 second (FEV1) and an increase > 200 mL after inhalation of 400 μg of albuterol; (2) a 20% reduction in 
FEV1 in response to a provocative concentration of inhaled methacholine (PC20 < 10 mg/mL); (3) and/or an 
increase > 20% in FEV1 after 2 weeks of treatment with systemic oral corticosteroids (OCS) or inhaled corticoster-
oids (ICS).20 (4) Participants were aged between 18 and 70 years. (5) All study participants attended a single visit 
that encompassed assessments of lung function, asthma symptoms, asthma-specific quality of life, and medication 
use. We enrolled patients and Healthy control (HC) with no history of smoking. (6) Patients were initially diagnosed 
with mild-to-moderate asthma exacerbation or persistent asthma according to the American Thoracic Society 
guidelines and GINA guidelines.21 (7) Patients had been routinely treated with fluticasone or an equivalent dose 
of inhaled corticosteroids for over 6 months but had experienced more than 1 acute exacerbations in the past 
half year. Exclusion criteria: History of chronic lung diseases or any other diagnosed conditions, ongoing 
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immunotherapy, malignancy diagnosis, current/recent ex-smokers (<1 year), recent respiratory infection, or anti-
biotic use in past 4 weeks.

Samples Collection
Sputum induction involved isotonic saline with a bronchodilator, processed as in.14 ICS and LABAs were stopped 
for 24 hours.22 Asthma patients were classified as EA or NEA based on sputum cell counts:23 EA had ≥3% 
eosinophils; NEA had <3% eosinophils and neutrophil thresholds of ≥75.57% (<20 years), ≥61.61% (20–40 years), 
≥63.25% (40–60 years), or ≥67.25% (>60 years). Samples with >10% squamous cells were excluded. Precipitates 
were used for microbiome analysis, supernatants stored at −80°C for metabolism analysis.24 All participants 
underwent spirometry per ERS guidelines to assess lung function and airway obstruction severity. Included 
patients had mild-to-moderate, clinically stable exacerbations safe for bronchoscopy.

Ethical approval was obtained from the Ethics Committee of The First Affiliated Hospital of Guangzhou Medical 
University, with approval codes 2022 No.121 and 2024 No. G-007. Written informed consent was obtained from all 
participants prior to inclusion in the study. This study was conducted in accordance with the ethical principles of the 
Declaration of Helsinki. A schematic representation of the study can be found in Figure 1.

16S rRNA Amplicon Sequencing
Microbial DNA from sputum was extracted using the FastDNA Spin Kit and purity was checked with a Nanodrop. Integrity 
was assessed via agarose gel electrophoresis. PCR amplified the V3-V4 regions of the 16S rRNA gene according to universal 
primers (515F: 5′-GGACTACHVGGGTWTCTAAT-3′, 806R: 5′- GGACTACHVGGGTWTCTAAT- 3′). PCR products 
were purified, quantified, and sequenced on an Illumina NovaSeq6000 at the Novogene Bioinformatics Technology Co., 
Ltd. The paired-end reads were assigned using barcode and then were merged with FLASH (Fast Length Adjustment of 
SHort reads) (V1.2.11) software.25 High-quality filtering of the raw tags was performed to obtain clean tags using QIIME 
(Quantitative Insights into Microbial Ecology) (Version QIIME2-202202). After that, chimeric sequences were compared 
with Silva Database and using the UCHIME algorithm to detect and remove chimera sequences. A final effective sequence 
analysis was performed using Uparse software (Uparse V7.0.1001).26

Microbiomics Study
Sequences with a similarity index greater than 97% were assigned to the same operational taxonomic units (OTUs). 
Alpha diversity metrics (Chao1, Shannon Diversity, Simpson, and Richness indice) were calculated for the OTU table 
using alpha rarefaction. The beta diversity metric was calculated on the OTU table and visualized using principal 
coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) analysis. The alpha diversity and beta 
diversity analysis were calculated with QIIME software (version 1.9.1) and displayed with R software (version 2.15.3). 
Metagenomeseq test was used to calculate significant differences between two groups. Metabolic function was predicated 
with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on the high- 
quality tags of the microbiota.27 Random forest analysis was the classification of samples based on a machine learning 
model for the purpose of filtering variables.

Non-Targeted Metabolomics Profiling
Metabolites were extracted from sputum and tested with a liquid chromatography-tandem mass spectrometry (LC-MS 
/MS). The metabolomics analysis was performed using a Vanquish UHPLC system (ThermoFisher, Germany) in 
Novogene Co., Ltd. (Beijing, China). Samples were injected onto a Hypersil Gold column (100×2.1 mm, 1.9μm) 
using a 12-min linear gradient at a flow rate of 0.2 mL/min. The eluents for the positive and negative polarity modes 
were eluent A (0.1% FA in Water) and eluent B (Methanol). The solvent gradient was set as follows: 2% B, 
1.5 min; 2–85% B, 3 min; 85–100% B, 10 min; 100–2% B, 10.1 min; 2% B, 12 min. Q ExactiveTM HF mass 
spectrometer was operated in positive/negative polarity mode with spray voltage of 3.5 kV, capillary temperature of 
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320°C, sheath gas flow rate of 35 psi and aux gas flow rate of 10 L/min, S-lens RF level of 60, Aux gas heater 
temperature of 350°C. The raw data files generated by UHPLC-MS/MS were processed using the Compound Discoverer 
3.3 (CD3.3, ThermoFisher) to perform peak alignment, peak picking, and quantitation for each metabolite.

