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Background: Programmed cell death and inflammatory responses are critical in the progression of acute kidney injury (AKI). 
PANoptosis, a highly regulated and complex form of programmed inflammatory cell death, integrates the molecular mechanisms of 
apoptosis, pyroptosis, and necroptosis. While this process has been implicated in various inflammatory conditions, its specific role in 
AKI remains unclear.
Methods: The role of PANoptosis in AKI was investigated using single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic 
data. Initially, scRNA-seq was utilized to identify differentially expressed genes (DEGs) associated with apoptosis, pyroptosis, and 
necroptosis in individual AKI cells. Through integrating these DEGs, a candidate gene set associated with PANoptosis was 
established. Several machine learning algorithms were employed to determine the optimal feature genes. The diagnostic potential of 
these genes was examined through receiver operating characteristic curve analysis. Gene set enrichment analyses were performed to 
explore their relationship with PANoptosis. Further validation was carried out using AKI animal models.
Results: PANoptosis levels were significantly elevated in AKI. ScRNA-seq revealed heterogeneity in PANoptosis activity across cell 
types. Integration of transcriptomic data with machine learning algorithms led to the identification of five key upregulated genes: 
EGR1, CEBPD, HSPA1A, HSPA1B, and RHOB. The diagnostic potential of these genes was demonstrated with the area under curve 
values of 0.981 for EGR1, 0.920 for CEBPD, 0.968 for HSPA1A, 0.970 for HSPA1B, and 0.953 for RHOB. Functional enrichment 
analysis demonstrated a significant positive correlation between the expression of these biomarkers and PANoptosis activity. 
Validation through Western blot and immunohistochemistry further confirmed their roles in AKI pathogenesis.
Conclusion: By integrating scRNA-seq and transcriptomic data, along with the application of innovative methodologies, five key 
PANoptosis-related genes associated with AKI were identified. Our study offers new insights into the role of PANoptosis in AKI and 
highlights potential biomarkers for clinical evaluation and therapeutic targeting.
Keywords: acute kidney injury, PANoptosis, single-cell RNA sequencing, machine learning, biomarkers

Introduction
Acute kidney injury (AKI) is a multifactorial clinical condition marked by a swift increased in serum creatinine (SCr) 
levels and reduced in glomerular filtration rate.1 This syndrome serves a crucial function in clinical settings, affecting 
approximately 20% of hospitalized patients, and is increasing annually.2 Notably, in intensive care unit settings, the 
incidence of AKI has surpassed 50%.3 It has a grim prognosis, elevating the likelihood of transitioning to chronic kidney 
disease, end-stage renal disease, cardiovascular complications, and mortality.4,5 Despite extensive research, the exact 

Journal of Inflammation Research 2025:18 8735–8754                                                     8735
© 2025 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                     

Open Access Full Text Article

Received: 10 March 2025
Accepted: 27 June 2025
Published: 2 July 2025

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/4.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


etiological factors and pathogenic mechanisms of AKI remain unclear. As effective therapeutic strategies for AKI are 
currently lacking, identifying novel biomarkers and formulating tailored treatments for AKI are crucial.6

As the principal pathological feature of AKI is the death of proximal tubular (PT) cells, investigating it from the 
perspective of programmed cell death (PCD) represents a widely accepted research strategy.7,8 Since the discovery of 
apoptosis as the first type of PCD, over ten other types have been identified, including pyroptosis and necroptosis.9 

Previous research suggested that different modes of cell death follow fixed, unique pathways and operate independently. 
However, subsequent studies have revealed extensive interactions between cell-death pathways. This understanding has 
given rise to the notion of PANoptosis, an inflammatory form of PCD governed by the PANoptosome, which necessitates 
the concurrent activation of apoptosis, pyroptosis, and necroptosis.10–12 The PANoptosis concept highlights that targeting 
a single cell-death pathway is unlikely to yield desired therapeutic outcomes.13,14 PANoptosis plays a pivotal role in the 
pathogenesis of AKI. In sepsis-induced AKI, the upregulation of EIF2AK2 enhances the expression of AIM2, thereby 
promoting PANoptosis in PT cells and exacerbating the progression of AKI.15 Additionally, studies suggest that PSTPIP2 
mitigates AKI by inhibiting PANoptosis in mouse renal tubular epithelial cells.16 These findings suggest that therapeutic 
strategies targeting PANoptosis could partially alleviate kidney injury, underscoring its potential as a treatment target. 
Nevertheless, the current understanding of the regulatory processes and molecular mechanisms underlying PANoptosis in 
AKI remains limited.

