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Introduction: Traditional treatments for non-small cell lung cancer (NSCLC), such as chemotherapy, especially platinum-based 
regimens, often lack efficacy due to the disease’s inherent heterogeneity. Precision medicine in NSCLC recognizes each tumor’s 
unique genetic profile. Alterations in the pharmacokinetics and pharmacodynamics of platinum-based therapies significantly influence 
their clinical outcomes. Previous research has predominantly focused on genetic polymorphisms in genes like Glutathione 
S-transferase Pi 1 (GSTP1), ATP Binding Cassette subfamily C member 2 (ABCC2), Excision repair cross-complementation group 
1 and 2 (ERCC1, and/ ERCC2), which play crucial roles in detoxification, drug transportation, and Nucleotide Excision Repair (NER). 
However, findings have shown considerable variability.
Methods: The analysis followed the PRISMA and STROPS Guidelines, using specific search terms including NSCLC, 
Chemotherapy, Polymorphisms, Single Nucleotide Polymorphisms (SNPs), ERCC1, ERCC2, ABCC2, GSTP1, Effectiveness, and 
Clinical Response. These studies were subjected to full-text screening process.
Results: Initial screening of 370 studies, comprising 275 from PubMed and 95 from EBSCO, identified 53 relevant ones, excluding 
those such as reviews, non-English studies, and meta-analyses. Among the genetic variants studied (ERCC1 rs11615, ERCC2 rs13181, 
ABCC2 rs717620, GSTP1 rs1695), GSTP1 rs1695 emerged as particularly promising, with 11 studies indicating a significant 
association with improved survival outcomes.
Conclusion: The integration of SNP profiling into clinical decision-making processes holds substantial potential for enhancing the 
personalization of NSCLC treatment strategies, thereby improving patient outcomes.
Keywords: NSCLC, chemotherapy, polymorphisms, SNPs, ERCC1, ERCC2, ABCC2, GSTP1

Introduction
Precision medicine in non-small cell lung cancer (NSCLC) is increasingly becoming a pioneering method to revolutio-
nize cancer treatment. The foundation for modern treatment approaches in NSCLC can be traced back to 1969, when 
cisplatin one of the first effective chemotherapy agents was discovered. Subsequently, targeted therapies and immu-
notherapies were developed, leading to the occurrence of the pharmacogenomics era, which aimed to maximize efficacy 
and reduce adverse effects.1,2 Traditional treatment, including chemotherapy, particularly platinum-based regimens, as 
well as modalities such as radiation and surgery, are often associated with limited success due to the inherent 
heterogeneity of the disease.3 However, recent advances in genomics and molecular biology have shown information 
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regarding the genetic alterations influencing NSCLC and patient responses to chemotherapy.4 This information has been 
used for the development of specific therapies to target certain genetic mutations and predict responses to 
chemotherapy.5–8 However, accessibility and affordability of innovative treatments, including targeted therapy and 
immunotherapy, pose significant challenges, particularly in low- and middle-income countries (LMICs).9–11 Despite 
the accessibility of targeted and immunotherapy treatments, some therapies have shown minimal or no response in 
patients with NSCLC. In previous studies, the overall response rate has been limited when using only targeted therapy or 
immunotherapy, leading to the combination of biologic agents with conventional chemotherapy, such as paclitaxel and 
platinum-based regimens, to potentially improve treatment efficacy.12–14

Platinum-based chemotherapy as the first-line conventional treatment in NSCLC is widely used, particularly in 
patients with a wildtype or negative profile for biomarkers such as EGFR, PD-L1, ROS1, and ALK fusion.15 Studies 
focusing on personalized medicine in targeted therapy and immunotherapy related to clinical outcomes such as HR and 
PFS are more significant compared to others on cytotoxic or conventional chemotherapy. Previous meta-analyses had 
shown that there was no personalized method in clinical trials for conventional chemotherapy.16 Meanwhile, the 
effectiveness of platinum is varied based on genetic profiles, particularly gene markers in the pharmacokinetics and 
pharmacodynamics of platinum.17–21

The genetic profile, including polymorphism on Glutathione S-transferase Pi 1 (GSTP1) as detoxification enzymes 
and ATP Binding Cassette subfamily C member 2 (ABCC2) as the transporter, can influence the pharmacokinetics 
mechanism on platinum-based. Meanwhile, the polymorphism of Excision repair cross-complementation group 1 and 2 
(ERCC1, and/ ERCC2) genes that play a role in Nucleotide Excision Repair (NER), is capable of influencing 
pharmacodynamics mechanism. This polymorphism can alter the expression level of protein and activity, leading to 
the clinical outcomes of chemotherapy.22–25 The identification of genetic aberrations also allows clinicians to optimize 
treatment outcomes, minimize adverse effects, and enhance the prognosis for NSCLC patients. Consequently, screening 
these genetic markers represent a novelty that can fundamentally impact NSCLC therapy, particularly for platinum-based 
conventional chemotherapy, offering more effective and less toxic treatment options.26,27

In recent years, several databases and tools have been developed to support the analysis and interpretation of single 
nucleotide polymorphisms (SNPs). One of the most widely used resources is ClinVar, a publicly accessible database that 
aggregates information about genomic variation and its relationship to human health. Another key resource is 
PharmGKB, which focuses on the impact of genetic variation on drug response and provides curated information related 
to pharmacogenomics. In addition to these databases, various computational tools such as SIFT, PolyPhen, and 
MutationTaster are commonly used to predict the functional impact of SNPs. These resources play a crucial role in 
SNP profiling by helping to prioritize variants for further investigation and guiding clinical interpretation.

Based on the background above, this systematic review aimed to identify, assess, and summarize the single nucleotide 
polymorphisms (SNPs) in key genes, namely ERCC1, ERCC2, GSTP1, and ABCC2, to determine their potential as 
predictive markers for therapy outcomes in NSCLC. The analysis focused on determining which SNPs could serve as 
a reliable genetic marker for platinum-based therapies. The results are expected to establish a framework for SNPs 
screening in NSCLC patients who tested negative for genetic alterations such as EGFR mutations, ALK fusion, ROS1 
rearrangements, or PD-L1 expression. Additionally, the personalized method aimed to enhance decisions on treatment 
guidance and optimize therapeutic strategies for NSCLC patients.