Figure 1 Visual representation of the study design. A cohort study combining microbiome analysis, metabolomics analysis, and machine learning applications to identify and 
validate biomarkers and pathways associated with asthma phenotypes and disease mechanisms.
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Metabolomics Study
Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to 
explore whether all samples can be significantly clustered in different groups. We applied univariate analysis (t-test) to 
calculate the statistical significance (P-value). The metabolites with VIP > 1 and P-value< 0.05 and fold change≥1.2 or 
FC≤0.833 were considered to be differential metabolites.28–30 Volcano plots were used to filter metabolites of interest 
which based on log2 (Fold Change), and -log10(P-value) of metabolites by ggplot2 in R language P-value < 0.05 was 
considered as statistically significant and correlation plots were plotted by corrplot package in R language. The functions 
of these metabolites and metabolic pathways were studied using the KEGG database.

Statistical Analysis
Statistical significance of the difference was firstly estimated using the F-test, followed by the Student’s or Welch’s t-test 
in two-group analysis according to the homogeneity of variance. Data normality was assessed by the Kolmogorov– 
Smirnov method. Comparisons between the two groups were performed by t-test with homogeneity of variance 
conversely. Mann–Whitney-Wilcoxon test was performed for the dataset, which does not follow the normality. 
Differences in airway bacteria diversity and relative abundance among three groups were analyzed by the nonparametric 
Kruskal–Wallis test. P-value of < 0.05 were considered statistically significant. All statistical analysis about the identi-
fication of distinct metabolites was completed with R (v4.0.2) basic statistical packages.

To evaluate the discriminatory power of classifiers in distinguishing between healthy controls and patients, the 
Receiver Operating Characteristic (ROC) Curve was employed. Based on the differential metabolites and microbiota 
obtained by the above analysis, ROC analysis was used to obtain curve and calculate the area under the curve (AUC), 
providing a quantitative measure of the model’s performance. Furthermore, we ventured to enhance the predictive 
capability of our model by integrating the identified biomarkers.

Results
Characteristics of All Participants
Two cohorts were established to explore asthma heterogeneity based on induced sputum cytology: a discovery cohort 
with 44 asthma patients (24 with eosinophilic asthma, EA, and 20 with neutrophils asthma, NEA) and 20 healthy controls 
(HC), and a validation cohort consisting of 26 asthma patients (10 EA, 8 NEA) and 8 hC.

Baseline characteristics revealed no statistically significant differences in age, gender distribution, body mass index 
(BMI) across the groups. Serum total IgE levels were significantly higher in asthmatic patients compared to HC, with EA 
showing higher levels than NEA. Lung function analysis demonstrated significant intergroup differences: the percentages 
of FEV1 (P = 0.018), FEV1/FVC ratio (P = 0.026), and FVC (P = 0.013) were higher in the HC group than in both EA 
and NEA groups. Furthermore, these lung function indicators were higher in EA compared to NEA. EA exhibited 
significant eosinophilia in both blood and sputum, accompanied by lower neutrophil counts compared to NEA. NEA also 
had the longest hospital stay compared to the other groups. Clinical demographics of the discovery cohort are presented 
(Table 1), and the validation cohort showed high consistency with the discovery cohort (Table 2).

Microbiota in the Respiratory Tract of Different Asthma Patients versus HCs
Estimation of Sequencing Depth
To investigate these dynamics, 16S rRNA amplicon sequencing of sputum samples was performed to explore shifts in 
lung microbiota and uncover alterations in the structure and function of the lower respiratory tract microbiota. Based on 
Research statistics, raw 16S rRNA sequencing data using primers 515F and 806R were filtered using QIIME software, 
followed by sequence splicing with FLASH software to generate tag sequences. A total of 64 high-quality samples were 
obtained from sputum sequencing, with an average of 87,495 valid sequences per sample. At a 97% similarity threshold, 
2696 Operational Taxonomic Units (OTUs) were identified. Rarefaction curves for each group indicated that sequencing 
data reached saturation, suggesting sufficient depth of coverage (Figure S2A). Rank abundance curves provided detailed 
insights into the richness and evenness of microbial diversity across the sample sets (Figure S2B). Additionally, the 
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species accumulation boxplot demonstrated a steady increase in species diversity as sample size increased, with curves 
plateauing at the maximum sample size of 64, further supporting the adequacy of sequencing depth (Figure S2C).