While current research underscores the crucial role of PANoptosis in the pathogenesis and treatment of AKI, the 
identification and validation of key regulatory genes remain challenging. Traditional RNA sequencing (RNA-seq) 
methods often fail to capture cell-specific gene expression and activity changes, which are essential for under-
standing the heterogeneous regulation of PANoptosis in AKI. Recent advancements in single-cell RNA sequencing 
(scRNA-seq) have addressed this limitation, enabling both quantitative and qualitative analyses of cellular composi-
tion in complex tissues.17 These advancements provide critical insights into cellular heterogeneity in AKI, facil-
itating a more precise characterization of disease features.18 Furthermore, machine learning, a subset of artificial 
intelligence, can process large datasets and support tasks such as disease diagnosis and healthcare management.19 

By integrating machine learning with bioinformatics, the capabilities of scRNA-seq can be significantly enhanced, 
improving data analysis accuracy and further aiding the identification and investigation of potential diagnostic 
biomarkers.

In this study, scRNA-seq was employed to find differentially expressed genes (DEGs) associated with apoptosis, 
pyroptosis, and necroptosis in individual AKI cells. By analyzing these DEGs, we established a candidate gene set 
associated with PANoptosis. Multiple machine-learning algorithms were then applied to the bulk RNA-seq datasets, 
leading to the identification of optimal feature genes. These findings were additionally corroborated using animal 
experiments. The integration of scRNA-seq and bulk RNA-seq data, combined with machine learning, offers an 
innovative approach that enhances our understanding of PANoptosis in AKI and reveals potential new therapeutic 
targets.

Materials and Method
Data Source
The scRNA-seq data of 32 specimens including normal (n = 20) and AKI (n = 12) kidney tissue were procured from the 
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) with accession ID GSE183276.20 We 
downloaded the bulk RNA-seq dataset GSE43974 from the GEO, which comprised 188 normal and 203 AKI samples.21 

All datasets used in this study were provided in Supplementary Table 1.
Lists of essential regulatory genes linked to apoptosis, pyroptosis, and necroptosis were included as PANoptosis-related 

genes, and gene lists were obtained from the GSEA gene set, KEGG, REACTOME, Hallmark, and previous study.22 

Ultimately, 577 apoptosis-, 49 pyroptosis-, and 100 necroptosis-related genes were analyzed (Supplementary Table S2). 
Gene set variation analysis (GSVA) was executed utilizing the ssGSEA R package to gauge the impact of PANoptosis on 
AKI and normal tissues on the GSE43974 dataset.23
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Data Integration and Processing
The scRNA-seq data underwent processing via the Seurat R software.24 Quality control criteria encompassed filtering 
cells with minimum expression in three cells, maintaining RNA features within the range of 200–7000 per cell, and 
ensuring that mitochondrial RNA content was less than 20% (Figure S1). In total, 25,684 eligible cells were retained for 
further analysis. Remaining cells underwent scaling and normalization using a linear regression model employing the 
“Log Normalization” technique. The top 3000 highly variable genes were identified using the “FindVariable-Features” 
function. Data were then downscaled using principal component analysis. The “Harmony” package was employed to 
eliminate batch effects between samples and prevent interference with downstream analyses. Cell types were annotated 
and then hand checked based on previous studies. Differential expression analysis of bulk RNA-seq data was executed 
utilizing the R package “limma”.25

PANoptosis Activity
The scRNA-seq data was utilized to determine the gene sets associated with PANoptosis activity. The AUCell, UCell, 
singscore, ssgsea, and AddModuleScore algorithms were employed to assess the activities of apoptosis, pyroptosis, and 
necroptosis at the single-cell level, with overall activities computed through scoring.26,27 Cells were categorized into 
elevated and reduced activity clusters according to the median score. DEGs between high- and low-activity cells were 
identified using the “FindMarkers” function. A list of candidate genes related to PANoptosis was generated by 
intersecting the DEGs from the three cell death pathways.

Functional Enrichment
To investigate the functions and mechanisms of potential PANoptosis-related genes, gene ontology (GO) and disease 
ontology (DO) enrichment analyses were conducted utilizing the “clusterProfiler” R package.28

Optimal Feature Genes
Seven machine-learning algorithms including eXtreme Gradient Boosting (XGBoost), Boruta, Random Forest (RF), 
Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination 
(SVM-RFE), Decision Tree (DT), and Gradient Boosting Machine (GBM) were applied to identify core genes. Feature 
selection strategies were utilized to reduce the number of core genes, thereby identifying the optimal feature genes 
associated with PANoptosis in AKI.

