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Abstract: Normobaric hyperoxia (NBO) is a standard oxygenation intervention for various conditions/diseases including stroke. The 
present review summarizes the current literature addressing the neuroprotective mechanisms of NBO in acute ischemic stroke (AIS), 
intracranial hemorrhage, and chronic cerebral ischemia, as well as its combination with other therapies to identify a more appropriate 
and effective NBO treatment method and to benefit more patients in clinical settings. The primary mechanism of action of NBO is the 
elevation of the interstitial partial pressure of oxygen in arterial blood (PaO2) in brain tissue. NBO preconditioning yields moderate 
production of free radicals before AIS, which can increase antioxidant enzyme production, alter mitochondrial membrane lipids, 
increase tumor necrosis factor-alpha (TNF-α) converting enzyme levels, stimulate the hypoxia-inducible factor signaling pathway, 
upregulate glutamate transporters, Na+–Ca+ exchanger, and the metabotropic glutamate receptor after AIS, thus conferring neuropro-
tection to brain tissue. NBO postconditioning benefits AIS by protecting the penumbra and extending the recanalization time window, 
indicating that reperfusion is critical for the beneficial effects of NBO. Some previous clinical trials have obtained negative results 
because they enrolled non-reperfused cohorts. Given penumbra protection, NBO can enhance the efficacy of recanalization therapy, 
including thrombolysis and endovascular treatment. Clinical studies have indicated that NBO benefits only patients with reperfusion, 
which is consistent with animal-based research. NBO combined with medications, such as ethanol, minocycline, and edaravone, can 
more effectively treat AIS than NBO alone. Moreover, NBO demonstrates promise for the treatment of intracranial hemorrhage and 
chronic cerebral ischemia. NBO is a safe and effective therapy for stroke; however, eligible populations should be restricted to those 
with penumbra or ischemic and hypoxic brain tissues.
Keywords: normobaric hyperoxia, ischemic stroke, hemorrhagic stroke, penumbra

Introduction
Normobaric hyperoxia (NBO), supplied via cannula or facemask (eg, simple mask) at 1 atmosphere pressure (101.325 
kPa), is a standard oxygenation intervention used for various conditions/diseases, particularly stroke.1–3 Oxygen can 
easily diffuse across the blood-brain barrier (BBB) to rapidly increase oxygen concentration in brain tissue.4 Although 
long-term oxygen supplementation is harmful to organs, short durations or intermittent use is safe, well tolerated, and 
effective in various populations.5,6 In those diagnosed with acute ischemic stroke (AIS), the primary goal of NBO is to 
protect the penumbra from infarction. It is well-established that NBO can significantly increase the interstitial partial 
pressure of oxygen in arterial blood (PaO2) close to the pre-ischemic level in the ischemic penumbra, but not in the 
core.7,8 In theory, high oxygen concentration(s) contribute to oxidative stress-related injury; however, oxygen therapy 
does not appreciably increase oxygen radical generation and damage in cerebral ischemia.9 Regarding clinical settings, 
a large body of retrospective research indicates that increasing the oxygenation index in patients diagnosed with AIS is 
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associated with lower in-hospital mortality.10 The advantages of NBO in treating AIS are clear. Based on the protective 
efficacy of NBO on the penumbra in AIS, NBO may not only mitigate hypoxic damage in perihematoma in intracranial 
hemorrhage (ICH), but also reduce chronic injury in ischemic hypoxic brain tissue in chronic cerebral ischemia 
(CCI).11,12 Moreover, given the mechanisms of NBO in treating ischemic stroke, recanalization or reflow within 
a short period is critical to the protective process. As such, selecting the most appropriate methods and suitable 
population(s) is very important for effective NBO treatment of stroke. Accordingly, the present review summarizes the 
current literature addressing the neuroprotective mechanisms of preconditioning and postconditioning NBO in stroke 
(AIS, ICH, and CCI), as well as its combination with other therapies, to identify a more appropriate and effective NBO 
treatment method and to benefit more patients in clinical settings.