Alpha-Diversity and Beta-Diversity
Alpha-diversity was assessed to analyze microbial community diversity within individual groups. Metrics such as Chao1, 
Shannon Diversity, Simpson, and Richness indices did not reveal significant differences in species richness or diversity, 
indicating that α-diversity remained consistent across the three study groups (P > 0.05, Kruskal–Wallis tests) (Figure 2A). 
In contrast, beta-diversity, which compares microbial community composition across different groups, demonstrated 
significant differences between EA and NEA (P = 0.03, Wilcoxon test, unweighted UniFrac distance), and between NEA 
and HC (P = 9e-04, Wilcoxon test, unweighted UniFrac distance) (Figure 2B). These findings were supported by the 
Principal Coordinates Analysis (PCoA) plot, which illustrated shifts in microbial community composition among the 
groups (Figure S1A). The PCoA, based on Bray–Curtis dissimilarities, highlighted statistically significant differences in 
overall microbiota structure between HC and NEA, as well as between EA and NEA. Non-metric multidimensional 
scaling (NMDS) analysis, based on Bray-Curtis similarity distance, further demonstrated distinct group separation (stress 

Table 1 Clinical Parameters of Discovery Cohort

Healthy Control Eosinophilic Asthma (EA) Neutrophils Asthma (NEA) P

N 20 24 20 /
Age/year 43.5(38.5,54) 49(31,58.5) 53.5(47.5,62.5) 0.063

Gender (female/male) 11/9 13/11 14/6 0.511

BMI (kg/m2) 23.99±2.89 23.65±2.87 21.68±3.62 0.117
Duration of Hospitalization 4.75±3.19 7.00±3.08 8.80±3.38 <0.01

Blood cell detections

WBC,10^9/L 6.00(4.37,7.06) 7.10(5.92,8.01) 8.81(6.46,10.75) 0.004
EOS,10^9/L 0.15(0.08,0.22) 0.58(0.39,1.16) 0.20(0.11,0.44) <0.001

NEU,10^9/L 3.46(2.60,4.68) 3.65(2.62,4.17) 5.73(3.93,8.08) 0.002

LYM,10^9/L 1.33(1.08,1.91) 2.09(1.79,2.70) 1.76(1.38,2.67) 0.005
PLT,10^9/L 270.3±84.28 249.25±49.69 247.70±78.76 0.583

HGB,10^9/L 127(120,144) 137(129.5,154) 127.5(122,142.75) 0.38

RBC,10^9/L 4.56±0.41 4.80±0.59 4.53±0.57 0.195
EOS% 2.4(1.1,3.3) 10.2(5.78,14.15) 2.10(1.25,4.45) <0.01

NEU% 61.21±11.62 49.85±11.12 63.16±11.30 <0.001

LYM% 26.98±10.56 31.58±8.40 25.45±10.30 0.099

Sputum

Neutrophils % 47.5(41.75,85.63) 43.38(22.38,62.38) 94.13(81.25,97.38) <0.01

Eosinophils % 0.25(0,1.75) 40.75(13.88,55.44) 0.75(0,1.38) <0.01

Macrophages % 45.5(9.13,52.38) 12.88(4.63,21.00) 3.75(1.63,18.25) 0.051
Lymphocytes % 2.50(0.88,10.63) 0.50(0,1.50) 0.50(0,1.50) 0.069

Lung function

FEV1/FVC 84.55(82.85,84.9) 83.63(83.22,84.04) 83.97(83.86,84.20) 0.026

FEV1 2.92(2.30,3.45) 2.78(2.77,3.17) 2.40(2.07,2.80) 0.018
FVC 3.55±0.62 3.11±0.64 2.91±0.77 0.013

Inflammatory indicators

IgE, mg/L 65.86(26.20,99.1) 174.11(91.80,490.2) 98.87(45.47,231.48) 0.017

Abbreviations: WBC, White blood cell; EOS, Eosinophils; NEU, Neutrophil; LYM, Lymphocyte; PLT, Blood platelet; HGB, Glycosylated hemoglobin; RBC, 
Red blood cell; FEV1, Forced expiratory volume in one second; FVC, Forced vital capacity; IgE, Total IgE.
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= 0.089, Figure S1B). A Venn diagram (Figure 2C) visually depicted the shared and unique OTUs among the groups, 
providing insights into their compositional differences.

Distribution of Microbiota Taxonomic Composition in Different Asthma Patients
All sequences were classified into 30 phyla. The relative abundance of the top 10 phyla across the three groups is 
displayed in Figure 2D. The most abundant phyla in the airway microbiota were Proteobacteria, Firmicutes, 
Bacteroidetes, and Fusobacteriota. EA patients exhibited a higher abundance of the Proteobacteria phylum, while 
NEA patients showed higher abundances of Bacteroidetes, Aenigmarchaeota, and Firmicutes. However, there were no 
significant differences in phylum-level distribution between HC and asthma patients (P > 0.05, MetagenomeSeq, 
Figure 2E). Despite similar phylum-level distributions, genus-level analysis revealed distinct patterns. Both healthy 
controls and asthma patients shared four major bacterial general: Stenotrophomonas, Streptococcus, Achromobacter, and 
Neisseria. Notably, Veillonella was more abundant in NEA patients compared to HC, while Achromobacter was more 
prevalent in NEA patients than in EA patients (P < 0.05, MetagenomeSeq, Figure 2F). These results underscore the 
nuanced differences in microbial composition at the genus level, despite similarities at the broader phylum level.