LASSO introduces regularization into the loss function, improving both prediction accuracy and model transparency. 
To enhance robustness and avoid overfitting, we applied LASSO regression with 5-fold cross-validation. The RF method 
generates multiple decision trees through random sampling and feature selection, with final predictions based on either 
voting or averaging. For our random forest model, we used 500 trees and 10-fold cross-validation, which highlighted 
important feature interactions and correlations. The Boruta algorithm assesses feature importance by comparing original 
features with randomly shuffled versions, efficiently handling high-dimensional data without preprocessing or inter-
ference from feature correlations. XGBoost improves accuracy by iteratively training decision trees, with error correc-
tions made in each iteration, while an early stopping strategy helps prevent overfitting. SVM-RFE identifies the most 
relevant features, discarding irrelevant ones to enhance both interpretability and robustness. GBM combines several weak 
learners into a robust predictive model, while DT splits data to maximize homogeneity within subsets. Optimal feature 
genes were identified by intersecting those identified by all seven algorithms.

Expression and Diagnostic Value of the Optimal Feature Genes
The manifestation of the most significant feature genes in the AKI specimens was validated utilizing the Wilcoxon rank- 
sum test. The diagnostic performance of these genes was evaluated by computing the area under the receiver operating 
characteristic (ROC) curve. Correlation analysis identified relationships between core genes and apoptosis, pyroptosis, 
and necroptosis. Furthermore, the manifestation of core apoptosis, pyroptosis, and necroptosis genes in the high- and 
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low-activity cohorts was examined and visualized using ggplots. The abundance levels of the optimal feature genes at the 
single-cell level were illustrated using UMAP plots.

Gene Set Enrichment and Correlation Analyses
Gene Set Enrichment Analysis (GSEA) was executed on feature genes to evaluate their association with apoptosis, 
pyroptosis, and necroptosis, as well as potential regulatory mechanisms. Pearson correlation analysis was employed to 
measure the relationships between gene expression levels and PANoptosis.

AKI Mouse Model
Male C57BL/6J mice (specific pathogen-free, 6–8 weeks old, weighing 20–25 g) were procured from Jiangsu 
Jicuiyaokang Biotech Co. (Jiangsu, China). The modeling methods and evaluation criteria were derived from the 
framework established in our previous study.29 Specifically, ischemia-reperfusion injury-acute kidney injury (IRI-AKI) 
model was established by bilateral ligation of the renal arteries under anesthesia with 50 mg/kg sodium pentobarbital. 
Bilateral flank incisions were performed to isolate and clamp the renal arteries with noninvasive microvascular clips at 37 
°C for 35 min. The control group experienced an identical surgical procedure without arterial ligation. Mice were 
euthanized 12, 24, or 48 h after reperfusion, and then heart blood samples were analyzed for SCr and blood urea nitrogen 
(BUN). Kidney tissue was procured after cardiac perfusion with precooled saline. All experiments were conducted in 
strict adherence to the guidelines for the care and use of laboratory animals established by the National Institutes of 
Health, and were approved by the Animal Ethics Committee of Henan Eye Hospital/Henan Eye Institute.

Histology and Renal Function
Kidney tissues were fixed in 4% formaldehyde, dehydrated, embedded in paraffin, sectioned, and stained with hematox-
ylin and eosin (H&E). SCr and BUN levels were quantified utilizing commercial kits from Jiancheng Bioengineering 
Institute (Nanjing, China) per the supplier’s protocols.

Tubular Injury Score
After H&E staining of renal tissue, tubular injury was evaluated based on the loss of brush borders, tubular dilation, cast 
formation, and tubular necrosis, following established methods and grading criteria.30 Ten high-power fields (magnifica-
tion ×200) were randomly selected, with five fields from the renal cortex and five from the corticomedullary junction. 
Each field was scored on a scale from 0 to 5. All assessments were conducted by two nephropathology experts using 
a square grid technique for blinded scoring.