The Time Course of Normobaric Hyperoxia on Acute Ischemic Stroke
Preconditioning with Normobaric Hyperoxia on Acute Ischemic Stroke
Ischemic tolerance is an important mechanism for protecting the brain tissue from severe ischemia. NBO preconditioning 
can also relieve ischemic injury in the brain tissue. Extensive research by Bigdeli et al demonstrated that pre-ischemic 
intermittent NBO—rather than prolonged exposure to hyperoxia—can simulate the moderate production of oxygen-free 
and hydroxyl radicals.13 Repeated sublethal injuries increases antioxidant enzyme production (superoxide dismutase, 
catalase, glutathione peroxidase, peroxidase, and glutathione reductase), which play a pivotal role in brain ischemic 
tolerance.13–15 Moreover, during both ischemia and reperfusion (I/R), a large amount of free radicals is produced in the 
brain, leading to incremental changes in mitochondrial membrane lipids. The elevation of mitochondrial membrane lipids 
causes mitochondrial decay, failure of the electron transmission chain, and inhibition of energy production, ultimately 
leading to cell death.16 NBO preconditioning induces changes in the brain lipidome, including cholesterol ester, 
triglyceride, lysophosphatidylcholine, phosphatidylethanolamine, phosphatidylcholine, ceramide, cerebroside, cholesterol 
and sphingomyelin, all of which prevent free radical-induced injury.17

Preconditioning with NBO upregulates glutamate transporters (EAAT1, EAAT2 and EAAT3) in the rat brain.18,19 

Glutamate transporters in neurons and glia remove glutamate from the extracellular space, preventing the concentration 
of extracellular glutamate from increasing to neurotoxic levels.20,21 Inhibition of the glial glutamate transporter EAAT2 
aggravates brain edema after transient focal cerebral ischemia in rats.19 Glutamate is highly expressed in the core and 
penumbra of cerebral infarction, where it over-activates ionotropic glutamate receptors (NMDA and AMPA) causing an 
influx of calcium (Ca2+) and sodium (Na+) ions. This process facilitates protease activation, lipase activation, free-radical 
increase, altered transcription, protein kinase C activation, hydrolysis of protein phosphatase inhibitor, and cell swelling, 
ultimately leading to subsequent cell death.22 Therefore, the elevation of glutamate transporters induced by NBO 
preconditioning can prevent brain tissue from glutamate-induced injury. Simultaneously, NBO preconditioning can 
also upregulate the Na+–Ca+ exchanger (NCX family, NCX1, NCX2 and NCX3), which can reduce the extent of 
brain infarct volume after brain ischemia.23,24 NBO preconditioning has another effect on upregulating both metabotropic 
glutamate receptor (mGluR) I and II.25 mGluR I and II are associated with oxidative stress in the brain.26 Increased 
mGluR I and II lead to an increment in glutathione levels that exert neuroprotection on the ischemic brain after 
intermittent NBO treatment.25 Furthermore, NBO preconditioning increases tumor necrosis factor-alpha (TNF-α) con-
verting enzyme (TACE) expression, consistent with a protective role for TNF-α release.18,19 TACE expression con-
tributes to a rise in TNF-α, which participates in the development of ischemic tolerance after excitotoxic stimuli.27,28 As 
mentioned, NBO-induced upregulation of glutamate transporters may, in part, be mediated by the TACE/TNF-α 
pathway.18,29 NBO preconditioning also stimulates the hypoxia-inducible factor (HIF) signaling pathway, causing 
increased expression of vascular endothelial growth factor (VEGF) and erythropoietin.30 The HIF signaling pathway 
regulates neurogenesis and angiogenesis through increased VEGF and erythropoietin, leading to neural stem cell 
proliferation and migration of neural progenitors.31,32

The interval between the initiation of preconditioning NBO therapy and the onset of ischemic stroke significantly 
affects the neuroprotective effects conferred by NBO. Specifically, ischemia occurring 15 days after the completion of 
intermittent NBO preconditioning is associated with higher Neurological Deficit Score, larger infarct volumes, and 
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increased cerebral edema compared with ischemia occurring merely 2 days post-treatment.33 These findings suggest that, 
while NBO preconditioning induces effective neuroprotection, its benefits are transient, potentially due to a gradual 
decline in the antioxidant response and ischemic tolerance induced by preconditioning therapy. In summary, the primary 
mechanistic goals of NBO preconditioning in the treatment of AIS are to decrease oxidative stress-related injury, reduce 
glutamate-induced damage, and stimulate neurogenesis and angiogenesis after an ischemic attack (Figure 1). NBO 
therapy may represent a promising approach for both primary and secondary prevention of ischemic stroke. However, 
clinical trials remain scarce despite a substantial body of animal-based research supporting the effectiveness of pre- 
ischemic NBO treatment.

