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Purpose: To develop and validate a machine learning (ML) model for predicting early postoperative recurrence in hepatocellular 
carcinoma (HCC) patients by integrating contrast-enhanced ultrasound (CEUS) features with Liver Imaging Reporting and Data 
System (LI-RADS) classification.
Materials and Methods: A retrospective analysis was conducted on data from 279 patients who underwent surgical resection for HCC. 
CEUS-derived features, including the LI-RADS classification, were integrated with clinical and pathological variables to construct predictive 
models. Patients were randomly assigned to training (n = 196) and validation (n = 83) cohorts in a 7:3 ratio. Feature selection was performed 
using univariate Cox regression (p ≤ 0.05), and four ML algorithms—Random Survival Forest (RSF), Gradient Boosting Machine (GBM), 
CoxBoost, and XGBoost—were applied to develop recurrence prediction models. Model performance was evaluated using the concordance 
index (C-index), area under the curve (AUC), calibration curves, decision curve analysis (DCA), and Kaplan–Meier (KM) survival analysis.
Results: Five significant features identified by univariate Cox regression were included in model development: microvascular 
invasion (MVI), tumor size, LI-RADS classification, tumor necrosis, and arterial enhancement patterns. Among the four ML 
algorithms, GBM achieved the best overall performance, with the following results. The C-index for 1-year and 2-year recurrence 
prediction was 0.802 and 0.735 in the training cohort, and 0.804 and 0.710 in the validation cohort, respectively. The corresponding 
AUCs were 0.820 and 0.764 in the training cohort, and 0.817 and 0.716 in the validation cohort. Feature importance analysis identified 
LI-RADS classification, MVI, and tumor size as the top three prognostic indicators, while KM survival analysis confirmed the model’s 
ability to stratify patients into distinct risk groups (training cohort: p < 0.001; validation cohort: p = 0.003).
Conclusion: The GBM-based ML model integrating CEUS imaging features and LI-RADS classification demonstrates potential for 
predicting early postoperative recurrence of HCC, which may assist in guiding follow-up strategies.
Keywords: hepatocellular carcinoma, CEUS, LI-RADS, early recurrence, machine learning, prognostic modeling

Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and remains a leading cause of cancer- 
related mortality worldwide.1–3 Despite significant advancements in early detection and treatment strategies, the recurrence 
rate of HCC after curative resection remains high, with up to 70% of patients experiencing recurrence within five years.4 This 
high recurrence rate underscores the importance of accurately identifying patients at high risk of recurrence and 
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implementing personalized surveillance and treatment strategies post-surgery.5 Therefore, the ability to predict postoperative 
recurrence in HCC patients is critical for improving patient outcomes and guiding clinical decision-making.

Contrast-enhanced ultrasound (CEUS) is a valuable non-invasive imaging modality for assessing liver lesions, 
particularly in patients with chronic liver disease or cirrhosis. The Liver Imaging Reporting and Data System (LI- 
RADS), developed by the American College of Radiology, provides a standardized approach for categorizing liver 
lesions and assessing malignancy risk (American College of Radiology, 2017).6 The integration of CEUS with LI-RADS 
has shown promising potential in identifying lesions with high malignancy risk, and more recently, it has been explored 
as a tool for predicting recurrence in HCC patients post-surgery.7–10

However, predicting HCC recurrence involves multiple factors, including tumor size, histopathological features, and 
serum biomarkers.11–13 These factors alone are often insufficient for accurate prediction. Recent studies suggest that 
incorporating machine learning (ML) techniques can enhance predictive accuracy by analyzing complex, high- 
dimensional data from clinical, imaging, and laboratory sources.14,15 These techniques enable the development of 
more robust models that account for intricate relationships within the data, ultimately improving prognostic predictions.

This study aims to develop and validate a ML model for predicting postoperative recurrence of HCC. We will 
integrate clinical, laboratory, histopathological, and CEUS features, including LI-RADS classification, into the model. 
The performance of four ML algorithms—Random Survival Forest (RSF), Gradient Boosting Machine (GBM), 
CoxBoost, and XGBoost—will be compared for their ability in survival analysis and risk stratification.