Western Blot (WB)
Kidney samples were lysed with RIPA buffer comprising cocktail inhibitors for 30 min on ice. Specimens were separated 
by spinning at 12,000 rpm for 15 min in a 4 °C environment. Protein levels were quantified utilizing a BCA protein 
measurement kit. WB analysis was executed employing 30 μg of protein per specimen according to standard protocols. 
Primary antibodies against EGR1 (Proteintech, 22008-1-AP, 1:1000), CEBPD (Invitrogen, PA5-75232, 1:1000), 
HSPA1A (Invitrogen, PA5-34772, 1:5000), HSPA1B (Invitrogen, PA5-28369, 1:1000), and RHOB (CST, 63876S, 
1:1000) were used. For quantitation, protein levels were normalized.

Immunohistochemistry (IHC)
Paraffin-embedded kidney tissue blocks were cut into 5 µm sections. These sections underwent dewaxing with xylene 
and subsequent rehydration utilizing an ethanol concentration gradient. Antigen retrieval was executed by boiling 
sections in sodium citrate buffer for 15 min. Once cooled to ambient temperature, a 3% H2O2 solution was applied 
for 10 min to inhibit endogenous peroxidase activity. Sections were then blocked with 5% BSA for 30 min before 
overnight incubation at 4 °C with primary antibodies. Following phosphate buffer saline rinse, the sections underwent 
incubation with secondary antibodies at ambient temperature for 1 h. DAB staining was used for detection and 
quantitation. Hematoxylin was employed to stain nuclei.
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Statistical Analysis
All data processing and graphical representations were conducted utilizing R version 4.3.1 and GraphPad Prism 9.0 
software. WB images were processed using Image J software. To assess differences in continuous variables between two 
groups, the Wilcoxon test or t-test was applied as appropriate. In cases involving comparisons across multiple groups, 
one-way analysis of variance was employed. Pearson’s correlation coefficient was used to evaluate the relationships 
between variables. P < 0.05 was considered statistically significant.

Results
Single-Cell Transcriptomic Atlases and Cell Typing
To identify the genes most indicative of PANoptosis, we analyzed scRNA-seq data. After removing batch effects using 
the Harmony algorithm, cells from different samples were evenly distributed (Figure 1A), indicating that the data were 
suitable for downstream analysis. Using FindClusters (resolution = 0.8), 25,684 cells were clustered into 29 groups 
(Figure 1B). Cellular annotation was executed utilizing classical marker genes and classified into 14 types (Figure 1C). 
Figure 1D illustrates the abundances of these types between AKI and normal kidney tissue. In AKI tissue, PT cells, loop 
of Henle (LOH) cells, natural killer T (NKT) cells, macrophages (MC), monocytes (MON), B cells and mesangial cells 
(MES) were more abundant than in normal tissue, whereas intercalated cells (IC), distal tubule (DT) cells, endothelial 
cells (EC), smooth muscle cells (SMC), fibroblasts (FIB), and podocytes (POD) were less abundant. Bubble (Figure 1E) 
and UMAP (Figure 1F) plots revealed distinct differences in marker gene expression among cell types, confirming the 
accuracy of the annotations.

Next, we performed GO enrichment analysis for each cell type (Figure 2). For example, DEGs in PC cells exhibited 
significant enrichment in pathways linked to hypoxia and renal development, whereas those in PT cells were strongly 
associated with responses to toxins and heavy metal ions. These observations contribute to our comprehension of diverse 
cellular categories and their functions.

Identifying PANoptosis-Related Genes from Single-cell Transcriptomes
To ascertain the role of PANoptosis in AKI, we initially evaluated gene expression variation at the overall level. Box 
plots illustrate scaled average expression levels of apoptosis, pyroptosis, and necroptosis in different cell samples. The 
transcription of genes linked to these forms of cell death was significantly upregulated in AKI than in normal tissues 
(Figure 3A–C). Subsequently, the AUCell, UCell, AddModuleScore, singscore, and ssgsea algorithms were employed to 
produce activity scores of apoptosis, pyroptosis, and necroptosis in each cell (Figure 3D–I). These analyses indicated 
heterogeneity in cell-death activities. Based on median scores (Figure 4A–C), cells were classified into high- and low- 
activity cohorts (Figure 4D–F). Notably, despite the different modes of cell death, high- and low-activity cells grouped 
according to apoptosis, pyroptosis, and necroptosis showed considerable similarities. Differential expression analysis was 
executed to screen for DEGs between groups (Figure 4G–I). Ultimately, by integrating and intersecting DEGs from the 
three modes of cell death (Supplementary Tables S3–S5), we identified 48 PANoptosis-related genes, among which 35 
exhibited elevated expression and 13 showed diminished expression (Figure 4J–L and Supplementary Table S6).