Effect of Normobaric Hyperoxia Postconditioning on Acute Ischemic Stroke
NBO is routinely performed after stroke in clinical settings. Therefore, animal studies investigating the effects of post- 
ischemic NBO are considered to be more relevant for guiding clinical treatment. It is widely recognized that NBO yields 
significant efficacy in reducing infarct volume, especially in ischemic models with reperfusion.34–37 In other words, the 
primary neuroprotection conferred by NBO is to extend the reperfusion window and offer lasting tissue protection in 
temporary ischemia.38 Kim et al indicated that NBO widened the reperfusion time window in rats by up to 2 h without 
increasing superoxide radical generation. However, the benefit of NBO is not sustained in permanent ischemia.39,40 Thus, 
NBO may be the most appropriate adjunct therapy to extend the time window for recanalization treatment (thrombolysis 
and endovascular treatment [EVT]), rather than routine medical treatment.39

Using magnetic resonance imaging (MRI), Singhal et al demonstrated that NBO can enhance aerobic metabolism, 
preserve neuronal integrity and reduce MRI abnormalities in the ischemic brain.41–44 Given the efficacy in increasing 
interstitial PaO2 in the penumbra, other studies have shown that NBO significantly reduces ADP/ATP ratio, reactive 

Figure 1 Mechanisms of normobaric hyperoxia (NBO) therapy in acute ischemic stroke (AIS). NBO preconditioning increases antioxidant enzyme production, alters 
mitochondrial membrane lipids, increases tumor necrosis factor-alpha (TNF-α) converting enzyme levels, stimulates the hypoxia-inducible factor signaling pathway, and 
upregulate glutamate transporters, Na+–Ca+ exchanger, and metabotropic glutamate receptor after AIS. NBO postconditioning can reduce infarction volume, improve 
metabolism, increase tissue perfusion, reduce free-radical generation, ameliorate hyperglycolytic cascades, maintain mitochondrial function, and preserve blood-brain barrier 
integrity. Both NBO preconditioning and postconditioning reduce infarction volume, ameliorate brain edema, and improve neurological deficits.
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oxygen species (ROS) levels, and tissue acidosis after AIS, indicating restoration of impaired energy metabolism.45,46 

Moreover, the expression of glucose transporters 1 and 3 (Glut1 and 3) and the glycolytic rate-limiting enzyme 
phosphofructokinase-1 (PFK-1), which results in hyperglycolytic cascade, are attenuated by NBO via AMPK signaling.45

In addition to elevating interstitial PaO2 in the penumbra, NBO can also augment or preserve tissue 
perfusion.8,36,41,42,44,47,48 The mechanism of improved ischemic tissue perfusion by NBO may be attributed to enhanced 
nitric oxide (NO) production by endothelial NO synthase (eNOS) through O2 substrate availability, suppression of peri- 
infarct depolarization, and vasoconstrictive effects on circulation in the penumbra.47,48

NADPH oxidase is known to produce ROS after cerebral I/R.49 The NADPH catalytic subunit gp91phox (or Nox2) is 
critically implicated in AIS and knockout of Nox2 results in significant reduction of NADPH oxidase activity during 
ischemia.50,51 It has been demonstrated that NBO can attenuate Nox2-containing NADPH oxidase, which is an important 
mechanism underlying NBO-afforded brain protection.51–55 Through inhibiting NADPH oxidase, NBO treatment can 
relieve oxidative stress-related injury, suppress matrix metalloproteinase-9 (MMP-9) induction and inhibit the degrada-
tion of occludin, attenuating of disruption of the BBB and the development of edema in the brain.8,51,53,56–58 Under 
ischemic conditions, several proposed mechanisms are associated with the activation of Nox2, such as phosphatidylino-
sitol 3-kinase (PI3K)/Akt pathways, inflammatory cytokines and metabotropic glutamate receptors.59–61 NBO treatment 
reduces reperfusion injury through activation of the PI3K/Akt pathway.62 In addition to oxygen radicals, other free 
radicals, such as reactive nitrogen species—formed by the reaction of NO with superoxide under ischemic conditions—is 
also alleviated by NBO via suppressing neuronal NO synthase.63 By retarding free-radical generation, NBO can relieve 
ischemic damage, micro-circulation failure, and tissue inflammation.