Materials and Methods
Literature Search Strategy and Identification
This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and 
Meta-analysis (PRISMA)28 (Supplementary 1 and 2). Additionally, the reporting quality for all included studies was 
assessed using Checklist Guidelines for Pharmacogenomic Studies, STrengthening the Reporting of Pharmacogenetic 
Studies (STROPS).29 A systematic literature review was conducted from June to July 2023, with two authors responsible 
for collecting and analyzing the data. We selected studies that were eligible for inclusion using the STROPS Guidelines 
and predefined inclusion and exclusion criteria (Supplementary 3). Literature searches were performed using two 

https://doi.org/10.2147/TACG.S518467                                                                                                                                                                                                                                                                                                                                                                                                                                                 The Application of Clinical Genetics 2025:18 94

Afifah et al                                                                                                                                                                           

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/article/supplementary_file/518467/518467%20Supplementary%20Material.pdf
https://www.dovepress.com/article/supplementary_file/518467/518467%20Supplementary%20Material.pdf
https://www.dovepress.com/article/supplementary_file/518467/518467%20Supplementary%20Material.pdf


databases, PubMed and EBSCO. The investigation was conducted to obtain relevant studies on SNPs in ERCC1, ERCC2, 
ABCC2, and GSTP1 genes, along with their correlation to the platinum-based chemotherapy responses, including 
survival. Search strategies included the use of the following terms, namely NSCLC, Chemotherapy, Polymorphisms, 
SNPs, ERCC1, ERCC2, ABCC2, and GSTP1, including Effectiveness, and Clinical Response (Supplementary 4). The 
selection of keywords referred to the population, intervention/exposure, and outcomes (PICO/PECO) method. The 
selected population consisted of patients with lung cancer, specifically NSCLC, and the observed exposure included 
ERCC1, ERCC2, ABCC2, and GSTP1 gene polymorphism. Meanwhile, the outcomes focused on the chemotherapy 
platinum-based responses such as Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1), survival rate, 
mortality rate, and prognosis.

Study/ Literature Selection
The screening process was carried out in two stages, title and abstract, followed by full text. This systematic review 
included all published studies that met the inclusion criteria without time restriction. The inclusion criteria used for the 
literature screening process comprised human studies with NSCLC, focusing on pharmacogenetic studies detailing 
genotypes and physiological effects, which are chemotherapy responses. However, the exclusion criteria were review 
studies, including non-English and non-human, along with short communication, editorial board, expert opinion, non- 
platinum therapy, adjuvant/neoadjuvant chemotherapy combined with a biologic agent (multi-modality), unrelated 
studies, and meta-analysis.

Data Extraction and Synthesis
Data were extracted on study characteristics including design, country, number of subjects, SNPs variant (gene and rs 
number), base changes, clinical manifestation, genotyping methods, statistical value, and author. To streamline data 
extraction, a spreadsheet was used for collecting the results, as shown in Table 1 and the summary was presented in 
Table 2. Initially, the identification of clinical manifestations was carried out to facilitate data synthesis The manifesta-
tions were based on the chemotherapy responses such as RECIST. 1.1, survival rate, mortality, prognosis, or treatment 
response rate discussed in all studies, as fully explained in tables and figures.

Results and Discussion
Systematic Search
Based on literature search strategy, identification, and selection process, 370 studies were obtained, consisting of 275 on 
PubMed and 95 from EBSCO. A total of 107 studies were collected after the title and abstract screening. At this stage, 
the exclusion criteria were applied, focusing on editorial, unrelated studies, review, meta-analysis, non-chemo-naive, 
multimodality, non-human, and duplicate between two databases. Subsequently, full-text screening was carried out, 
resulting inclusion of 52 studies, as shown in Figure 1. After data extraction and analysis of the result, a total of 14 
variants of SNPs were obtained, including ERCC1 (rs3212986, rs11615, rs2298881), ERCC2 (rs13181, rs1052555, 
rs238406, rs1799793), ABCC2 (rs717620, rs2273697, rs3740066), and GSTP1 (rs1695, rs1138272, rs3740066).

Main Findings
The use of comprehensive keywords, such as “non-small cell lung cancer (NSCLC)” and “chemotherapy”, is essential to 
identify the specific population. Additionally, the inclusion of terms such as “polymorphisms” and the genes “ERCC1”, 
“ERCC2”, “ABCC2”, and “GSTP1” is crucial for determining the exposure factors. The STROPS checklist guideline is 
applied to ensure that the included studies meet the standards expected for reporting in the field of pharmacogenetics 
(Online Resource 3). Among the studies included, a significant portion of pharmacogenetics studies failed to provide 
explanations for addressing issues such as false positive results, multiple genetic variants, several outcomes, and various 
assumptions regarding the mode of inheritance.30,32,50,51,64,68 Additionally, the majority did not sufficiently address 
missing data were handled.30–32,50,51,64,68 Another checklist point on STROPS is related to the rs number of polymorph-
isms, where approximately half of the studies provided the rs number for each genotyped SNP. Regarding 
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Table 1 Polymorphism of ERCC1, ERCC2, ABCC2, and GSTP1 on NSCLC Clinical Outcomes

Study design Polymorphism Result and Conclusion Population Ref

Genotyping 
Methods

SNPs Clinical manifestation/ outcomes Statistical Value Sample 
Size

Country

ERCC1

Case control PCR-RFLP 
and 
sequencing

rs3212986 C > A CA and AA genotype increased tumor grade lymph node 
involvement, and metastasis

(P<0.01), r=0.99, r=0.89, r=0.96, respectively 38 cases, 
38 control

Iran [30]

rs11615 C > T No significant association to the clinical outcomes. (P > 0.05)

Cohort prospective Sequencing rs11615 C > T No significant association to the chemotherapy response (CR 
+PR vs SD and PD)

Adjusted OR = 1.892 (0.728–4.915), P = 0.191 89 cases China [31]

Cohort prospective RT-PCR rs11615 C > T T allele decrease the survival rate C/T vs C/C HR= 3.73 (P=0.016), T/T vs C/C HR= 3,25 
(P = 0.041)

62 cases Spanish [32]

Cross Sectional PCR- RLFP rs11615 C > T No statistically significant to response rate P > 0.05 285 cases Bangladesh [33]

Cohort prospective Mass ARRAY rs11615 C > T T allele decrease the chemo response rate, and increased risk 
of death

