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Background: Orthopaedic surgeons commonly prescribe weight-bearing parameters for their patients for a variety of reasons. 
Weight-bearing may be limited in order to control the healing environment, but advancing a patient’s weight-bearing status is 
preferably done as quickly as possible to maximize functional recovery. However, it is entirely unclear to what extent these 
prescriptions are followed in practice. The purpose of this scoping review is to identify and compare non-invasive devices used for 
the measurement of weight-bearing following lower extremity fractures.
Methods: Database searches of MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL) were 
completed to identify relevant studies. Titles were screened for relevance, and abstracts were screened against the eligibility criteria. 
We identified studies that investigated the use of external force, pedal pressure, or activity monitoring devices used in adults after 
lower extremity fractures and excluded studies involving compartment pressure measurement.
Findings: Sixty-two studies met the inclusion criteria. About 39% of studies used an insole-type device, which could be worn in 
a shoe or integrated into a removable boot. Other device types included step count or activity monitors (52%), force plates (18%), 
pressure film (2%) and external pedobarography systems (27%).
Interpretation: We found that different monitors offered varying types of measurements and are suitable for a variety of 
applications. Therefore, selecting the ideal device depends on the metric of interest. Further high-quality prospective studies utilizing 
device monitoring are needed to validate the theory that early weight-bearing is beneficial and safe for patients with lower extremity 
fractures.
Keywords: trauma, fracture, lower extremity, weight-bearing, monitoring

Introduction
Orthopaedic surgeons commonly prescribe weight-bearing parameters for their patients for a variety of reasons. The AO 
Foundation recommends periods of non-weight-bearing or limited weight-bearing for the majority of lower extremity 
peri-articular fracture patterns.1 Weight-bearing may be limited in order to modulate the strain environment of a fracture 
as it heals, to protect soft tissues or to ensure construct safety. However, advancing a patient’s weight-bearing status is 
preferably done as quickly as possible in order to minimize tissue atrophy and disuse osteopenia and maximize functional 
recovery.2,3 These conflicting priorities are an ongoing focus in the literature.

Multiple studies have explored the relationship between load bearing and fracture recovery on a theoretical level. In 
an in-vitro computer modelling study by Claes et al found that while increased fracture distance was associated with 
reduced stability, interfragmentary motion was well tolerated at lower fracture distances.4 Using a finite element model, 
Bailon-Plaza and van der Muelen showed that both fracture site stimulation and increase in ambulatory moments within 
limits resulted in accelerated healing.5 Theoretical models support ambulation as a catalyst in early healing of a fracture.

Comparative studies support the safety of early post-operative weight-bearing in a variety of fracture types. A study 
by Graham showed that accelerated weight-bearing is safe and effective in surgically treated hip fracture patients at 1 and 
3 year follow ups.6 Similarly, a Cochrane review by Lin et al showed that patients in early and delayed weight-bearing 
groups have similar activity levels and complication rates following surgical fixation of ankle fractures.7 These studies 
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are limited in that no measure of participants’ weight-bearing behavior was utilized. This significantly limits the 
conclusions that can be drawn since the only discrete difference between the comparative groups is the investigators’ 
instructions, not necessarily the patient’s behavior. However, comparative studies using current load sensing technology 
have been proposed. Kalmet et al have suggested a comparison of “permissive weight bearing” and traditional non- 
weight-bearing outcomes in pelvic, acetabular and lower extremity peri-articular fractures, and plan to use an electronic 
insole to monitor weight-bearing activity.8

It remains unclear to what extent weight-bearing prescriptions are followed in practice. Multiple published studies 
have shown high non-compliance rates. In a study of 51 lower extremity fracture patients with non-weight-bearing 
instructions, Chiodo et al found that 27.5% of patients exceeded loading limits over the 3-month study duration.9 

Similarly, Braun et al showed that 53% of patients were unable to comply with weight-bearing prescriptions post- 
operatively in multiple lower extremity fracture types.10 Dabke et al found similar results during crutch assisted weight- 
bearing in a lab setting.11

Given high rates of non-compliance following lower extremity fracture, accurate methods of weight-bearing mon-
itoring are critical to ensure the integrity of future studies. The purpose of this scoping review was to identify and 
compare non-invasive devices used for the measurement of weight-bearing following lower extremity fractures.