NBO also has a beneficial effect on mitochondria. NBO alleviates ischemia-induced cytochrome c (CytC) release 
from mitochondria through stimulating the GPX4-connexin43 pathway in astrocytes.64 As such, NBO can reduce 
mitochondrial damage by maintaining redox homeostasis in astrocytes, rather than increasing oxidative stress.64 

Furthermore, NBO can also reduce cytosolic free zinc accumulation in the penumbra and suppress zinc overload in 
mitochondria after ischemic stroke, which improve mitochondrial membrane potential and, ultimately, protect neurons in 
the penumbra.65 Mitochondrial integrity maintains cell survival. Therefore, NBO attenuates autophagy, which is over-
activated by I/R.66 Meanwhile, NBO decreases caspase-8 cleavage in the penumbra during I/R.8

The membrane proteins Na+/H+ exchanger 1 (NHE1) and aquaporin 4 (AQP4) play a pivotal role in the development 
of brain edema after ischemia.67 NHE1 is associated with H+ extrusion in exchange for Na+ in astrocytes, which maintain 
BBB function.68 Excessive NHE1 activation during ischemia is crucial for Na+ overload, resulting in Ca2+ entry via 
reversal of the Na+/Ca2+ exchanger (NCX).69 The increased cytosolic Ca2+ triggers a neurotoxic cascade.68,69 Similarly, 
AQP4, which is mainly expressed in perivascular astrocyte end-feet, is also associated with BBB function.70 Increased 
AQP4 level(s) can destroy BBB integrity, leading to water entering brain tissues, resulting in brain edema.71 NBO is 
capable of retarding exacerbation of brain edema through suppressing the expression of NHE1 and AQP4.72

Similar to NBO preconditioning, the timing and method of NBO post-conditioning also affect neuroprotection. 
Compared with NBO initiated during ischemia, NBO delivered during reperfusion is unlikely to have a protective impact 
and may even exacerbate neuronal injury and death in brain tissue, despite reducing excitotoxic calcium influx and 
subsequent degeneration.8,73 Liu et al reported that intermittent NBO (oxygen oscillation) during ischemia yielded more 
neuroprotection than continuous or short NBO.62 Therefore, intermittent NBO starting during ischemia is critical to 
maximize its benefit for patients diagnosed with AIS. The mechanisms of NBO postconditioning are described in 
Figure 1.

The efficacy of NBO in cerebral ischemia has been tested in multiple clinical trials; however, the results have been 
disappointing (Table 1).6,42,43,58,74–85 We and other teams have analyzed the existing literature, and the secondary 
analysis revealed limited evidence supporting NBO for the treatment of stroke.86,87 Studies investigating the effect of 
NBO on AIS imaging tests have reached beneficial conclusions; however, those investigating the effect of NBO on the 
clinical neurological and functional scores of patients without recanalization therapies have reached negative—or even 
harmful—conclusions. In addition, studies enrolling patients undergoing recanalization therapies, including thrombolysis 
and EVT, especially those diagnosed with anterior circulation AIS, have demonstrated the beneficial effects of NBO. 
Confirmation of the null hypothesis has been due to most enrolled patients not achieving reperfusion during NBO. As 
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discussed, the primary mechanistic goal of NBO is to “freeze the penumbra”; therefore, without blood retention, NBO 
cannot inhibit infarction expansion. Imaging tests assess perfusion and metabolism, revealing the effects of NBO on the 
brain tissue during the acute phase of AIS. Without reperfusion after the acute phase, the penumbra progresses to an 
infarction, thus eliminating the neuroprotective effects of NBO. When reperfusion occurs through recanalization 
therapies, the penumbra protected by NBO changes to normal brain tissue, thereby enhancing the neuroprotective effect 
of NBO. Therefore, reperfusion therapy alone may enhance the efficacy of NBO in cerebral ischemia.