Expression of PANoptosis-Related Genes in Bulk Data
GSVA examination of bulk data suggested that AKI kidney tissue exhibited higher levels of apoptosis, pyroptosis, and 
necroptosis than normal kidney tissue (Figure 5A–C). Although the differences in necroptosis were not statistically 
significant, a comparable upward pattern was noted, suggesting the involvement of PANoptosis in the progression of 
AKI. Furthermore, we identified the distinctions in the expression of these PANoptosis-related genes between the AKI 
and normal groups at the bulk level (Figure 5D–F and Supplementary Table S7). GO and DO functional enrichment 
analyses were conducted to investigate the potential functions of these genes. GO analysis demonstrated that these genes 
are linked to biological processes, encompassing apoptosis, ATP metabolism, neutrophil activation, and oxidative 
phosphorylation (Figure 5G). DO analysis indicated that these genes are primarily linked to diverse kidney diseases 
and urological cancers (Figure 5H).
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Figure 1 Single-cell transcriptome data preprocessing and cellular annotation. (A) The cell distribution of the samples showed no significant batch effect. (B) The results of 
UMAP plot indicated that all cells were finely classified into 29 clusters. (C) The UMAP plots of cells from all scRNA-seq samples, colored by cell-type annotation. (D) Cell 
proportion of different cell types in the tissues of normal and AKI patients. (E) Dot plot showing representative marker genes for each cell type. (F) Typical marker genes for 
each cell group.
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Pinpointing Optimal Feature Genes
Seven machine-learning algorithms were employed. Using the RF algorithm, 19 key genes with importance scores of > 1 
were selected from the PANoptosis-related gene list (Figure 6A and Supplementary Table S8). The GBM algorithm 
identified 22 key genes with importance scores > 0.1 (Figure 6B and Supplementary Table S9). The SVM-REF algorithm 
identified 16 key genes (Figure 6C and Supplementary Table S10), whereas the DT algorithm identified 7 key genes 
(Figure 6D and Supplementary Table S11). The XGBoost algorithm identified 26 key genes with importance scores > 0.1 
(Figure 6E and Supplementary Table S12). The Boruta algorithm filtered irrelevant features, resulting in 25 key genes 
(Figure 6F and Supplementary Table S13). The LASSO algorithm identified 26 key genes (Figure 6G and Supplementary 

Figure 2 The relationship between the marker genes of each type of cells, along with the relevant pathways enriched by GO analysis.
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Figure 3 Single-cell analysis revealed the heterogeneity of PANoptosis in AKI. (A–C) Boxplots showing the scaled mean expression of apoptosis, pyroptosis and necroptosis 
signatures in cells from different sample groups. (D–I) Violin plot and Bubble plot showing enrichment scores of apoptosis (D and E), pyroptosis (F and G) and necroptosis 
(H and I) gene sets for each cell type using AUCell, UCell, singscore, ssgsea, AddModulescore, and Scoring score.
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Figure 4 Identification of PANoptosis-related gene list in AKI. (A–C) The scoring score represented the activity of apoptosis, pyroptosis, and necroptosis in individual cells, 
visualized in a gradient color scheme. (D–F) Grouping of cells based on scoring score of apoptosis, pyroptosis and necroptosis. (G) Percentage difference (Delta means percent of 
cells) and log-fold change based on the Wilcoxon rank-sum test results for DEGs between high and low apoptosis cells. (H) Percentage difference and log-fold change based on the 
Wilcoxon rank-sum test results for DEGs between high and low pyroptosis cells. (I) Percentage difference and log-fold change based on the Wilcoxon rank-sum test results for 
DEGs between high and low necroptosis cells. (J–L) Venn diagram displayed the 48 shared PANoptosis gene signature obtained by the three types of cell death patterns, with 35 
upregulated DEGs (K) and 13 down-regulated DEGs (L).
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Figure 5 The expression of PANoptosis-related genes in bulk RNA-seq data of AKI. (A–C) The results of bulk RNA-seq dataset analysis showed that AKI tissues exhibited 
higher PANoptosis activity compared to normal kidney tissues. (D) Heat map of the PANoptosis-related genes. (E) Volcano plot of the PANoptosis-related genes. (F) Box 
plot demonstrated the results of the differential expression of PANoptosis-related genes at the bulk level between the normal and AKI groups. (G) Results of the GO 
analysis. (H) Results of the DO analysis. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 compared with the control group.
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Figure 6 Machine learning algorithms evaluated the optimal feature genes. (A) The results of RF algorithm. (B) The results of GBM algorithm. (C) The results of SVM-REF 
algorithm. (D) The results of DT algorithm. (E) The results of XGboost algorithm. (F) The results of Boruta algorithm. (G) The results of LASSO algorithm. (H) Venn 
diagram to screen 5 overlapping genes presented in seven machine learning algorithms.
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Table S14). By consolidating the genes identified by all seven algorithms, five optimal feature genes were determined: 
EGR1, CEBPD, HSPA1A, HSPA1B, and RHOB (Figure 6H).