Table 2 Clinical Parameters of Validation Cohort

Healthy Control Eosinophilic Asthma (EA) Neutrophils Asthma (NEA) P

N 8 10 8 /
Age/year 47(25,52.75) 55(46,59) 51(34,62) 0.316

Gender (female/male) 5/3 8/2 6/4 0.599

BMI (kg/m2) 23.32±3.34 22.96±1.92 23.65±3.17 0.865
Duration of Hospitalization 5.00(1.75,7.50) 7.50(6.00,8.00) 8.00(5.50,9.25) 0.033

Blood cell detections

WBC,10^9/L 7.08(6.63,9.28) 6.78(6.23,8.44) 7.83(6.63,10.09) 0.006
EOS,10^9/L 0.18(0.08,0.22) 0.72(0.27,0.78) 0.14(0.11,0.20) 0.006

NEU,10^9/L 3.67(3.13,5.08) 3.05(2.53,4.20) 4.68(3.92,7.31) 0.019

LYM,10^9/L 1.43±0.63 1.83±0.37 2.61±0.32 <0.001
PLT,10^9/L 278.88±55.04 240.38±33.42 272.22±60.00 0.292

HGB,10^9/L 134.13±12.71 129.25±15.56 131.11±18.20 0.826

RBC,10^9/L 4.74±0.34 4.32±0.59 4.64±0.68 0.29
EOS% 2.45(1.35,3.38) 10.90(4.5,16.58) 2.10(1.40,2.80) 0.006

NEU% 61.94±11.48 47.27±9.78 59.77±10.89 0.025

LYM% 23.94±7.09 31.60±5.74 28.63±9.20 0.148

Sputum

Neutrophils % 46.5(41.55,86.20) 35.00(12.63,50.50) 87.50(83.50,96.00) <0.001

Eosinophils % 0.3(0, 1.85) 36.25(12.31,65.38) 0.50(0.00,1.00) <0.001

Macrophages % 40.5(7.52, 52.56) 23.08±15.88 8.46±7.15 0.059
Lymphocytes % 1.75(0.88, 8.26) 0.63(0.00,1.94) 0.25(0.00,0.50) 0.192

Lung function

FEV1/FVC 85.48(83.97,87.8) 83.49(78.20,84.03) 83.99(83.83,84.34) 0.028

FEV1 2.76±0.41 2.25±0.30 2.14±0.39 0.016
FVC 3.16±0.97 2.16±0.51 1.94±0.43 0.005

Inflammatory indicators

IgE, mg/L 33.99(6.74,80.30) 174.58(58.79,203.9) 81.16(50.54,195.73) 0.031

Abbreviations: WBC, White blood cell; EOS, Eosinophils; NEU, Neutrophil; LYM, Lymphocyte; PLT, Blood platelet; HGB, Glycosylated hemoglobin; RBC, 
Red blood cell; FEV1, Forced expiratory volume in one second; FVC, Forced vital capacity; IgE, Total IgE.
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Altered Composition of the Respiratory Tract in Different Asthma Patients
We utilized the MetagenomeSeq method to identify genus-level taxa with significant statistical and biological differences 
among the three groups. In the comparison between EA and HC, Caulobacter and Acidovorax were more abundant in EA 
than in HC (P < 0.05, Figure 3A). In the comparison between NEA and HC, a marked enrichment of Enterococcus, 
Pseudomonas, Acinetobacter, Rothia, Porphyromonas, and Veillonella was observed in the NEA group (P < 0.05, 
Figure 3B). Further comparison between EA and NEA revealed that Achromobacter, Abiotrophia, and Rothia were 
more abundant in NEA compared to EA (P < 0.05, Figure 3C). This differential abundance pattern highlights the unique 
microbial landscapes characterizing EA and NEA, which may contribute to their distinct clinical manifestations and 
disease mechanisms.

With the confirmation of airway microbial dysbiosis among the patients, we next explored the potential of the airway 
microbiota as diagnostic indicators. Using random forest analyses, we sought to identify taxonomic markers that could 
distinguish between EA and HC, as well as between NEA and the other two groups. This analysis constructed a random 
forest predictive model based on OTU feature selection. By selecting general with the highest area under the curve 
(AUC) values, we identified key markers (Figure S3). For distinguishing EA from HC, five general were selected based 
on MeanDecreaseAccuracy (Figure 3D), and a 10-fold cross-validation was applied. ROC curves were plotted to evaluate 
predictive performance, yielding an AUC of 66.78%, indicating moderate discriminatory ability (Figure 3E). However, 

Figure 2 Characteristics of the airway microbiome composition. (A) Alpha diversity analysis. (B) Microbial community beta-diversity. (C) Venn diagram of OTUs. (D) 
Relative abundance of top 10 phylum and genus. (E) Heatmap of microbial relative abundances of top 10 phylum. (F) Heatmap of microbial relative abundances of top 10 
genus. *P <0.05, **P<0.01.
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the model demonstrated robust performance in distinguishing NEA from both HC and EA. Remarkably, only three 
general were required to achieve the highest AUC value of 83.81% when distinguishing NEA from HC, underscoring 
strong discriminatory potential. These findings suggest that the airway microbiota holds significant promise as 
a diagnostic tool, particularly in identifying NEA patients from healthy controls. Additionally, Haemophilus, 
Methylobacterium, and Rothia emerged as potential biomarkers for identifying individuals predisposed to developing 
neutrophils asthma.