Combining Normobaric Hyperoxia with Other Adjuvant Therapies in 
Acute Ischemic Stroke
Adjuvant Use of Normobaric Hyperoxia in Intravenous Thrombolysis
Considering the neuroprotective role of NBO in the ischemic penumbra and BBB, it is considered to be an ideal adjunct 
therapy to improve the efficacy and safety of tissue-type plasminogen activators (tPA). The most important effect of NBO 
on ischemia is the expansion of the therapeutic time window for successful reperfusion during tPA treatment, especially 
under delayed tPA administration. Animal studies have demonstrated that early NBO treatment could slow the evolution 
of ischemic BBB damage, decrease MMP-9 production, and reduce the loss of tight junction proteins (TJPs), leading to 
significant neurological improvement and reduced infarction volume, brain edema, cerebral hemorrhage and mortality 
after delayed tPA treatment.54,89–91 Imaging studies have revealed that 60 min NBO treatment before thrombolysis could 
reduce infarct size and decrease the frequency of gross parenchymal hemorrhage by reducing early BBB permeability 
and improving microvascular integrity after tPA-induced reperfusion.92 In clinical settings, a retrospective study found 
that NBO combined with intravenous thrombolysis could reduce infarct volume and improve long-term outcomes.83 

Table 1 The Efficacy of NBO in Clinical Studies

Study Design Sample 
Size

Populations NBO Protocol Outcomes Efficacy

Rønning, 199975 RCT 292/258 Stroke onset<24 hours 100%O2, 3L/min, 24 hours SSS; BI; Mortality Harmful

Singhal, 200542 RCT 9/7 AIS onset<12 hours 100%O2, 45L/min, 8 hours NIHSS; SSS; mRS; 
MRI test

Beneficial

Chiu, 200676 Pilot study 17/29 Middle cerebral artery infarction 
onset<48 hours

40%O2 Mortality No 
improved

Singhal, 200743 Pilot study 4/2 AIS onset<12 hours 100%O2, 45L/min, 8 hours MRI test; lactate Beneficial

Padma, 201077 RCT 20/18 AIS onset<12 hours 100%O2, 10L/min, 12 hours NIHSS; mRS; BI; MRI 
test

No 
improved

González, 201078 RCT 8/6 AIS onset<12 hours 100%O2, 45L/min, 8 hours MRI test Beneficial

Roffe, 201179 RCT 148/141 Stroke onset<24 hours 100%O2, 2L/min or 3L/min, 
72 hours

NIHSS; GCS No 
improved

Wu, 201280 RCT 10/6 AIS onset<12 hours 100%O2, 45L/min, 8 hours MRI test Beneficial

Ali, 201481 RCT 148/141 Stroke onset<24 hours 100%O2, 2L/min or 3L/min, 
72 hours

mRS; BI; Motality No 
improved

Mazdeh, 201582 RCT 26/25 Stroke onset<12 hours 50%O2, 12 hours mRS; BI; Mortality Beneficial

Roffe, 20176 RCT 2668/2668 Stroke onset<24 hours 100%O2, 2L/min or 3L/min, 
72 hours

mRS; BI; Mortality No 
improved

Shi, 201758 RCT 9/9 AIS with thrombolysis 100%O2, 10L/min, 4 hours NIHSS Beneficial