Materials and Methods
Database searches of MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL) were 
completed to identify relevant studies. Searches of MEDLINE and EMBASE databases were completed on and were 
inclusive to September 6th, 2023, with the CENTRAL database search completed on March 27th, 2025 and inclusive to 
December 31st, 2023. Our eligibility criteria included studies that used non-invasive force, plantar pressure, or activity 
monitoring devices in adults after lower extremity fractures. We specifically excluded studies involving compartment 
pressure measurement. The review protocol was developed with the assistance of a medical librarian and finalized prior 
to being implemented, however was not formally registered. An example of the search terms used is included in Table 1, 
with full database specific search terms included in Appendix 1.

Titles were screened for relevance and abstracts were screened against the eligibility criteria. Title, abstract and full 
text screening was completed by two independent reviewers (JR, AW). An additional search of clinicaltrials.gov, the 
WHO International Clinical Trial Registry Platform (ICTRP), Networked Digital Library of Theses and Dissertations 
(NDLTD), Dissertations and Theses Global and Grey Matters was completed to identify unpublished literature. Any 
theses or dissertations meeting eligibility criteria were screened for relevant published sub-studies. Reference lists of all 
studies meeting inclusion criteria after full text review were reviewed to identify additional relevant literature. Results 
were documented in a pre-defined charting form. A PRISMA diagram outlining the review process is shown in Figure 1.

Results
Device types were identified and separated into 5 groups for further analysis (Table 2). Some studies used more than one 
method of measurement, and devices were included in multiple categories as necessary. About 39% of studies used an 
insole-type device, which could be worn in a shoe or integrated into a removable boot. Other device types included step 
count or activity monitors (52%), force plates (18%), pressure film (2%) and external pedobarography systems (27%).

Table 1 MEDLINE Database Search Terms

1 (((pressure or force or load or weight) adj1 (measure* or estimat* or quantif* or computat* or evaluat*)) or ((step or pace or tread or 
footstep or footfall or stride or tramp) adj1 (count* or sum* or total or tally or calculat* or computat*))).mp.

2 (exp Lower Extremity/ and exp Fractures, Bone/) or exp Femoral Fractures/ or exp Hip Fractures/ or exp Tibial Fractures/ or exp Fibula 
Fractures/ or exp Ankle Fractures/

3 1 and 2

4 (1 and 2) not (compartment* or (compartment* adj1 syndrome)).mp.
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Relevant metrics for each identified device were collected from available manufacturer data (Table 3). In the case that 
manufacturer data was not publicly available, manufacturers and study authors were contacted to request missing 
information. Relevant information from review studies and cited background work were used when manufacturer data 
were unavailable, and we were unable to contact study authors.

About 47% of devices were found to be suitable for remote monitoring or tracking based on available information. 
Data storage capacity ranged from hours to multiple months. Storage capacity metrics were not included for all force 
plate, pressure plate and pedobarographic systems.

Discussion
The purpose of this scoping review was to identify and compare non-invasive devices used for monitoring lower 
extremity weight-bearing activity after fracture. Device suitability for monitoring applications is reviewed below for 
each group.

Force Plate
A force plate can be a versatile tool for weight-bearing monitoring and can be used in different capacities depending on the 
metric of interest. Of the devices identified, all were able to collect force data in a lab setting. Early studies by Pratt et al20 and 

Figure 1 PRISMA diagram. Adapted from Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline 
for reporting systematic reviews. BMJ. 2021;372:n71. under the CC BY 4.0 license.