Functional predictions of microbial communities based on 16S rRNA gene sequences were conducted using 
PICRUSt2 with the COG database. Distinct functional categories within the COG database were identified between 
NEA and HC groups, reaching statistical significance (P < 0.05, Figure 3F), including DNA-binding response regulators 
and glycosidases. A comparative analysis between EA and NEA microbial communities also revealed statistically 
significant differences (P < 0.05, Figure 3G) in five key functional domains, including DNA-binding transcriptional 
regulators, ADP-ribose pyrophosphatase YjhB, predicted dehydrogenase, signal transduction histidine kinase, and DNA- 

Figure 3 Prediction model of airway microbiota for EA and NEA based on genus-level abundances using random forests. (A–C) Genus-level taxa differed between groups. 
(D) Variable importance ranking chart. (E) ROC curve of the model. (F) COG functional analysis of microbiota between NEA and HC. (G) COG functional analysis of 
microbiota between EA and NEA. *P <0.05, **P<0.01.
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binding response regulators. These functional differences provide valuable insights into the structure and functionality of 
microbial communities and their interactions under distinct environmental conditions.

Metabolomics Analysis of Different Asthma Patients versus HC
Multivariate Analysis of Metabolomic Data
To further elucidate the pathogenesis of asthma in different patient subtypes, residual sputum samples were analyzed for 
metabolomics. In positive ion mode (ESI+), 807 metabolites were identified, with 252 annotated against the KEGG 
database. In negative ion mode (ESI-), 532 metabolites were identified, with 193 annotated. The PCA score plots in both 
2D and 3D for the sputum metabolome in ESI+ and ESI- modes (Figure S4A and B) demonstrated strong stability across 
samples in both ionization modes, confirming the reliability of the metabolomic system. A clear segregation was 
observed between EA, NEA, and HC groups, indicating significant metabolic differences. Each sample was represented 
as a point on the score plots, and permutation tests (n = 200) were used to validate the OPLS-DA model. The permutation 
plots showed that all blue Q2-values to the left were lower than the original points on the right, confirming the validity of 
the models. OPLS-DA clearly separated metabolites between the groups under investigation (Figure S4C–H), high-
lighting distinct metabolic profiles across asthma subtypes.

Identification of the Differential Metabolites in Sputum
A combined analysis of positive and negative ions was conducted to comprehensively understand metabolite functions. 
Metabolites that distinguished asthma patients from controls were selected based on fold change (cutoff >1.2 or <0.833) 
and VIP scores from OPLS-DA.

A total of 269 metabolites showed significant differences between EA patients and HC (Figure 4A, D, G), with 180 
metabolites upregulated and 89 downregulated in EA patients (VIP > 1, P < 0.05). Notably, lipids and lipid-like 
molecules such as 15(S)-HpETE, Lipoxin B4, and 15-Epiprostaglandin E1 were elevated in EA patients, while 
glycerophospholipids such as Thymidine 5′-monophosphate and Uridine monophosphate (UMP) were downregulated.

For NEA patients, 224 metabolites exhibited significant differences compared to HC (Figure 4B, E, H), with 149 
metabolites upregulated and 75 downregulated (VIP > 1, P < 0.05,). Notable metabolites in NEA included elevated levels 
of PC 16:0_16:1 and D-Raffinose, while methadone-d9 and 2-Methylglutaric acid were downregulated. In the comparison 
between EA and NEA groups, 166 metabolites showed significant differences in relative abundance (Figure 4C, F, I), with 88 
upregulated and 78 downregulated in EA patients (VIP > 1, P < 0.05). Key metabolites such as 5-Hydroxymethyluracil, 
methadone-d9, and 5-Hydroxyindole-3-acetic acid were elevated in EA patients, while Quinolinic acid and PC 16:0_16:1 was 
downregulated in NEA patients.

Enrichment Analysis and Correlation of Metabolites in Sputum
The Kyoto Encyclopedia of Genes and Genomes (KEGG) database provides a comprehensive resource for the functional 
interpretation of genomes and high-throughput data generated from large-scale experimental technologies. The altered 
metabolites in this study were primarily associated with amino acid and lipid metabolism. In the comparison between EA 
and HC, the significantly different metabolites were enriched in 51 metabolic pathways, with three pathways showing 
significant differences: pyrimidine metabolism, phenylalanine metabolism, and bile secretion (P < 0.05) (Figure 5A). For 
NEA versus HC, 46 pathways were identified, with four showing significant differences, including tryptophan metabo-
lism, protein digestion and absorption, and phenylalanine metabolism (P < 0.05) (Figure 5B). In the comparison between 
EA and NEA, 38 pathways were enriched, with four pathways showing significant differences, including arachidonic 
acid metabolism, pyrimidine metabolism, serotonergic synapse, and leishmaniasis (P < 0.05) (Figure 5C).