OR = 0.53 (0.33–0.86), HR = 1.97 (1.20–3.34)  
P= 0.007, respectively

163 cases China [34]

rs3212986 C > A A allele decrease the chemo response rate, and increased the 
risk of death

OR = 0.44 (0.27–0.74) and HR = 1.99 (1.13–3.35) 
P <0.001, respectively

rs2298881 A > C No statistically significant to response and risk to death P = 0.48

Cohort prospective RT-PCR rs11615 C > T C/T and TT genotype increased the treatment response OR 10.161; 95% CI 1.776–11.163; P = 0.001 91 cases China [35]

Cohort prospective PCR- RFLP rs11615 G > A AA genotype increase the chemotherapy response, and 
decrease the risk of death

OR = 2.73 (1.21–6.18) P= 0.007 and HR = 0.38 
(0.14–0.96) P= 0.03, respectively

240 cases China [36]

rs3212986 C > A No statistically significant to chemo response and risk to death P > 0.05

rs2298881 A > C No statistically significant to chemo response and risk to death P > 0.05

Cohort prospective RT-PCR rs11615 C > T T allele significantly increase the survival X2 = 8.647, P=0.003 130 cases China [37]

Cohort prospective MassARRAY rs11615 C > T T allele genotype associated with a poor response to 
chemotherapy and shorter survival time

OR= 0.27 (0.10–0.71), P= 0.03, HR= 2.38 (1.03–6.13), 
P= 0.04, respectively

226 cases China [38]

rs3212986 C > A A allele genotype associated with a poor response to 
chemotherapy and shorter survival time

OR= 0.36 (0.11–0.97), P= 0.03 
HR = 2.14 (1.35–3.39), P= 0.005, respectively

rs2298881 A > C No statistically significant to chemo response P > 0.05

Cohort prospective RT- PCR rs11615 C > T C allele increase the chemotherapy response rate, and time to 
progression

X2 = 4.284, P = 0.038 China [39]

Cohort prospective Multi-PCR rs11615 C > T No statistically significant to chemo response P = 0.21 95 cases China [40]

Cohort prospective RT-PCR rs3212986 C > A No statistically significant to chemo response and survival P = 0.09 135 cases China [41]

rs11615 C > T No statistically significant to chemo response and survival P = 0.22

Cohort prospective Mass ARRAY rs11615 C > T No significantly response to chemotherapy. P = 0.08 187 cases China [42]

rs3212986 C > A A allele decrease response to platinum-based chemotherapy 
and a shorter survival in NSCLC patients.

OR= 0.18 (0.05–0.68), P<0.001 and HR = 4.71 
(1.21–36.62), P = 0.01, respectively

rs2298881 C > A No statistically significant to chemo response P= 0.17

Cohort prospective Sequencing rs11615 C > T T allele increase the risk of death among ex and current 
smokers

P= 0.11 632 cases China [43]

Cohort prospective PCR rs11615 C > T No statistically significant to chemo response P= 0.46 192 cases Italy [44]
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Cohort prospective PCR rs11615 C > T T allele statistically significant association with elevated 
response

OR= 0.361 (0.150–0.868), 
P= 0.020

115 cases China [45]

rs3212986 C > A A allele Statistically significant association with descendent 
response

OR= 4.900 (1.765–13.604) 
P = 0.001

Cohort prospective PCR rs11615 C > T T allele decrease the response rate, PFS, and OS RR= 29% vs 52%; P= 0.02, Adjusted HR= 1.60; P = 
0.04, 1.54, Adjusted HR, 1.54; P=0.05, Respectively

146 cases Netherlands [46]

Cohort prospective RT-PCR rs11615 C > T No statistically significant to chemo response P = 0.274 26 cases Thailand [47]

Cohort prospective PCR rs11615 C > T No statistically significant to chemo response P = 0.65 65 cases Italy [48]

Cohort prospective RT-PCR rs11615 C > T No statistically significant to chemo response P = 0.087 50 cases Egypt [49]

ERCC2 (XPD)

Case Control Mass ARRAY rs13181 T > G G allele increase the chemotherapy response (CR+PR vs SD 
and PD)

OR = 2.37 (1.12–5.01), P = 0.021 506 cases, 
510 
control

China [50]

rs1052555 G > A A allele increased the chemotherapy response (CR+PR vs SD 
and PD)

OR = 2.67, 95% CI: 1.12–6.36, 
P = 0.022

rs238406 G > T GT genotype have a higher risk to develop a lymph node 
metastasis compared with GG genotype

OR = 1.72, 95% CI: 1.03–2.89, 
P = 0.040

Cohort prospective RT-PCR rs13181 A > C No statistically significant to the survival P = 0.899 62 cases Spanish [32]

rs1799793 G > A P = 0.341

Cohort prospective Sequencing rs13181 A > C No significant association to the chemotherapy response (CR 
+PR vs SD and PD)

Adjusted OR = 1.599, 95% CI; 
P = 0.502

89 cases China [31]

Cross-Sectional PCR- RFLP rs13181 A > C Not statistically significant to toxicity P>0.05 180 cases Bangladesh [51]

Cohort prospective Duplex PCR rs238406 C > A Not statistically significant to the treatment responses and 
survival

P= 0.66 375 cases China [52]

rs1799793 G > A A allele had poor response, and shorter OS OR= 0.67 (0.36–0.97) P = 0.08 and HR= 1.73 (0.97 
−2.92) P= 0.07, respectively

rs1052555 C > T T allele had poor response, and shorter PFS OR = 0.52 (0.37–0.96) P < 0.05 and 1.89 (1.08–3.03) 
P < 0.05, respectively

rs13181 A > C Not statistically significant to the response and survival P = 0.17, P = 0.28, respectively

Cohort Prospective RT-PCR rs13181 A > C Not statistically significant to the treatment responses and 
survival

P>0.05 398 cases China [53]

Cohort Prospective MassArray rs238406 C > A Not statistically significant to the chemo response OR=1.02 (0.68–1.52) P= 0.93 496 cases China [54]

rs1799793 C > T T allele associated to poor chemo responses OR= 0.67, 95% CI=0.38–0.97

rs1052555 C > T T allele associated to poor chemo responses OR= 0.54, (95% CI= 0.35–0.96)

rs13181 A > C Not statistically significant to the chemo response OR= 0.67 (0.35–1.09) P= 0.17

Cohort Prospective Microarray rs1799793 G > A G allele associated to higher survival HR= 1,53 CI95% 1.11–2.12, 
P= 0.009

218 cases China [55]

Cohort Prospective PCR- RFLP rs13181 A > C Not statistically significant to the PFS and OS P= 0.542 199 cases China [56]

Cohort prospective PCR-RFLP rs1052555 C > T T allele significantly associated with better Overall Survival Adjusted HR=0.67, 95% CI=0.45–1.00, P=0.05 382 cases Korea [57]

Cohort prospective MassARRAY rs1799793 G > A A allele significantly associated with poorer NSCLC survival Median OS= 19.0 (16.7–21.3), 
P = 0.006

445 cases China [58]

rs13181 A > C C allele significantly associated with poorer NSCLC survival Median OS= 19.0 (16.3–21.7) 
P = 0.014

(Continued)
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Table 1 (Continued). 