Diagnostic Efficacy and Validation of Feature Genes
We noted substantial elevations in the expression of EGR1, CEBPD, HSPA1A, HSPA1B, and RHOB (Figure 7A–7E) in the AKI 
group relative to the control group (all P < 0.001). We then assessed the diagnostic value of these five feature genes. The areas 
under the curves (AUC) were 0.981 for EGR1, 0.920 for CEBPD, 0.968 for HSPA1A, 0.970 for HSPA1B, and 0.953 for RHOB 
(Figure 7F), demonstrating the accuracy of our analysis and strong diagnostic potential. Correlation analysis revealed that all the 
optimal genes exhibited significant positive associations with apoptosis, pyroptosis, and necroptosis (Figure 7G–7I). We verified 
the expression of the optimal feature genes in the scRNA-seq data. Specifically, CEBPD was predominantly expressed in IC, PC, 
MC, and SMC cells (Figure S2A–C). EGR1 was significantly expressed in IC, SMC, and FIB cells (Figure S2D–F). HSPA1A 
and HSPA1B were highly expressed in IC, PC, and MON cells (Figure S2G–L). RHOB was significantly expressed in IC, SMC, 
MC, and MES cells (Figure S2M–O). Additionally, the expression of optimal feature genes was validated in both high- and low- 
activity groups for all three types of cell death, with significantly higher expression observed in high-activity cells (Figure 7J–X).

GSEA of Optimal Feature Genes
To elucidate the potential biological relationships and functions between five optimized genes and PANoptosis in AKI, 
the GSEA was employed. After excluding normal samples, AKI samples were divided into two groups based on the 
median expression levels of these genes. The results demonstrated that apoptosis, pyroptosis, and necroptosis were 
notably enriched in the high-expression subgroups of all five optimal feature genes (Figure 8A–O), indicating a strong 
correlation between these genes and PANoptosis.

Construction of IRI-AKI Animal Model and Confirmation of Optimal Feature Genes
The workflow and grouping of animal models are shown in Figure 9A. We successfully established an IRI-AKI animal 
model and validated the expression of diagnostic genes utilizing WB and IHC techniques. H&E staining revealed tubular 
necrosis with the extent of injury progressively worsening over time (Figure 9B and Figure S3A). Compared to the 
control group, SCr, and BUN levels were elevated, demonstrating a significant time-effect relationship (Figure 9C). 
These findings confirm the successful establishment of the model. WB results indicated increased expression of EGR1, 
CEBPD, HSPA1A, HSPA1B, and RHOB post-AKI, consistent with our previous analyses (Figure 9D–E). IHC showed 
nuclear localization of CEBPD and EGR1 and cytoplasmic localization of HSPA1A, HSPA1B, and RHOB, with all genes 
showing heightened expression in AKI, particularly in damaged cells (Figure 9F). To further validate the relationship 
between feature genes and PANoptosis, we evaluated the correlation between the expression of five feature genes and 
tubular injury scores. The results indicated a significant positive correlation between the expression of all five genes and 
tubular injury scores (Figure S3B–F).

Discussion
The high incidence and severe consequences of AKI pose a significant global public health challenge.31 Common causes 
of AKI encompass ischemia-reperfusion, sepsis, nephrotoxic drugs, and urinary-tract obstruction. Although these causes 
differ mechanistically, they share the common features of uncontrolled inflammation and PCD.32