Table 2 Weight-Bearing Monitoring Device Sub-Categories

Device Type Studies Using Device Type

Insole 24

Step count or activity monitor 32

Force plate 11
Pressure film 1

External pedobarography 17
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Table 3 Device Metrics

Device/Model Type Force Pressure Step 
Count

Remote 
Tracking

Data 
Storage

Study Source

Force plate Bertec Force plate Yes No No No N/A Dabke et al,11 Bozkurt et al12 Dabke et al,11 Bozkurt et al12

Force plate Kistler Force plate Yes No No No N/A Joslin et al,13 Catani et al,14 Kitaoka et al15 Joslin et al,13 Catani et al,14 Kitaoka et al15

Force plate NS Force plate Yes No No No N/A Kershaw et al16 Kershaw et al16

Force plate NS Force plate Yes No No No N/A van Hoeve et al17 van Hoeve et al17

Force plate NS Force plate Yes No No No N/A Wardlaw et al18 Wardlaw et al18

Force plate AMTI Force plate Yes No No No N/A Mittlmeier et al19 Mittlmeier et al19

Force plate Custom Force plate Yes No No No N/A Pratt et al20 Pratt et al,20 Pratt et al21

RehaWalk Treadmill Zebris Multiple Yes Yes No No N/A Mendel et al22 Zebris23*

EMED Novel External 
pedobarography

Yes Yes No No N/A Durr et al,24 Mehlhorn et al,25 Çolak et al,26 Kosters 
et al,27 Jansen et al,28 Jansen et al,29 Hirschmuller et al,30 

Becker et al,31 Rosenbaum et al,32 Mittlmeier et al,33 

Mittlmeier et al19

Novel34*

Footscan Materialise 
(RSscan)

External 
pedobarography

No Yes No No N/A Genc et al,35 Zielinski et al,36 Schepers et al,37 Schepers 
et al38

Materialise39*

FootWork Podoactivia External 
pedobarography

Yes Yes No No N/A Jordan-Palomar et al40 Jordan-Palomar et al,40 Alfaro-Santafé et al41

Dynamic optical 
pedobarograph

NS External 
pedobarography

No Yes No No N/A Davies et al42 Davies et al42

GANGAS Medilogic Insole No Yes No No N/A Besch et al,43 Follak & Merk44 Mediologic45*

Pedar Novel Insole Yes Yes Yes No N/A Hunt et al,46 Hetsroni et al,47 Kuschnaroff Contreras 
et al,48 Vasarhelyi et al49

Novel50*, Novel51*

F-scan Tekscan Insole Yes Yes Yes Yes 2h** Koval et al,52 Teng et al,53 Kuschnaroff Contreras et al54 Tekscan55*

SensiStep/FeetB@ck Evalan Insole Yes No Yes Yes 24h Raaben et al,56 Bakker et al57 Bakker et al,57 Evalan58*

Custom Custom Insole Yes No Yes Yes >24h** Aranzulla et al59 Aranzulla et al59

SmartStep Andante Insole Yes No Yes Yes NS Hershko et al60 Isakov,61 VirtualPoint62+

OpenGO Moticon Insole Yes Yes Yes Yes ~1-32h‡ Braun et al,10 Braun et al63 Moticon64*

ReGO Moticon Insole Yes Yes Yes No N/A Eickhoff et al65 Moticon66*

Advanced Tibial Load 
Analysis System 
(ATLAS)

Custom Insole Yes No Yes Yes 3m North et al,67 Lajevardi-Khosh et al,68 Lajevardi-Khosh 
et al,69 Lajevardi-Khosh et al,70 North et al71

North et al,72 Lajevardi-Khosh et al70

ParoTec Paromed Insole No Yes No No NS Dudkiewicz et al73 Paromed74*, Paromed75*

Fscan Footlabs Insole Yes Yes No NS NS Kinner et al76 Kinner et al76

NS Penny 
andGiles

Insole No Yes No NS NS Follak & Merk44 Follak & Merk44

Pressure Sensitive 
Film

FujiFilm Pressure film Yes Yes No No N/A Chiodo et al9 FujiFilm77*

Alta HR Fitbit Activity monitor No No Yes Yes 7d^ Reppas-Rindlisbacher et al78 FitBit79

Charge 4 Fitbit Activity monitor No No Yes Yes 7d^ Hewage et al80 FitBit81

NS Fitbit Activity monitor No No Yes Yes NS Mendel et al22 Mendel et al22
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StepWatch3 Modus 
Health

Activity monitor No No Yes Yes >2m Reider et al,82 Kosters et al27 Cyma Tech83

Actibelt RCT2 Trium Activity monitor No No Yes Yes 75d Mueller et al84 Daumer (e-mail communication, March 9th, 
2024)