Li, 202183 Retrospective 
study

125/102 AIS with thrombolysis 100%O2, 10L/min, 4 hours NIHSS; mRS; MRI 
test

Beneficial

Cheng, 202184 RCT 88/87 Anterior circulation AIS with vessel 
recanalization

50%O2, 15L/min, 6 hours NIHSS; mRS; MRI 
test

Beneficial

Cheng, 202285 RCT 44/43 Posterior circulation AIS with vessel 
recanalization

50%O2, 15L/min, 6 hours NIHSS; mRS; MRI 
test

No 
improved

Li, 202274 RCT 43/43 Anterior circulation AIS with vessel 
recanalization

100%O2, 10L/min, 4 hours NIHSS; mRS; MRI 
test

Beneficial

Li, 202588 RCT 140/142 Anterior circulation AIS with vessel 
recanalization

100%O2, 10L/min, 4 hours NIHSS; mRS; MRI 
test

Beneficial

Abbreviations: RCT, randomized controlled trial; AIS, acute ischemic stroke; SSS, Scandinavian stroke score; BI, Barthel index; NIHSS, National Institute of Health Stroke 
Scale; mRS, modified rankin scale.
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However, a prospective or randomized controlled trial is lacking. The OPEN-3 clinical trial is an ongoing multicenter, 
randomized, controlled Phase III study in China that aims to evaluate the safety and efficacy of NBO in patients 
undergoing intravenous thrombolysis (NCT05965687). We anticipate that these results will further consolidate evidence 
supporting the effect of NBO on ischemic stroke.

However, other studies have reported conflicting results. Fujiwara et al did not find a beneficial effect of NBO on 
augmenting the efficacy of tPA thrombolysis and noted no induced cerebral hemorrhage or edema after NBO.93 David 
et al indicated that combining NBO and tPA exacerbated ischemic brain damage and swelling compared with NBO or 
tPA alone, because NBO facilitated the catalytic and thrombolytic efficiency of tPA; the synergistic effect of combined 
NBO and tPA may worsen brain injury.94 Notably, NBO combined with tPA performed after reperfusion could induce 
oxidative stress-related injury, particularly in cases with severe infarction, which may lead to brain edema and hemor-
rhagic transformation. Therefore, NBO should be initiated during the ischemic phase regardless of tPA administration.

Adjuvant Use of Normobaric Hyperoxia in Endovascular Treatment
Because the penumbra can potentially be rescued if blood flow is restored in a timely manner, NBO may serve as an early 
intervention to preserve the penumbra and “buy time” for combination therapies to achieve better outcomes.38,95 As 
mentioned, whether early or late use of NBO, if cessation of blood supply is relieved, NBO can reduce the final infarction 
volume. Therefore, patients with AIS receiving rapid blood flow restoration through EVT appear to be more suitable for 
NBO treatment in clinical settings. Recent randomized controlled trials revealed that NBO therapy (100% O2 via a face 
mask, 10 L/min) for 4 h in patients who underwent EVT, can significantly reduce the infarction volume within 
24–48 h and result in lower modified Rankin Scale (mRS) scores at 90 days. In addition, the safety of NBO is also 
satisfactory, as the incidences of ICH, death, and other adverse events were similar to those without NBO.74,88 Serum 
assessments find that NBO can maintain BBB integrity and reduce brain injury in patients with AIS undergoing EVT.96 

Further dose-escalation study demonstrated that NBO therapy for 4 and 6 hours appeared to be more effective.97 Another 
earlier randomized controlled trial reached a similar conclusion using a different NBO protocol (50% O2 via a face mask, 
15 L/min) started after vessel recanalization and continued for 6 h. The trial revealed that NBO could improve the degree 
of 90-day disability, decrease 90-day mortality, and profoundly reduce 24 h infarction volume, without increasing adverse 
events.84 Although these trials obtained a favorable conclusion, it is noteworthy that they only enrolled patients with 
anterior circulation stroke, excluding those with posterior circulation stroke. Only 1 randomized trial currently focuses on 
NBO after EVT for posterior circulation stroke; however, despite using the same NBO treatment paradigm, it only found 
a trend, rather than a significant effect of NBO in this cohort.85 The reason for the different effectiveness of NBO on 
anterior and posterior circulation stroke after EVT remains unknown. We considered that this may be because the 
brainstem has a smaller penumbra than the hemisphere or basal ganglia due to the smaller infarction volume in posterior 
circulation stroke. The small penumbra limits salvage of the ischemic brain tissue and further suppresses the efficacy of 
NBO. Therefore, we believe that NBO is an appropriate treatment strategy for patients undergoing EVT, especially those 
with anterior circulation stroke.