Study design Polymorphism Result and Conclusion Population Ref

Genotyping 
Methods

SNPs Clinical manifestation/ outcomes Statistical Value Sample 
Size

Country

Cohort prospective PCR-RFLP rs1799793 G > A No statistically significant to chemo response P = 0.502 93 cases China [59]

rs1052555 C > T No statistically significant to chemo response P = 0.517

RCT RT-PCR rs13181 A > C A allele significantly less likely to respond to treatment HR= 0.33; 95% CI, 0.13–0.83; 
P = 0.02

145 cases Japan & US [60]

Cohort prospective RT-PCR rs13181 A > C Not statistically significant to toxicity OR= 0.72; 95% CI, 0.30–1.74, 
P = 0.54

115 cases China [61]

Cohort prospective RT-PCR rs13181 A > C No statistically significant to chemo response P = 0.20 192 cases Italy [44]

Cohort prospective RT-PCR rs13181 A > C No statistically significant to chemo response P = 0.905 103 cases China [62]

Cohort prospective RT-PCR rs13181 A > C No statistically significant to chemo response P = 0.30 65 cases Italy [48]

rs1799793 G > A No statistically significant to chemo response P = 0.82

Cohort prospective RT-PCR rs13181 A > C No statistically significant to chemo response P = 0.202 142 cases China [63]

ABCC2

Cohort Prospective Microarray rs717620 C > T TT genotype increases the chemotherapy response (CR+PR vs 
SD and PD)

Adjusted OR= 4.493, CI = 1.728–11.682 (P = 0.002) 113 cases China [64]

rs2273697 G > A The genotypes were not substantially different between the groups

rs3740066 C > T

Cohort prospective PCR- RLFP rs717620 C > T T allele increased the PFS and OS X2=6.808, P=0.009, 
OR=2.182, 95% CI: 1.252–3.805, P=0.006 
X2=5.683, P=0.017, 
OR=2.019, 95% CI: 1.130–3.607, P=0.018, respectively

84 cases China [65]

Cohort prospective MassArray rs717620 C > T C allele increase the chemo response Adjusted OR= 1.84; 95% CI, 1.05–3.23, P= 0.032 445 cases China [66]

rs2273697 G > A Not statistically significant to the chemo response and toxicity P> 0.05

rs3740066 C > T T allele increase the risk of 3–4 toxicity Adjusted OR= 2.43; 95% CI, 1.06–5.56) P= 0.034

Cohort prospective Mass Array rs717620 G > A A allele carriers have better response to chemotherapy Additive model: 
OR= 0.55, 95% CI 0.31–0.96, P = 0.036; 
Dominant model: 
OR 0.41, 95% CI 0.22–0.79, P = 0.007

395 cases China [67]

rs2273697 G > A Not statistically significant to the chemo response P = 0.357

rs3740066 G > A Not statistically significant to the chemo response P= 0.873
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GSTP1

Cohort Prospective Microarray rs1695 A > G G Allele increases the chemotherapy response (CR+PR vs SD 
and PD)

Adjusted OR= 2.788 CI95% (1.106–7.029) (P= 
0.030)

113 cases China [64]

RCT Sequencing rs1695 A > G G allele decrease the risk of high-grade neutropenic P = 0.020 108 cases United 
Kingdom

[68]

rs147282497 C > T This polymorphism not detected in this patient group

rs1138272 C > T Not statistically significant to survival P= 0.54

rs781659437 G > A This polymorphism not detected in this patient group

Cohort Prospective Duplex PCR rs1695 A > G A allele showed a shorter survival and increase risk of death HR=1.89, 95% CI (1.10–3.17) 460 cases China [24]

Cross Sectional PCR- RLFP rs1695 A > G G Allele had significant less suffering from neutropenia and 
anemia, also increase the chemo response

OR= 0.31 (0.10–0.96) P= 0.043 and OR= 0.29 
(0.10–0.87) P= 0.027, 
OR= 2.08 (1.02–4.26) p= 0.045 for genotype AG 
OR= 1.98 (1.02–3.87) P= 0.044 genotype AG+GG, 
respectively

285 cases Bangladesh [33]

Cohort prospective RT-PCR rs1695 A > G G allele increase the chemotherapy response rate, and time to 
progression

X2= 10.748, P= 0.001 and X2= 4.548 P<0.01, 
respectively

91 cases China [35]

Cohort prospective PCR- RLFP rs1695 A > G G allele increase the chemotherapy response (CR+ PR), and 
lower risk of death

OR=2.18 95% CI (1.16–4.12) p= 0.009 and HR= 0.48; 
95% CI (0.25–0.93), P=0.02 respectively

282 cases China [69]

Cohort prospective PCR- RLFP rs1695 A > G G allele decrease the chemotherapy response and increase 
risk of death

OR = 0.13 (0.04–0.37) P < <0.05 and HR = 4.35 
(1.40–17.92) P= 0.005, respectively

322 cases China [70]

Cohort prospective PCR- RLFP rs1695 A > G G allele increase the PFS and OS OR=2.295, 95% CI: 1.332–3.954, P=0.003 and 
OR=1.910, 95% CI: 1.161–3.144, P=0.011, respectively

84 cases China [65]

Cohort prospective PCR- RLFP rs1695 A > G G allele increase the chemo response, and decrease risk of 
death

OR = 4.07 (1.06–25.06) P = 0.03 and HR = 0.07, 95% 
CI = 0.01–0.34) 
P <0.001, respectively

141 cases China [71]

Cohort prospective PCR- RFLP rs1695 A > G G allele affect the chemotherapy response, and OS OR= 0.37 (0.18–0.71) P= 0.001 and HR= 0.51 
(0.28–0.94) P= 0.02, respectively

308 cases China [72]

Cohort prospective RT-PCR rs1695 A > G A allele significantly increased response in advance OR= 3.961; 95% CI, 1.531–10.245; P = 0.005 158 cases China [73]

Cohort prospective RT-PCR rs1695 A > G Not statistically significant to toxicity P >0,05 47 cases China [74]

Cohort prospective RT-PCR rs1695 A > G G allele significant associations with response rate OR= 4.302 CI95%(1.193–15.515) P= 0.026 97 cases China [75]

Cohort prospective RT-PCR rs1695 A > G No statistically significant to chemo response P = 0.79 262 cases China [76]

Cohort prospective RT-PCR rs1695 A > G GG was correlated with a good response to chemotherapy 
and improved the OS of advanced NSCLC patients.