Flex Fitbit Activity monitor No No Yes Yes 7d^ Schmal et al85 FitBit86

Shine Misfit Activity monitor No No Yes Yes 30d^ Schmal et al85 Misfit87

AX3 Axivity Activity monitor No No Yes Yes 21d‡ Schmal et al,85 Armitage et al88 Axivity89*

NS ActiGraph Activity monitor No No Yes Yes 180d Resnick et al90 ActiGraph91++

ActivPAL professional PAL Activity monitor No No Yes Yes NS Taraldsen et al,92 Taraldsen et al,93 Taraldsen et al94 PAL95

PAM AM300 Pam Coach Activity monitor No No Yes Yes 64d Pol et al96 Pam Coach97

*Model information available from the manufacturer at the time of source access was cited. **Limited by battery life. +Device information from the manufacturer was not available online, therefore was obtained from the alternate source 
listed. ‡Variable depending on specified measurement frequency. ^Activity data stored on the device without sync. ++Specifications given for ActiGraph wGT3X-BT model. 
Abbreviation: NS: not specified or information not available after contacting authors/manufacturers.
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Wardlaw et al18 measured limb loading using a force plate and oscillograph paired with an instrumented cast system and were 
able to calculate fracture stiffness. Kershaw et al16 and Joslin et al13 used force plate systems to demonstrate an increase in 
longitudinal weight-bearing activity with fracture healing, in addition to fracture stiffness measurements. Other studies used 
force plates paired with video analysis, goniometers and/or electromyography to assess joint and muscle forces during 
gait.12,14,15,17,19 None of the identified systems were found to be suitable for ambulatory use and therefore would require 
interval assessment and extrapolation of loading behaviour to the home environment.

External Pedobarography
These systems allow for the measurement of underfoot pressure distribution through an instrumented mat or pressure 
plate. For example, the Novel EMED measures underfoot pressure distribution during standing or with movement,34 with 
functionality demonstrated in multiple studies.19,24–33 Pedobarography devices can also be coupled with traditional gait 
analysis techniques, such as force, video and strength testing, to provide an additional metric to assess patient function 
and recovery.19,25,27,30,33,36,40 Some models of the Materialise Footscan allow researchers to synchronize gait analysis 
with pressure data acquisition through an integrated system.39 A unique treadmill based system is demonstrated by 
Mendel et al22 in a mobility study of sacral fracture patients. The Zebris RehaWalk allows for collection of pressure 
distribution and step count, in addition to force data, while providing visual feedback to the patient.23 As with force plate 
systems, these devices are generally not suitable for ambulatory use and require monitoring by an experienced research 
team during data collection.

Insole Monitoring
These devices allow researchers to collect force, pressure and step count data through an instrumented insole in the 
patient’s shoe. Based on the available information, most of the devices in this category are capable of collecting force and 
step count data simultaneously.50,51,55,57–59,61,62,64,66,70,72 The Novel Pedar, Tekscan F-scan and Moticon OpenGo/ReGO 
systems also have the additional benefit of providing pressure distribution data.50,51,55,64,66 Some devices are optimized 
for ambulatory monitoring. For example, the ATLAS is a multi-sensor system integrated into the sole of a CAM walking 
boot and is designed for continuous monitoring for up to 3 months.72 The Moticon OpenGO has been used in multiple 
studies of lower extremity weight-bearing post-fracture10,63 and allows for continuous monitoring on the order of days 
using the “SmartRecording mode” (depending on the measurement frequency setting, Figure 2).64 In contrast, the 
Tekscan F-scan and Evalan SensiStep have an ambulatory capability limited to less than 1 day by battery or storage 
capacity,55,58 making them less than ideal for home monitoring applications. In general, insole systems with the ability to 
collect a range of gait data, including force, pressure distribution and step count over weeks to months, are ideally suited 
for ambulatory monitoring applications. These devices allow a range of gait data to be collected while minimizing 
intervention by both the patient and research team.