PANoptosis represents a highly synchronized and dynamic form of inflammatory cell death that integrates key 
molecular aspects of pyroptosis, apoptosis, and necroptosis.33 PANoptosis is primarily modulated by a multifaceted 
macromolecular complex known as the PANoptosome, whose composition varies depending on cellular triggering 
factors. This complex, which incorporates the main regulatory factors of the three cell death pathways, can initiate 
cell death and PAMPs, DAMPs, or other danger signals.34 PANoptosis is implicated in multiple diseases, encompassing 
metabolic, neurological, infectious, cancerous, inflammatory, and immune disorders. Manipulation of key molecules 
within this pathway is likely to provide new therapeutic opportunities.35 As the precise role of PANoptosis in AKI 
remains unclear, our goal was to integrate scRNA-seq and bulk RNA-seq data to more comprehensively analyze the 
characteristics of PANoptosis in AKI and identify new therapeutic targets.
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Figure 7 The expression of the optimal feature genes. (A–E) The expression of 5 hub genes were significantly elevated in the AKI group. (F) ROC curves estimating the 
diagnostic performance of the hub genes. (G–I) The correlation of hub genes with apoptosis, pyroptosis, and necroptosis. (J–N) Expression of hub genes in high and low 
apoptosis subgroups. (O–S) Expression of hub genes in high and low pyroptosis subgroups. (T–X) Expression of hub genes in high and low necroptosis subgroups.
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Figure 8 GSEA results for optimal feature genes showed significant enrichment of PANoptosis pathway. (A–C) The results of single-gene GSEA for CEBPD. (D–F) The results 
of single-gene GSEA for EGR1. (G–I) The results of single-gene GSEA for HSPA1A. (J–L) The results of single-gene GSEA for HSPA1B. (M–O) The results of single-gene GSEA 
for RHOB.
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With the swift growth in high-throughput sequencing data and the advancement of artificial intelligence, leveraging 
big data to explore disease diagnostic markers and therapeutic targets has become a crucial research focus.36 Previous 
transcriptomic studies on AKI have primarily utilized bulk RNA-seq data and often overlooked cellular heterogeneity. 
The scRNA-seq studies on AKI have mainly focused on identifying and characterizing cellular components, discovering 

Figure 9 The results of experimental verification of IRI-AKI mouse model. (A) Diagram and grouping of animal experiments. (B) HE staining of the mouse kidney sections in 
the IRI-AKI mouse models at the reperfusion time of 12 h, 24 h, or 48 h (Scale bar: 50 µm). (C) The concentrations of SCr and BUN in the mouse models at the reperfusion 
time of 12 h, 24 h or 48 h. (D) The expression levels of optimal feature genes detected with WB assays in IRI-AKI mouse model. (E) The quantitative results of the relative 
expression levels of optimal feature genes. (F) IHC staining of optimal feature genes between the sham and AKI mouse kidneys (Scale bar: 25 µm).
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new cell subtypes, and investigating intercellular heterogeneity, with limited assessments of disease-specific pathways. 
Moreover, small sample sizes with scRNA-seq have impeded the assessment of the prognostic and diagnostic effective-
ness of specific genes.

Our analysis revealed that PANoptosis levels were notably elevated in AKI kidney tissues relative to normal tissues. 
GSVA pathway scoring of the bulk transcriptomic data further indicated that PANoptosis was activated in AKI patients. 
We assessed the heterogeneity of PANoptosis between AKI and normal kidney tissues using scRNA-seq profiles. It was 
noteworthy to note that activity scores for apoptosis, pyroptosis, and necroptosis exhibited significant heterogeneity 
across different cell types. Apoptotic activity scores were predominantly elevated in IC, while pyroptotic and necroptotic 
activity scores were mainly enriched in MON and MC. This finding contrasts with previous research that primarily 
focused on the role of PT cell death in AKI.37 Recent research suggests that the death of IC may be pivotal in the onset 
and progression of AKI. Following surgery, distant organ injury, sepsis, or localized renal damage, IC emerge as critical 
mediators of renal inflammation and AKI.38 In IRI-AKI, MMP9 protects IC from apoptosis by releasing stem cell 
factor.39 Regarding the involvement of MON and MC in AKI, studies indicate that these cells undergo pyroptosis in an 
“altruistic” manner, recruiting inflammatory cells and promoting AKI progression. However, the underlying molecular 
mechanisms require further exploration.40 Given that PANoptosis encompasses features of pyroptosis, apoptosis, and 
necroptosis, we identified a candidate gene set associated with AKI-related PANoptosis by intersecting genes that 
differentiate between these three cell death modes at the single-cell level. Functional enrichment analysis of the candidate 
gene set further validated this analytical approach.