OR= 2.77 (1.14–6.64) P= 0.01 244 cases China [77]

Abbreviations: SNPs, Single Nucleotide Excision Repair; RT, Reverse Transcription; PCR, Polymerase Chain Reaction; RFLP, Restriction Fragment Length Polymorphism; RCT, Randomized Controlled Trial; OS, Overall Survival; PFS, 
Progression Free Survival; OR, Odds Ratio; HR, Hazard Ratio; aHR, adjusted Hazard Ratio; CI, Confidence Interval.
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polymorphisms, the majority of the studies included used alternative names such as C3972T, C-24T, or G1249A.64–66 

Consequently, this systematic review conducted data extraction and summarized results using the rs numbers for 
individual polymorphisms.

The main objective is to investigate the impact of genetic variations on chemotherapy responses, with potential 
outcome measures including survival rates, mortality, treatment, and RECIST 1.1 criteria. During the data extraction 
process, various clinical manifestations were observed, which influenced the results. Polymorphisms in ERCC1 in 12 
studies were associated with decreased or increased chemotherapy responses and survival rates.30,32,34–37 Meanwhile, 15 
studies reported non-statistically significant associations with chemotherapy responses and survival rates.30–33,36 The 
majority of polymorphisms in ERCC2, comprising 18 studies, did not show statistically significant correlations with 
platinum-based chemotherapy responses.44,48,53,59,61–63 Mutant alleles of ABCC2 and GSTP1 polymorphisms were found 

Table 2 Resume of Single Nucleotide Polymorphism and the Interpretation Related to Clinical Outcomes

No SNP Genotype Total 
Articles

Outcomes Interpretation n

ERCC1

1 rs3212986 C > A 7 No statistically significant to chemotherapy response and/survival 2
Mutant Allele decrease the chemotherapy responses and/ survival 5

2 rs11615 C > T / G > A 20 No statistically significant to chemotherapy response and/survival 9

Mutant Allele increase the chemotherapy responses and/survival 2
Mutant Allele decrease the chemotherapy responses and/ survival 7

Wildtype Allele increase the chemotherapy responses and/ survival 2
3 rs2298881 A > C / C > A 4 No statistically significant to chemotherapy response and/survival 4

ERCC2 

1 rs13181 T > G / A > C 15 No statistically significant to chemotherapy response and/survival 12

Mutant Allele increase the chemotherapy responses and/ survival 2
Mutant Allele decrease the chemotherapy responses and/ survival 1

2 rs1052555 G > A / C > T 5 No statistically significant to chemotherapy response and/survival 1

Mutant Allele decrease the chemotherapy responses and/ survival 2
Wildtype Allele increase the chemotherapy responses and/ survival 2

3 rs238406 G > T / C > A 3 No statistically significant to chemotherapy response and/survival 2

Mutant allele increased risk of metastasis and increased susceptibility to NSCLC in 
smokers.

1

4 rs1799793 G > A / C > T 7 No statistically significant to chemotherapy response and/survival 3
Mutant Allele decrease the chemotherapy responses and/ survival 4

ABCC2

1 rs717620 C > T / G > A 4 Mutant Allele increase the chemotherapy responses and/ survival 3

Mutant Allele decrease the chemotherapy responses and/ survival 1

2 rs2273697 G > A 3 No statistically significant to chemotherapy response and/survival 3
3 rs3740066 C > T / G > A 3 No statistically significant to chemotherapy response and/survival 2

Mutant allele increases the risk of toxicity 1

GSTP1

1 rs1695 A > G 15 No statistically significant to chemotherapy response and/survival 2

Mutant Allele increase the chemotherapy responses and/ survival 11

Mutant Allele decrease the chemotherapy responses and/ survival 2
2 rs1138272 C > T 1 No statistically significant to chemotherapy response and/survival 1

3 rs147282497 C > T 1 Not detected in the population 1

4 rs781659437 G > A 1 Not detected in the population 1
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to potentially enhance chemotherapy responses and improve survival rate,33,65–68 as shown in Table 1. This suggested 
that SNPs variants could have a significant impact on protein structure, potentially leading to the upregulation or 
downregulation of protein formation or altering gene expression levels.78–82 The results showed promise as a marker 
for personalized medicine, particularly in early genetic screening for NSCLC cases before initiating platinum-based 
therapy.

Implications of These SNPs for NSCLC Clinical Response
Cancer is the leading cause of mortality rate globally, accounting for approximately 10 million deaths in 2020.83 Ranking 
as the first cancer-related fatalities, the issue of lung cancer is related to the high incidence of new cases with low survival 
or elevated mortality rates. Moreover, survival rates have shown a significant decreasing trend, ranging from 94% to 91% 
and 78%, from the first to the third year, respectively.84 The fifth-year relative survival rate for NSCLC as a whole 
remains extremely low at 24%.85 Platinum-based chemotherapy, as a first-line treatment used in NSCLC patients with 
wildtype profiles on EGFR gene, has been found to show varying responses. Previous studies have shown that the 
Objective Response Rate (ORR) for platinum-based first-line chemotherapy ranged from 29.7% to 46.7%, while others 
reported a significant proportion between 0% and 80%.86–88

The variability in responses among patients receiving platinum-based chemotherapy is attributed to factors such as the 
clinical status or the influence of genetic polymorphisms on genes in the pharmacodynamics or pharmacokinetics, as 
shown in Figure 2.