Nevertheless, opposing viewpoints exist. The primary mechanism of action of NBO treatment for AIS involves 
elevated PaO2. In other words, a high PaO2 appears to confer beneficial neuroprotective effects against AIS. However, 
a prospective observational study found that patients with admission PaO2 > 120 mmHg experienced worse functional 
outcomes and higher mortality at 90 days after EVT compared to those with admission PaO2 ≤ 120 mmHg.98 It should be 
noted that the oxygen therapy in this study was in the form of mechanical ventilation, which is completely different from 
NBO. Additionally, this was an observational study that included all consecutively admitted patients, rather than 
a randomized grouping and intervention. These 2 points could have biased the results toward the null hypothesis.

Combining Normobaric Hyperoxia with Medication
Several studies have investigated whether other adjuvant therapies can enhance the efficacy of NBO in AIS. Ethanol 
therapy is a candidate for combination therapy.99 Cai et al found that combined NBO and ethanol therapy modulated 
pyruvate dehydrogenase, demonstrated by upregulated pyruvate dehydrogenase complex (PDH) and downregulated 
pyruvate dehydrogenase kinase (PDK).100 The combined therapy also decreased lactic acidosis, Glut1, Glut3, PFK-1 
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and lactate dehydrogenase (LDH), indicating hyperglycolysis was suppressed.101 In addition, the combination therapy 
inhibits PKC-Akt-NOX pathway and reduces cerebral monocarboxylate transporters.102,103 All of the aforementioned 
mechanisms stabilize anaerobic metabolism, decrease oxidative damage and retard cell apoptosis, thus improving 
neurological deficit and reducing infarct volume.91,100–106

Minocycline is another treatment that combines NBO and ischemic stroke. Jin et al found that, compared with NBO 
or minocycline alone, combination treatment significantly reduced infarction volume and hemispheric swelling by 
reducing the levels of MMP-2, MMP-9, caspase-9 and caspase-3.107 Other adjuvant drugs, such as N-acetylcysteine, 
edaravone, cilostazol, melatonin, and methylene blue, have been shown to reduce infarction volume, protect BBB 
integrity, and improve neurological deficits; however, the supportive evidence is weak.108–112

Normobaric Hyperoxia Used in the Treatment of Intracranial Hemorrhage
Theoretically, ICH-induced mechanical compression of the surrounding brain tissue is a major injury that can decrease 
aerobic metabolism and perfusion in the perihematoma, causing edema and even enlarging the hematoma. Similar to the 
ischemic penumbra, low perfusion and abnormal metabolism in the perihematoma exposes brain tissue to an ischemic 
hypoxic condition. Therefore, rescue of the perihematoma is key for treating ICH for which NBO may be a promising 
therapeutic candidate.113 Zhou et al demonstrated that initiating NBO 30 min after inducing ICH significantly reduced 
hemorrhage volume, mitigated the development of post-hemorrhagic edema, and preserved BBB integrity, whereas NBO 
initiated at 60 min or 120 min yielded no beneficial effects.114,115 NBO appears to attenuate the post-hemorrhagic breakdown 
of occludin, inhibit the activation of MMP-9 and suppress the upregulation of HIF-1α, collectively contributing to the 
reduction of hemorrhage volume and stabilization of the BBB. Similar to the ischemic puncture, perihematomal tissue 
exhibits a critical therapeutic window. Delayed NBO therapy may be effective or even detrimental because progressive injury 
to the perihematomal region and NBO-induced increases in intracellular oxygen levels in damaged cells can enhance ROS 
production, thereby exerting deleterious effects. Furthermore, given that MMPs and HIF-1α are involved in acute patho-
physiological responses and extracellular matrix remodeling, as well as angiogenesis and neurogenesis during the delayed 
phase of brain injury, delayed inhibition of these pathways may evoke deleterious effects.114,116,117 In addition, NBO also 
suppresses VEGF expression, which may inhibit cellular apoptosis potentially through the VEGF/PI3K/Akt/FoxO1 
pathway.118,119 NBO can effectively decrease the level of C3 which is able to rescuing microglia-mediated synaptic pruning 
after ICH.120 There is no published clinical trial; however, a single-center, randomized controlled Phase II trial from our team 
registered a clinical trial (Clinicaltrials.gov, NCT04144868) that revealed the beneficial effect of NBO on ICH in clinical 
settings. Our findings indicate that early and intermittent administration of NBO in patients with ICH significantly improves 
90-day prognosis, likely due to a reduction in perihematoma edema induced by NBO therapy. A small sample size, however, 
renders the study underpowered and restricts its clinical scope. As such, a well-designed, multicenter, randomized, controlled 
phase III trial is warranted to draw more convincing conclusions. NBO appears to be a promising approach to treating ICH, 
and more studies should be conducted to verify this conclusion.