Correlation analysis helps to elucidate the synergistic or mutually exclusive relationships between different metabo-
lites, providing insight into their regulatory interactions during biological state changes. A heat map of the top 20 
differential metabolites between EA and HC shows that most lipids and lipid-like molecules were positively correlated 
(Figure 5D). In the comparison between NEA and HC, 5-hydroxyindole-3-acetic acid, derived from indoles and 
derivatives, showed a positive correlation with 5-hydroxymethyluracil, derived from diazines, while no strong correla-
tions were observed among other metabolites (Figure 5E). In the EA versus NEA comparison, fatty acyls such as 5(S),15 
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(S)-DiHETE exhibited positive correlations with Protectin D1, a lipid mediator with anti-inflammatory and immunor-
egulatory effects (Figure 5F). The positive correlation between these two metabolites may suggest a shared inflammatory 
response or immunoregulatory mechanism between the EA and NEA groups.

Random Forest Analysis Discovered Potential Metabolic Biomarkers for Asthma Patients’ Stratification
In the comparison between EA and HC, KEGG enrichment analysis identified three significantly different pathways— 
pyrimidine metabolism, phenylalanine metabolism, and bile secretion (P < 0.05). Among these, pyrimidine metabolism 
had the smallest P-value, indicating the highest reliability. Consequently, we established a random forest model based on 
the eight differential metabolites enriched in the pyrimidine metabolism pathway to identify metabolic biomarkers 
capable of distinguishing EA from HC. The mean decrease Gini score highlighted the prominent metabolites 

Figure 4 Metabolic profiles among three groups. (A–C) PLS-DA plot for pairwise comparison between groups (D–F) Volcano plot of metabolites of pairwise comparison 
between groups. (G–I) Matchstick chart of the top 20 different metabolites between EA and HC, NEA and HC, EA and NEA.
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Figure 5 Enrichment Analysis and correlation of metabolites in sputum. (A–C) KEGG pathway enrichment analysis of the top 20 differential metabolites between EA and HC, NEA and HC, EA and NEA. (D–F) Correlation analysis of 
the top 20 differential metabolites between EA and HC, NEA and HC, EA and NEA.
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differentiating EA from HC (Figure 6A). The top metabolites associated with EA included methylmalonate, 5-methyl-
cytosine, dUDP, and 2-deoxyuridine (Figure 6B). To enhance the accuracy of biomarker identification, these four 
metabolites were combined in a ROC analysis, achieving an AUC of over 0.90, significantly higher than that of 
individual metabolites (Figure 6C).

In the comparison between NEA and HC, tryptophan metabolism exhibited the smallest P-value. We developed 
a random forest model using the seven differential metabolites enriched in the tryptophan metabolism pathway to identify 
biomarkers distinguishing NEA from HC (Figure 6D). The top metabolites associated with NEA included quinolinic 
acid, 5-hydroxyindole-3-acetic acid, acetyl-N-formyl-5-methoxykynurenamine, and 2-ketoadipic acid (Figure 6E), with 
a combined AUC of 0.90 in the test set (Figure 6F).

In the comparison between EA and NEA, the arachidonic acid metabolism pathway showed the most significant 
P-value. A random forest model was established with nine differential metabolites from this pathway to identify 
metabolic biomarkers distinguishing EA from NEA (Figure 6G). The top metabolites associated with NEA included 
prostaglandin E2, 15(S)-HpETE, PC 34:1, PC 32:0, and 11,12-epoxy-(5Z,8Z,11Z)-icosatrienoic acid. The expression of 
these metabolites in each group is shown in Figure 6H, with a combined AUC of 0.93 in the test set (Figure 6I).

To further validate the metabolites identified through non-targeted metabolomics, an external validation cohort was 
analyzed. Consistent with the discovery cohort results, significant differences were observed, particularly in the 
comparison between EA and HC. The four metabolites involved in pyrimidine metabolism—methylmalonate, 5-methyl-
cytosine, dUDP, and 2-deoxyuridine—showed consistent high AUC results in the validation cohort. Additionally, using 
these four metabolites to differentiate NEA from HC achieved an AUC of 0.91 in the validation set, demonstrating 
excellent diagnostic performance. Similar findings were confirmed in comparisons between EA and NEA (Figure 6J).

Correlation Between Airway Microbiome and Metabolites
To investigate the relationship between the altered airway microbiome and metabolites involved in asthma pathogenesis, 
we calculated Spearman correlation between differential bacteria and the top 40 differential metabolites across the 
different groups. In the comparison between EA and HC, we found that the Caulobacter genus positively correlated with 
the metabolite 6-(3-hydroxybutan-2-yl)-5-(hydroxymethyl)-4-methoxy-2H-pyran-2-one, though no specific functional 
annotation was available in KEGG (Figure 7A).

In the comparison between NEA and HC, all six different general exhibited positive correlations with metabolites 
(Figure 7B). Notably, Veillonella, Acinetobacter, Pseudomonas, and Enterococcus were positively associated with LPE 
18:0, 2-linoleoyl glycerol, and cis-aconitic acid. LPE 18:0 and 2-linoleoyl glycerol are lipids and lipid-like molecules, 
while cis-aconitic acid is an organic acid involved in the 2-oxocarboxylic acid metabolism pathway. The Porphyromonas 
genus correlated positively with salicylic acid, a benzenoid involved in the phenylalanine metabolism pathway. The 
Rothia genus correlated positively with metabolites such as N“, N“′-di[1-(4-nitrophenyl)ethylidene]carbonic dihydrazide, 
1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-(2-naphthyl)butane-1,4-dione, and dihydrothymine, while showing negative 
correlations with Lypressin acetate and 2-methoxyestrone.