According to the CPIC database, ERCC1 has a D level of evidence for cisplatin, and GSTP1 also has a D level for 
several agents, including cyclophosphamide, oxaliplatin, epirubicin, and fluorouracil. Additionally, ABCC2 and GSTP1 
are not listed in the CPIC gene-drug database. A D level of evidence means that there are few published studies, the 
clinical significance is unclear, the mechanistic basis is weak, or the data is conflicting. Since these genes are not 
commonly tested in clinical settings, further research is needed to strengthen the evidence base. This review discusses 
SNPs in ERCC1 and ERCC2 genes related to the pharmacodynamics of platinum-based chemotherapy, including SNPs in 
ABCC2 and GSTP1 genes related to the pharmacokinetics of platinum-based drugs. All of these genes show the potential 

Figure 1 Research Flowchart.
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to influence clinical outcomes, including Overall Survival (OS), Progression-Free Survival (PFS), the risk of mortality, 
and Time to Progression.24,30,32,36,63,64,89 Clinical manifestations, such as disease progression and the Risk of Metastasis, 
are specifically associated with ERCC1 and ERCC2 genes,30,50 and the risk and rate of toxicity are related to ABCC2 and 
GSTP1 genes66 as shown in Figure 2.

From the review results, we can see that studies on ERCC1 that produced significant statistics mostly had odds ratios 
(OR) and hazard ratios (HR) that were not very large (ranging from 0 to 1). Clinically, this suggests that the impact of these 
SNPs on clinical outcomes is likely not substantial, although one study reported an OR of 10.161 with a p-value of 0.001.35 

A similar situation is observed with ERCC2, while GSTP1 and ABCC2 had larger OR and HR values. However, the clinical 
relevance of these numbers also depends on factors such as sample size, study design, and biological plausibility.

In addition, it is important to acknowledge that ethnic variation can significantly influence the frequency and clinical 
impact of pharmacogenetic polymorphisms. For example, according to the PharmGKB and gnomAD databases, allele 
frequencies for several SNPs in ERCC1, ERCC2, ABCC2, and GSTP1 differ across populations. The ERCC1 rs11615 
C allele, for instance, has been reported to be more prevalent in East Asian populations compared to Europeans or 
Africans, which may affect its predictive value for platinum response across different ethnic groups.90,91 However, in our 
systematic review, stratified analyses based on ethnicity were not feasible due to inconsistent reporting of ethnic 
background and limited population-specific data. Nonetheless, we recognize that functional consequences of SNPs are 
not solely determined by allele frequency, but also by the nature of the nucleotide substitution, which can lead to changes 
in codon usage, amino acid sequence, or protein structure. These considerations underscore the importance of ethnicity- 
aware pharmacogenomic research and the need for further population-specific studies before SNP-guided therapy can be 
generalized to diverse clinical settings.

Figure 2 Single Nucleotide Polymorphism Screening Implication on Non-Small Cell Lung Cancer.
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Molecular Mechanisms of ERCC1, ERCC2, ABCC2, and GSTP1 SNPs to Clinical 
Outcomes in NSCLC
ERCC1 and ERCC2 genes encode proteins that play a significant role in the unwinding processes within the NER 
mechanism,92,93 as shown in Figure 3. Alterations in NER mechanism activity, caused by SNPs, can impact responses to 
platinum-based chemotherapy,93–95 serving as predictive markers for chemotherapy responses. This review compiled 31 
studies discussing ERCC1, with 7 focusing on rs3212986, 20 on rs11615, and 4 on rs2298881. The results show that 
ERCC1 rs11615 has the largest number of studies, indicating prominence as a major focus due to relevance in clinical 
manifestations, as shown in Table 2. However, a total of 9 studies related to ERCC1 rs11615 were identified, which did 
not show statistically significant associations with platinum-based clinical outcomes. Among the 7 studies reviewed, the 
mutant allele of rs11616 was associated with decreased clinical outcomes and shorter survival in NSCLC patients treated 
with platinum-based therapy. In the molecular mechanism of ERCC1 rs11615 was found to start from the substitution of 
Cytosine (C) with Thymine (T), resulting in the modulation of ERCC1 expression levels. Meanwhile, in the ERCC1 
C8092A (rs3212986), situated in the 3’-untranslated region (3’-UTR), the presence of the A allele on rs3212986 was 
associated with high ERCC1 expression, playing a significant role in transcription and translation processes.96–98 This 
alteration affected DNA repair processes, as high activity caused by the increase in ERCC1 expression level diminished 
the efficacy of platinum-based therapy.96

A total of 30 studies were compiled for ERCC2/ XPD, with 15 focusing on rs13181, 5 on rs1052555, 3 on rs238406, 
and 7 on rs1799793. The SNPs on ERCC2, specifically rs13181, have been extensively investigated, indicating 
a significant change from A to C, as shown in Table 2. This alteration leads to a change in the amino acid produced, 

Figure 3 Single Nucleotide Excision Repair on ERCC1 and ERCC2.
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shifting from Lysine (Lys) to Glutamine (Gln)99 as shown in Figure 3. However, 12 out of the 15 studies reviewed 
reported non-statistically significant results regarding the association between ERCC2 rs13181 and the clinical outcomes 
or survival rates of NSCLC patients receiving platinum-based chemotherapy. These results suggested that the specific 
SNPs are not essential predictors of treatment response or patient survival in platinum-based chemotherapy for NSCLC. 
Subsequently, ERCC2 rs1799793, which ranks second in terms of the number of ERCC2 genes studies, has shown 
a balanced outcome. The results are evenly distributed between studies reporting non-statistically and statistically 
significant association of the mutant allele with a decrease in responses to platinum-based chemotherapy. This suggests 
a complex relationship between ERCC2 rs1799793, affecting the clinical outcomes or treatment responses. The ERCC1 
rs1799793 is characterized by a change from G to A and the resulting amino acid transitioned from Aspartic Acid (Asp) 
to Asparagine (Asn).58 Both rs13181 and rs1799793 are common non-synonymous SNPs, located within the ERCC2 
coding sequence, with specific functions that impact the NER pathway by modulating mRNA expression.60,100 These 
changes in amino acids have the potential to modify protein expression levels and influence the capacity for DNA 
damage repair, which is a fundamental process in NER.22 Specifically, the enhanced functionality of NER associated with 
the mutations is correlated with reduced chemotherapy response.100