Graphical Abstract
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Materials and Methods
Study Population
This retrospective study analyzed adult patients who underwent surgical resection for HCC at the First Affiliated Hospital 
of Guangxi Medical University and Liuzhou People’s Hospital between April 2019 and August 2023. Inclusion criteria 
were: (1) surgical resection of a solitary HCC with pathological confirmation, without vascular invasion, lymph node 
metastasis, or distant metastasis on imaging; (2) complete pathological evaluation; (3) preoperative CEUS within 
4 weeks prior to surgery, meeting the 2017 ACR LI-RADS criteria; (4) liver function classified as Child-Pugh A or B; 
and (5) no history of other malignancies or active severe comorbidities (eg, liver failure or infections). Exclusion criteria 
were: (1) history of prior anti-tumor treatments (radiotherapy, chemotherapy, or other therapies) or concurrent malig-
nancies; (2) incomplete or poor-quality CEUS data; and (3) loss to follow-up or follow-up duration < 12 months.

Clinical, Laboratory, and Histopathologic Characteristics
Relevant clinical and laboratory data were extracted from patients’ medical records. Patient characteristics included 
gender, age, time of surgical resection, and chronic liver disease risk factors. Baseline laboratory data focused on key 
indicators, including total bilirubin (TB), albumin (ALB), aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP).

All resected liver tumor specimens and H&E-stained sections were reviewed by experienced hepatopathologists at 
each center. Tumor differentiation was assessed according to the WHO classification system.16 Microvascular invasion 
(MVI) was defined as tumor cell clusters within the vasculature of the tumor capsule or adjacent non-tumor liver tissue, 
undetectable on gross examination.17 Liver cirrhosis was diagnosed based on surgical pathology, with hepatic inflamma-
tion and fibrosis graded using the Galea and Ishak scoring systems.

Imaging Procedures and Image Evaluation
Imaging Procedures
In this study, all participants underwent CEUS within four weeks before surgery using the following equipment: (1) GE 
LOGIQ E9 (GE Healthcare, USA, C1-6VN probe), (2) Mindray Resona R9 (Mindray, China, SC6-1U probe), and (3) 
FUJIFILM ARIETTA 850 (FUJIFILM, Japan, C252 probe). CEUS parameters followed standard guidelines, regardless 
of the device. Examinations were performed by an experienced ultrasound specialist with over five years of liver imaging 
expertise. The tumor was initially located and assessed using grayscale imaging, measuring its largest diameter. After 
injection of 2.4 mL SonoVue (Bracco, Italy) and a 5-mL saline flush, CEUS imaging started immediately, capturing 
dynamic images for at least 60 seconds, followed by intermittent 5–10 second clips every 30 seconds for up to 5 minutes 
or until microbubbles dissipated. All data were saved in DICOM format for offline analysis.

Image Evaluation
All grayscale ultrasound (US) and CEUS images were independently reviewed by two ultrasound specialists with over five 
years of liver CEUS experience. The reviewers were blinded to clinical and pathological data. Disagreements were resolved 
through discussion, and if consensus could not be reached, two senior specialists with over ten years of liver ultrasound and 
CEUS experience made the final decision. Lesion size and echogenic patterns (hypoechoic, isoechoic, or hyperechoic) were 
recorded from grayscale images. During CEUS, enhancement patterns in the arterial, portal venous, and delayed phases were 
classified as hypo-, iso-, or hyper-enhancement. Arterial phase hyper-enhancement (APHE) was defined as complete or partial 
hyper-echogenicity, excluding peripheral nodular enhancement. Enhancement patterns were further classified as homoge-
neous, inhomogeneous, iso-enhancement, or rim enhancement, with rim APHE indicating stronger peripheral enhancement.6 

The presence of feeding arteries and proliferative arteries was documented.18 Tumor margins were described as clear or 
obscure, and vascular abnormalities as irregular or proliferative vessel patterns.19 Tumor necrosis was indicated by non- 
enhanced regions.20 According to the 2017 ACR CEUS LI-RADS criteria,6 “washout” refers to reduced lesion enhancement 
relative to the surrounding liver parenchyma during the portal venous or delayed phase, classified as early (within 60 seconds) 
or late (after 60 seconds). Washout intensity is further classified as “marked” (significant reduction or complete disappearance) 
or “mild” (less pronounced reduction). The LI-RADS classification is as follows:
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● LR-M: Rim APHE (excluding peripheral nodular enhancement), or early washout, or marked washout.
● LR-5: Lesions ≥10 mm with APHE and mild late-phase washout.
● LR-4: Lesions <10 mm with LR-5 characteristics, or lesions ≥10 mm with APHE but no washout, or lesions 

≥20 mm with mild late-phase washout but no APHE.
● LR-3: Lesions with arterial phase hypoenhancement or isoenhancement but no washout, regardless of nodule size, 

or lesions >20 mm with arterial phase hypo or isoenhancement and mild delayed washout.