In the comparison between EA and NEA, interesting correlations were observed between specific bacterial general 
and distinct metabolites. Abiotrophia and Achromobacter general exhibited a positive correlation with thymidine 5′- 
monophosphate, a nucleoside involved in the antifolate resistance pathway (Figure 7C). The Abiotrophia genus also 
showed a negative correlation with 3-methyluridine, another nucleoside. Achromobacter positively correlated with (±) 
9-HpODE, suggesting a potential link between this genus and specific lipid peroxidation products. Additionally, Rothia 
correlated positively with N1-cyclohexyl-4-(4-fluorobenzyl)-1,4-diazepane-1-carbothioamide. These findings highlight 
the intricate interplay between airway microbial communities and their metabolic byproducts in different asthma 
phenotypes, potentially contributing to the heterogeneity observed in asthma pathogenesis. Additionally, we compared 
the correlations between differentially microbial/metabolites and granulocyte percentages in EA and NEA. The correla-
tion analysis revealed that Abiotrophia positively correlated with sputum neutrophils. Achromobacter showed strong 
associations with blood neutrophil counts (Figure S5A). These findings support EA and NEA as distinct endotypes, with 
Abiotrophia and Achromobacter linked to neutrophilic inflammation. The differential metabolites 15(S)-HpETE and 
11,12-Epoxy-(5Z,8Z,11Z)-icosatrienoic acid exhibited significant positive correlations with eosinophils in both sputum 
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Figure 6 Metabolic markers of EA and NEA by random forest models. (A–C) Candidate metabolites classifying EA and HC. (D–F) Candidate metabolites classifying NEA 
and HC. (G–I) Candidate metabolites classifying EA and NEA. (J) ROC curve analysis of the candidate biomarkers.
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Figure 7 Spearman correlation heatmap for significantly altered metabolites and general among the three groups. (A) Correlation heatmap between EA and HC. (B) 
Correlation heatmap between NEA and HC. (C) Correlation heatmap between EA and NEA. *P < 0.05, **P < 0.01.
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and blood (Figure S5B). The compartment-specific (sputum vs blood) and phenotype-dependent patterns highlight 
potential biomarkers for targeted therapies.

Discussion
This study highlights the pivotal role of the lower airway microbiota in asthma pathogenesis, aligning with the growing 
body of research on the microbiome’s influence on asthma outcomes.12,31,32 By integrating 16S rRNA sequencing with 
untargeted metabolomics, we sought to uncover distinct microbial and metabolic signatures across EA, NEA, and HC, 
advancing our understanding of asthma’s heterogeneity.

At the phylogenetic level, our study provides robust evidence for the existence of a core respiratory microbiome, 
comprising Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota, which serves as a foundational component of 
respiratory health across both healthy individuals and those with asthma. This core microbiome underscores the critical 
role of these microbial groups in maintaining respiratory homeostasis, regardless of asthma status. However, genus-level 
differences revealed significant shifts in microbial composition, particularly between EA and NEA. The enrichment of 
Caulobacter and Acidovorax in EA suggests these general may contribute to eosinophilic inflammation.33,34 The 
presence of these bacteria may influence the local immune response, promoting the recruitment and activation of 
eosinophils, which are central to the inflammatory process in EA. While the increased abundance of Enterococcus, 
Pseudomonas, Acinetobacter, Rothia, Porphyromonas, and Veillonella in NEA reflects a microbial signature commonly 
associated with infection and inflammation. This microbial signature is commonly associated with infection and 
inflammation, indicating a potential role for these bacteria in driving the inflammatory pathways characteristic of NEA.

Functionally, the identification of two significantly altered classes-DNA-binding response regulators and glycosi-
dases-between NEA and HC underscores the profound impact of NEA on cellular processes. DNA-binding proteins, as 
transcriptional regulators, influence gene expression related to inflammation, immune responses, and cell proliferation.35 

Similarly, glycosidases, which are key enzymes involved in glycan processing, also exhibit significant alterations in 
NEA. This suggests that NEA may disrupt the normal glycan metabolism, further illustrating the complexity of cellular 
changes associated with this asthma subtype.36 The interplay between glycosidases and other cellular components may be 
crucial in understanding the pathogenesis of NEA and developing targeted therapeutic strategies.37 In addition, the 
significant differences in five functional categories, including transcriptional regulators, ADP-ribose pyrophosphatase 
YjhB, predicted dehydrogenases, signal transduction histidine kinases, and DNA-binding response regulators, between 
EA and NEA, span a wide range of metabolic and regulatory processes, reflecting the sophisticated nature of microbial 
interactions within each asthma phenotype. These findings reveal the sophisticated nature of the microbial interactions 
within each phenotype and the need for targeted therapeutic strategies to address their distinct pathogenic mechanisms.