In a study conducted on a European population, a statistically significant trend was observed for the allele G → T on 
rs238406, which affected ERCC2 mRNA expression (Ptrend = 0.011). However, in the Chinese Han in Beijing (CHB) 
population, there was only a borderline significance (Ptrend = 0.098).101 Thus, phenomenon occurred due to the presence 
of linkage disequilibrium with rs13181 or other potentially functional SNPs. In this review, rs238406 was observed to be 
more closely associated with the risk of NSCLC, although there were no statistically significant correlations with 
chemotherapy response.50,53,54,102 The results provided valuable information on the intricate relationship between genetic 
variations in ERCC2 and their impact on the NER pathway, affecting the response to platinum-based chemotherapy.103

In pharmacokinetics, there are several essential processes, including absorption, distribution, metabolism, and 
elimination such as detoxification.104,105 Numerous genes have shown significant association with these mechanisms, 
where genetic polymorphisms cause alterations in protein expression, affecting the rate of pharmacokinetic processes 
such as metabolism (CYP genes), detoxification (GSTs genes), or drug concentration at target sites when genetic variants 
impact transporter proteins like ABC transporters.77,106,107 Among the essential genes, GSTP1 is responsible for encoding 
Glutathione enzymes,69,72,77,108–110 while ABCC2 is used for coding the ABC transporter protein.25,111–113 These genes 
play significant roles in pharmacokinetic process, influencing detoxification rates and facilitating the transport of active 
compounds such as platinum-based compounds, respectively.

GSTP1 is the primary Phase II detoxification enzyme predominantly located in the cytosol, which facilitates the 
bonding of electrophilic substances with glutathione (GSH), showing peroxidase and isomerase functions. This enzyme 
suppresses the activity of Jun N-terminal kinase, thereby protecting cells from death induced by hydrogen peroxide 
(H2O2). GSTP1 possesses the ability to non-catalytically bind to a diverse array of naturally occurring and external 
ligands.114 Furthermore, it plays a specific role in the detoxification process of platinum compound, which effectively 
captures and deactivates cisplatin, using two exposed cysteines. This phenomenon results in the interlinking of protein 
subunits, retaining the capability to perform GSH-conjugation activities.115 Genetic polymorphism at GSTP1 rs1695, 
situated on chromosome 11 in exon 5, induces an alteration in the amino acid produced, replacing isoleucine with valine 
(Ile105Val). This change includes a transition from A to G in the base pair, leading to the suppression of protein synthesis 
and decreased GSTP1 enzyme activity. As shown in Figure 4, the decrease in GST activity causes an increase in 
platinum-based chemotherapy responses.116,117 In this review, a total of 18 studies were investigated, focusing on the 
impact of GSTP1 polymorphisms, as shown in Table 2. Based on the results GSTP1 rs1695 was the most extensively 
investigated, with 15 studies dedicated to the exploration. Other variations such as rs1138271, rs147282497, and 
rs781659437 had only one study each. Furthermore, rs1695 was found to be statistically significant in 11 cases, 
indicating that the presence of the mutant allele (AG or GG genotype) was associated with increased platinum-based 
chemotherapy responses and enhanced survival, as shown in Table 2.

Regarding ABC transporters, particularly the ABCC2/MRP genes, a total of 10 studies were identified, where 4 
focused on ABCC2 rs717620, 3 on rs2273697, and 3 on rs3740066, as shown in Table 2. Based on the results, ABCC2 
rs717620 showed that the presence of the mutant allele was associated with improved chemotherapy responses and 
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enhanced survival rates. However, in one remaining study, the mutant allele was related to a decrease in survival rates 
among NSCLC patients treated with platinum-based chemotherapy. At the molecular level, ABCC2 showed low 
expression in normal lung tissue but had high expression in lung cancer. The ABCC2 rs717620 polymorphism, situated 
within ABCC2 transcript promoter, 5’ UTR, included a –24C > T variant that could potentially reduce ABCC2 
expression, particularly in tumour tissue. This phenomenon described the observed suppression of drug resistance and 
the enhancement of treatment responses112,118 as shown in Figure 4. However, the nonsynonymous rs2273697 
(Val417Ile) and the silent rs3740066 (Ile1324Ile) polymorphisms did not show statistical significance in relation to 
chemotherapy responses.

Besides SNPs, Copy Number Variant (CNV) also influence clinical outcomes. When SNPs and CNVs occur at the 
same location, they can affect clinical outcomes.119,120 These involve larger sections of the genome being duplicated or 
deleted. CNVs can change the dosage of gene products (eg, more or fewer copies of a gene), which can also influence 
clinical traits, such as disease risk or drug metabolism.121 For instance, a study demonstrated that a deletion in the TBX6 
gene led to an overestimation of the impact of SNPs on the hypomorphic allele. This study also generalized a model to 
explain calculation bias or distorted significance in association studies caused by CNVs at specific loci. Moreover, the 
overlap between disease-associated SNPs from published GWAS and common CNVs and pathogenic/likely pathogenic 
CNVs was significantly higher than random distribution, suggesting that co-occurrence of CNVs and SNPs at the same 
locus can significantly influence data interpretation and the potential outcomes of GWAS.119

In this study, several CNVs were observed at the same loci as important SNPs, including ERCC1 rs11615, ERCC2 
rs13181, ABCC2 rs717620, and GSTP rs1695, and they exhibited molecular effects. For example, the NSV3163036 on 
ERCC1 impacts not only the coding sequence but also the 5’ UTR and intron regions, which could alter gene expression 

Figure 4 Single Nucleotide Excision on GSTP1 and ABCC2.
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or splicing.122 Similarly, CNV on ERCC2 NSV2785402, GSTP1 (NSV555269, NSV468606), and ABCC2 
NSV3155816 have the molecular effect on both the coding sequence regulatory regions, potentially modifying 
function.123–129 While the molecular impacts of these SNPs are well documented, their interplay with CNVs at the 
same loci may amplify or mitigate their effects. To fully understand how CNVs influence the functional impact of SNPs, 
further research using methods designed to assess these combined effects is necessary.