Step Count/Activity Monitors
All of the identified activity monitors had ambulatory monitoring capabilities that ranged in their storage capacity from 7 to 
180 days depending on the device (Daumer, e-mail communication, March 9th, 2024).79,81,83,86,87,89,91,97 Popular consumer 
wearables produced by FitBit are capable of monitoring step count data for up to 7 days without syncing.79,81,86 Some other 
devices marketed towards research applications, such as the Cyma Tech StepWatch, Trium ActiBelt, ActiGraph wGT3X-BT 
and Pam Coach AM300, are capable of collecting activity data for multiple months (Daumer, e-mail communication, 
March 9th, 2024).83,91,97 While relatively simple to implement and easy to use, an inherent limitation of these devices is their 
inability to collect load or pressure distribution data. However, when taken as a proxy for load bearing activity step count 
remains a valuable source of information for patient mobility and functional status.

Pressure Sensitive Film
Chiodo et al9 placed a pressure sensitive film in the casts of lower extremity fracture patients to assess compliance with 
non-weight-bearing restrictions. The Fujifilm material allows for assessment of pressure distribution via the proprietary 
software once removed.77 While simple to implement, this approach has multiple limitations. A pressure threshold must 
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be set to differentiate compliance versus non-compliance. As well, data is lost when a previously measured value is 
exceeded, therefore, information on the frequency of load bearing events cannot be assessed over time. While 
a reasonable approach for assessing if a patient has been 100% compliant with non-weight-bearing restrictions, this 
material is not ideal for following the loading behaviours of patients with partial weight-bearing restrictions over time.

Study Limitations
While this scoping review identified a variety of non-invasive devices used to monitor activity or load bearing in patients with 
lower extremity fractures, there are some limitations to the study. Our database search included a focused search through 
MEDLINE, EMBASE and CENTRAL. An expanded search of other databases specializing in medical and biomechanical 
literature may identify additional studies and devices that are not captured in this study. As well, many studies included limited or 
incomplete information on the monitoring device used, and in some cases did not report manufacturer information. However, we 
attempted to provide a comprehensive overview by obtaining missing data from published device documentation, manufacturer 
specifications, user and product manuals when available, and contacting manufacturers with information requests as necessary.

We also note that the included studies are heterogeneous in their choice of device and fracture types studied, resulting 
in varying endpoints of interest. Nevertheless, we chose to focus on the capabilities of each device to demonstrate 
possible indications for use in future research (ie measurement type, ability to facilitate remote tracking, and data storage 
capacity). Thus, this scoping review may serve as a guide for future studies to focus on specific device indications, 
related complications and the effect on treatment outcomes.

Conclusions
In this scoping review, a variety of approaches and devices used for weight-bearing and activity monitoring for patients 
with lower extremity fractures were found in the literature. We found that different monitors offered varying types of 
measurements and are suitable for a variety of applications. Therefore, selecting the ideal device depends on the metric of 

Figure 2 Moticon OpenGo Insole (Color). Used with permission from moticon.com.
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interest. If detailed gait analysis is necessary, devices such as the Zebris RehaWalk, Novel Pedar/EMED and Tekscan 
F-scan provide many sensing elements to collect pressure distribution data with a high degree of resolution.23,34,50,51,55 

Increased resolution does come at the cost of higher data and storage requirements. With reduced number of sensors, the 
ATLAS and Moticon OpenGO devices require less data storage, which improves ambulatory monitoring capacity.64,72 

Some activity monitors also have the benefit of reduced storage requirements given simplified data metrics83,91 but rely 
on the assumption that step count correlates with the degree of lower extremity loading. Pressure sensitive films may be 
suitable for monitoring of non-weight-bearing compliance but are limited in providing time course data.9

As fracture care continues to evolve, we expect external weight-bearing monitoring devices to play a key role in data 
collection and monitoring patient compliance. With reduced costs and increasing system resolution over time, the accessi-
bility of these devices should improve. Once the ideal parameters for weight-bearing following lower extremity fracture are 
elucidated, there may be a role for such devices to provide real-time feedback to the patient on their compliance. In the 
interim, the systems currently available on the market provide an array of options for researchers to choose from in 
monitoring loading post-lower extremity fracture. Further high-quality prospective studies utilizing device monitoring are 
needed to validate the theory that early weight-bearing is beneficial and safe for patients with lower extremity fractures.2,3,7
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