Our metabolomics analysis revealed significant metabolic differences between EA and NEA, providing new mole-
cular-level evidence for understanding the heterogeneity of asthma. In EA, the upregulation of pro-inflammatory lipids 
such as 15(S)-HpETE and lipoxin B4 is highly consistent with the previously reported Th2-type inflammatory char-
acteristics in the airways.38 The downregulation of nucleic acid precursors such as thymidine 5′-monophosphate and 
UMP reflects metabolic reprogramming in airway epithelial cells under chronic inflammatory conditions, aligning with 
the mitochondrial dysfunction observed in EA patients.39 NEA exhibits distinct metabolic features: the increase in PC 
16:0_16:1 may affect airway smooth muscle reactivity by altering cell membrane fluidity, a mechanism validated in the 
lipidomics study.40 Meanwhile, the downregulation of methadone-d9 and 2-methylglutaric acid may indicate NEA- 
specific tryptophan metabolism disorders. These findings deepen our understanding of asthma endotyping: EA is 
dominated by arachidonic acid metabolism, whereas NEA involves phospholipid remodeling and microbial co- 
metabolism, establishing a robust biochemical basis for the clinical and immunological differences between these two 
major asthma endotypes.

In EA, altered pyrimidine metabolism was among the most significantly affected pathways, indicating its role in 
regulating inflammatory responses and cellular proliferation.41 Altered pyrimidine metabolism played a key role, with 
four metabolites (Methylmalonate, 5-Methylcytosine, dUDP, 2-Deoxyuridine) identified as robust biomarkers. In NEA, 
alterations in tryptophan metabolism were the most significant, suggesting that modulation of this pathway may be key to 
understanding NEA-associated metabolic changes. Tryptophan breakdown products play crucial roles in the synthesis of 
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bioactive compounds like serotonin and melatonin, which influence immune function, mood, and sleep regulation.42,43 

Additionally, the involvement of protein digestion and absorption pathways in NEA indicates possible disruptions in 
nutrient processing, further highlighting its metabolic complexity. Biomarkers for NEA, including quinolinic acid, 
5-hydroxyindole-3-acetic acid, acetyl-N-formyl-5-methoxykynurenamine, and 2-ketoadipic acid, demonstrated strong 
predictive value. Arachidonic acid metabolism distinguished EA and NEA, with potential therapeutic targets 
identified.44,45 Altered arachidonic acid metabolites in allergic rhinitis serum suggested a metabolic association.16 The 
consistency of these metabolic markers across validation cohorts strengthened their reliability and clinical significance. 
Overall, these findings provided insights into metabolic pathways and biomarkers for targeted therapies and diagnostics.

In exploring the link between airway microbiota alterations and metabolite changes in disease pathogenesis, our 
Spearman correlation analysis revealed intriguing findings. The airway microbiota may impact the host’s metabolic state, 
influencing asthma onset and inflammation development. Comparisons showed broader microbe-metabolite correlations 
in EA vs HC, with specific general correlated with lipids. In asthmatics with EA vs NEA, different general were linked to 
nucleoside metabolism and other pathways. These results suggest microbial communities influence disease progression 
by modulating metabolic pathways, potentially affected by microbiota structure and nutritional homeostasis. 
Additionally, we also investigated how the differential microbial communities and metabolites correlate with granulocyte 
levels in EA and NEA. Although no statistically significant correlations were observed between the differential microbial 
communities and neutrophil levels in sputum or blood, likely due to the small sample size and the low abundance of the 
differentially abundant microbial taxa, a positive correlation trend was still noticeable. This suggests that airway 
microbial dysbiosis may primarily be involved in neutrophil-dominated inflammatory pathways in asthma, whereas 
key metabolites are mainly positively correlated with eosinophils in both blood and sputum, with lipid mediators 
orchestrating systemic recruitment of eosinophils. For instance, the 15(S)-HpETE and epoxy fatty acid metabolic 
pathways, known to modulate type 2 inflammation,46 have been implicated, thereby revealing important mechanistic 
links between microbial/metabolic features and granulocyte-driven inflammation in asthma phenotypes.

Our multi-omics approach has offered novel insights into complexities of asthma, particularly by highlighting 
differences in airway microbial communities, functional characteristics, and metabolic pathways between EA and 
NEA. However, the journey toward identifying robust biomarkers for asthma stratification and personalized treatment 
is fraught with challenges, such as sample size limitations and methodological variability persist, necessitating further 
validation in larger cohorts to confirm reproducibility and clinical utility. Despite these limitations, our study represents 
a crucial step toward personalized asthma treatment, laying the foundation for targeted strategies. Future research should 
focus on elucidating the causal mechanisms underlying microbiome-metabolite interactions in asthma to identify robust 
biomarkers for more precise and effective management.

Conclusion
This study highlights the profound differences in airway microbial community structure, functional characteristics, and 
metabolite levels between eosinophilic asthma, neutrophils asthma, and healthy controls. By integrating 16S rRNA 
sequencing, metabolomics analysis, and the random forest algorithm, we have gained significant insights into the 
pathogenesis of asthma. This comprehensive approach not only enhances our understanding of the disease’s complexity 
but also lays a foundation for advancing personalized approaches in asthma care, facilitating more precise and targeted 
disease characterization and monitoring.
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Principal component analysis; OPLS-DA, Orthogonal partial least squares-discriminant analysis; VIP, Variable impor-
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