Role of SNP Screening in NSCLC Precision Medicine
Research and development related to cancer treatment have made significant advancements. This development was 
initially observed in 1969 when platinum-based chemotherapy, particularly cisplatin, showcased promising efficacy in 
treating NSCLC. In 1995, platinum-based therapy was discovered as a significant contributor to increased survival rates 
among NSCLC patients. Subsequently, in 2004, the introduction of Tyrosine Kinase Inhibitors (TKIs) as targeted 
therapies customized to EGFR mutation profiles offered an essential contribution, with drugs such as gefitinib, marked 
a significant milestone. Erlotinib also gained approval as a second-line therapy for EGFR mutation-positive cases. In 
2015, advanced medications such as Crizotinib showed significant effectiveness in managing ROS1-rearranged NSCLC, 
enriching the therapeutic landscape for the disease. Currently, there is continuous advancement in medication develop-
ment for NSCLC, guided by genetic profiling for personalized treatment methods.1 The standard for cancer treatment has 
shifted towards the use of biological agents such as targeted therapy and immunotherapy. However, platinum-based 
chemotherapy, a conventional cytotoxic agent, continues to be a widely used first-line treatment option Despite these 
numerous applications, the effectiveness and toxicity rates of platinum-based chemotherapy have shown significant 
variation. SNPs on several genes, particularly those that play essential roles in the pharmacokinetic or pharmacodynamic 
mechanisms of platinum-based chemotherapy, have become potential predictive markers for treatment responses. This 
has led to the application of SNPs screening to conventional chemotherapy regimens based on genetic profiles of 
patients. Consequently, patients who test negative for established biomarkers such as EGFR, PD-L1, ALK fusion, ROS-1, 
and receive chemotherapy, are administered the most suitable chemotherapy agents based on their genetic profiles.130 

This method aims to enhance the precision and efficacy of chemotherapy while minimizing the risk of adverse effects for 
patients.

Recent reports suggest that individual polymorphisms have relatively modest effects on clinical outcomes. This shows 
the need to adopt a more comprehensive method, including polygenetic, phenotypic, epidemiological, and clinical 
variables to accurately predict the prognosis of NSCLC patients receiving platinum-based chemotherapy.131,132 Based 
on a previous study conducted in California, a potential therapeutic algorithm for NSCLC has been developed, using 
ERCC1 gene expression levels.130 The results of the comprehensive dataset including pharmacogenomics study on 
NSCLC, focusing on platinum-based chemotherapy and essential genes such as ERCC1, ERCC2, ABCC2, and GSTP1, 
have gained significant attention. Therefore, this systematic review aimed to construct a potential algorithm as 
a framework for personalized medicine methods in NSCLC therapy.

Challenges and Limitations of SNP Screening in Clinical Practice
Challenges and limitations of SNPs screening in clinical practice include complexities related to result interpretation, 
standardization of testing methods, and the need for large-scale, diverse datasets to establish robust associations. This is 
in line with the persistent demand for human resources in the field of genetic interpretation, where education is 
continually developed. Additionally, integrating SNPs data into routine clinical decision-making processes can be 
challenging, requiring adequate guidelines and tools for healthcare professionals. Ethical and privacy concerns regarding 
genetic information, along with cost-effectiveness considerations, pose significant limitations. Although SNPs offer 
valuable insights, their effectiveness is limited by the entire genetic landscape, requiring a comprehensive method that 
incorporates multiple genetic and non-genetic factors for a more accurate clinical prognosis. SNPs show complexity, 
indicating that an impact in one population is not essential for replicating another. This genetic diversity poses 
a significant challenge, showing the need for studies that are personalized and comprehensive.

Furthermore, ethical and privacy concerns remain a significant barrier to the clinical implementation of pharmaco-
genomics. Handling sensitive genetic data requires strict adherence to confidentiality, informed consent, and responsible 
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data sharing practices. There is also a risk of genetic discrimination and stigma if data are not managed carefully. As 
pharmacogenomic testing becomes more accessible, robust regulatory frameworks and ethical guidelines are crucial to 
ensure patient trust and protect individuals’ rights.

Methodologies and Molecular Technique for SNP Screening
SNPs have significant implications in genetic disease, although recent methods, such as DNA microarrays, qPCR, and 
sequencing are characterized by intricate procedures. The methods are expensive and apply sophisticated instruments, 
leading to suboptimal results in clinical settings, particularly regarding multiple SNPs associated with genetic diseases. 
A previous study conducted in China introduced an innovative point-of-care testing (POCT) system, namely the 
Amplification Refractory Mutation System (ARMS) coupled with gold magnetic nanoparticles (GMNPs) and lateral 
flow assay (LFA). This innovation was collectively referred to as the ARMS-LFA system, offering a cost-effective, user- 
friendly, and highly sensitive method, enabling the uniform detection of multiple SNPs concurrently. The results showed 
a significant potential as a POCT tool for identifying multiple SNPs correlated with genetic disease.133 Another study on 
SNP genotyping analysis for clinical applications investigated an oligo-nucleotide array-based method designed for gene- 
specific SNP genotyping. The results showed that the method, recognized for cost-effectiveness and high-throughput 
capabilities, had both high sensitivity and a level of accuracy comparable to direct sequencing. To validate accuracy and 
efficiency, a comparison was made with BRCA1 gene model, in relation to breast and ovarian cancer predisposition.134 

Typically, efforts are directed towards identifying and establishing the most significant SNPs as a genetic marker for 
diagnosis and therapy selection. However, there are situations where the analysis of unidentified SNPs is essential to 
ensure a comprehensive interpretation. Conventional sequencing, which is highly informative, is often cost-prohibitive. 
In a recent study, an innovative method for the fluorometric detection of both known and unknown SNPs was introduced 
based on optimizing the well-established principle of signal loss or gain, using a significantly reduced number of matched 
or mismatched probes.135

Conclusion
In conclusion, this systematic review showed essential information regarding SNPs in ERCC1, ERCC2, GSTP1, and 
ABCC2, with their impact on NSCLC therapy outcomes, particularly with platinum-based chemotherapy. Based on the 
results, ERCC1 rs11615, ERCC2 rs13181, ABCC2 rs717620, and GSTP1 rs1695 were the most frequently investigated 
SNPs. Among these genes, GSTP1 rs1695 showed significant potential, where 11 studies indicated an association with 
clinical outcomes and survival in NSCLC patients. Moreover, the integration of SNPs profiling into clinical decision- 
making substantially improved treatment personalization. By identifying the most appropriate genetic markers, clinicians 
could optimize therapy selection, enhancing both efficacy and safety. This correlated with the broader trend towards 
precision medicine in NSCLC, offering opportunities to enhance patient outcomes and minimize adverse effects.
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