To identify optimal feature genes, machine-learning methods were employed for feature selection and core gene 
acquisition. As a branch of artificial intelligence, machine learning detects patterns and correlations within data, enabling 
the accurate prediction of future events.41 Traditionally, the identification of diagnostic biomarkers for AKI has relied on 
singular machine-learning algorithms or frameworks, which often constrain the resilience and accuracy of predictions. In 
this study, a combination of machine-learning algorithms was used to filter the candidate gene set, leading to the 
identification of five core genes associated with PANoptosis in AKI: EGR1, CEBPD, HSPA1A, HSPA1B, and RHOB. 
Validation using bulk transcriptomic data revealed elevated expression of these genes in the AKI group. ROC curve 
analysis showed that all five genes had an AUC value greater than 0.9, indicating their potential as diagnostic biomarkers 
for AKI. Additionally, GSEA and in vivo experiments were performed. GSEA results demonstrated significant associa-
tions between all five genes and PANoptosis. Using an IRI-AKI animal model, the tissue localization and expression of 
the five core genes were further validated through WB and IHC. Moreover, the correlation analysis between the relative 
expression of characteristic genes and tubular injury scores further reinforced the association between these genes and 
PANoptosis.

EGR1, early growth response protein 1, is a transcription factor expressed in response to a wide range of non-lethal 
external stimuli.42 Upon activation, it forms complexes with response factors in serum and binds to GC-rich regions of 
DNA through three zinc-finger domains, regulating the transcription of numerous downstream genes. EGR1 assumes 
a vital function in cellular processes encompassing proliferation, differentiation, apoptosis, and inflammation.43 

Contemporary investigations have demonstrated that during AKI, autophagy can stimulate EGR1 through the MAPK/ 
ERK pathway, leading to FGF2 secretion, fibroblast activation, and fibrosis.44 Additionally, transient upregulation of 
EGR1 signaling enhances renal repair during AKI by triggering SOX9+ renal tubular cells.45 These observations indicate 
that EGR1 has a considerable impact on AKI.

HSPA1A and HSPA1B, key members of the Hsp70 family, are essential cellular stress-protective proteins. They have 
been shown to be involved in regulating apoptosis and proliferation, as well as in the activation of transcription factors 
and protein degradation.46,47 Nevertheless, Hsp70’s function in AKI is yet to be elucidated. RHOB, a small GTPase 
belonging to the Ras superfamily, undergoes farnesylation or geranylgeranylation, with its isoprenylation status influen-
cing its function.48 Farnesylated RhoB typically localizes to the cell membrane, promoting cell growth, mediating Ras 
effects on the actin cytoskeleton, and activating NF-κB. Conversely, geranylgeranylated RhoB concentrates in endosomes 
and triggers apoptosis. Collectively, these characteristics contribute to RhoB’s involvement in modulating cell prolifera-
tion, death, and inflammation.49 CEBPD, a constituent of the C/EBP transcription factor family, is normally present at 
low levels under physiological conditions, but its expression increases rapidly in response to external stimuli, such as 
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immune activation and inflammation. Recent investigations have demonstrated that CEBPD exerts regulatory effects on 
cell death and inflammation. It promotes LPS-induced inflammatory responses by inducing TLR4 expression, inhibiting 
FBXW7 expression,50 and facilitating M1-like polarization of macrophages during inflammation.51 In PCD, CEBPD 
expression in cervical cancer induces apoptosis through transcriptional regulation of the pro-apoptotic genes PPARG2 
and GADD153.52 However, the specific mechanisms linking the identified optimal feature genes to PANoptosis remain 
unclear. The above literature review systematically analyzed the molecular functions of the identified feature genes, 
suggesting their potential role in regulating PANoptosis in AKI; however, further experimental validation is required.

Admittedly, there are limitations to our study. First, because renal biopsy is not a standard practice in the clinical 
management of AKI, we were unable to obtain human tissue samples for validation. Therefore, our research was 
restricted to validation using a single animal model of AKI. Additionally, in vitro experiments to validate the functional 
roles of core genes in AKI are lacking. Second, the potential of the identified genes as diagnostic biomarkers must be 
confirmed through prospective clinical trials.

Conclusions
In summary, this study defined a PANoptosis-related gene set based on AKI scRNA-seq profiles. By combining this gene 
set with bulk RNA-seq data, multiple machine-learning algorithms were employed to ascertain optimal feature genes. 
Our results not only introduce new diagnostic markers for AKI, but also highlight potential therapeutic targets, which 
may significantly enhance the management and treatment of AKI.
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