Normobaric Hyperoxia Used in the Treatment of Chronic Cerebral 
Ischemia
CCI is a pathological condition induced by a persistent reduction in cerebral perfusion, leading to ischemia and 
hypoxia in brain tissue. CCI can cause various brain dysfunctions such as dizziness, cognitive impairment, and 
stroke.121,122 Cerebrovascular atherosclerotic stenosis is the most common pathogenesis of CCI, with hypoperfusion 
being a pivotal mechanism accounting for these neurological deficits.122,123 In theory, low cerebral blood flow in 
patients with CCI exposes the brain tissue to an ischemic-hypoxic condition, which is similar to that in the ischemic 
penumbra in brain infarction.121 Therefore, given the satisfactory effectiveness of NBO on the penumbra in AIS, NBO 
may also yield beneficial effects on the ischemic-hypoxic brain tissue. Based on previous animal and clinical studies 
focusing on NBO in AIS, we hypothesize that NBO may also be a novel approach to the treatment of CCI.12 To verify 
this, we evaluated the improvement of brain dysfunction in patients with CCI treated with NBO. 
Electroencephalography revealed that NBO rapidly ameliorated CCI-mediated brain wave anomalies, including 
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reduced abnormal high-power oscillations and slow paroxysmal activity associated with CCI, which may improve 
vascular cognitive impairment.124

Aside from cerebral arterial stenosis-mediated CCI, a form of CCI associated with cerebral venous stenosis has 
recently been proposed.125–127 Venous outflow disturbance raises the pressure in arterio-venous anastomoses, thereby 
affecting arterial blood flow and volume.128,129 Consequently, cerebral venous outflow disturbance may result in global 
brain hypoperfusion and elevated aerobic metabolism, a pattern similar to that observed in arterial stenosis-related 
CCI.126 NBO therapy can elevate cerebral tissue pO2 and may ameliorate cerebral venous outflow disturbance-related 
deficits, especially headache and electroencephalogram brain dysfunction.130 Current animal and clinical investigations 
of NBO for CCI are fewer than those for AIS; however, CCI populations are larger. Although we found preliminary 
beneficial effects of NBO, more studies are warranted to unravel mechanisms and determine effectiveness. CCI etiologies 
can be classified as large artery atherosclerotic stenosis, small arterial stenosis or occlusion, cardiogenic hypoperfusion, 
cerebral venous outflow disturbance, and other causes. Future NBO trials should stratify cohorts according to these 
subtypes.121

Conclusions
Although existing research remains at a relatively superficial level, we summarize the therapeutic mechanisms of NBO 
into 2 points. First, NBO elevates pO2 in the penumbra of AIS, as well as in perihemotoma of ICH and hypoxic-ischemic 
tissue of CCI, which reduces ischemia volume, improves metabolism, protects BBB integrity, and maintains mitochon-
drial function, thus expanding the therapeutic time window. Second, NBO increases the production of antioxidant 
enzymes and reduces free-radical generation, leading to alleviated oxygen stress-related injury in stroke. Reperfusion 
is critical for the beneficial effects of NBO in AIS. Therefore, only patients undergoing recanalization can benefit from 
NBO. Because aerobic metabolism plays a pivotal role in the NBO treatment of stroke, future research should emphasize 
the role of the mitochondria, particularly their involvement in mitophagy and fission/fusion dynamics. Given the 
heterogeneity observed in both animal and clinical studies, additional research is imperative to consolidate evidence 
supporting the effectiveness of NBO in treating stroke.
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