Postoperative Follow-up
All patients were followed per a standardized protocol. One month after resection, contrast-enhanced CT or MRI was 
performed, followed by abdominal ultrasound or CT/MRI every 3–6 months. AFP and other laboratory tests were 
monitored. Intrahepatic recurrence was classified as local (within the resection area) or distant (remote from the margin). 
Extrahepatic recurrence was assessed using chest CT, brain MRI, whole-body bone scans, or other imaging. The primary 
endpoint, recurrence-free survival (RFS), was defined as the time from surgery to recurrence or tumor-related death. 
Patients were followed until recurrence, death, or the study cutoff (October 10, 2024). For missed follow-ups, the 
research team contacted family members to confirm survival status and cause of death.

Machine Learning Model Construction and Validation
Feature Selection and Model Development
In this study, four ML methods—GBM, RSF, CoxBoost, and XGBoost—were applied to develop relapse prediction 
models and identify key features associated with relapse. Univariate Cox regression analysis was first conducted to select 
variables with p ≤ 0.05, which were then incorporated into the modeling. Multicollinearity analysis was performed to 
eliminate highly correlated variables, ensuring minimal collinearity and reducing potential bias.

For the GBM model, the maximum tree depth was set to 5, the minimum node sample size to 3, and the learning rate to 
0.01. 10-fold cross-validation was used to determine the optimal parameters, with the number of trees set to 1000. Feature 
importance was calculated and visualized to identify key predictors for survival. In the RSF model, 1000 trees were 
constructed with a minimum node sample size of 3. At each split, two features were randomly selected (mtry = 2), and the 
Log rank test was used for splitting. Feature importance was standardized, and proximity analysis was performed to 
examine feature relationships. The CoxBoost model employed Cox regression boosting with L2 regularization. The penalty 
coefficient (initially set to 500) and the number of steps were optimized via 5-fold cross-validation, with parallel 
computation improving efficiency. Feature selection was based on the absolute values of the model coefficients. For the 
XGBoost model, Cox regression was used as the objective function, with the maximum tree depth set to 3 and the learning 
rate to 0.03. Column sampling and subsample ratios were set to 1.0, and a gamma value of 0.6 was applied. Early stopping 
after 50 rounds was used to prevent overfitting, and the contributions of different features were analyzed post-training.

Model Validation
To evaluate the performance of the prediction models, we employed a comprehensive validation strategy. The predictive 
ability of each model was first assessed using time-dependent area under the curve (time-AUC) and time-dependent 
concordance index (time-C-index), as well as the concordance index (C-index) and receiver operating characteristic (ROC) 
curves at the 1-year and 2-year time points. Calibration curves were utilized to assess model reliability, and decision curve 
analysis (DCA) was applied to evaluate clinical utility. The model with the best performance was then selected for further 
validation. Using the predicted values from this model, patients were stratified into high-risk and low-risk groups based on the 
median cutoff. Kaplan–Meier (KM) survival curves were generated to compare survival outcomes between the groups, with 
statistical significance determined by the Log rank test. All validation steps were conducted on both the training and test 
datasets to ensure robustness and generalizability. The entire study workflow is shown in Figure 1.

Statistical Analysis
Statistical analyses were conducted using R software (version 4.4.0) and IBM SPSS Statistics (version 27.0). Continuous 
variables were reported as the mean ± standard deviation (SD) for normally distributed data or the median (interquartile range, 
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IQR) for skewed distributions. Normality was assessed before selecting appropriate tests. The independent t-test was applied 
for normally distributed variables, while the Mann–Whitney U-test was used for non-normally distributed data. Categorical 
variables were analyzed using the chi-square test (χ²) or Fisher’s exact test when expected frequencies were below 5.

Cox proportional hazards regression assessed factors influencing RFS. In univariate analysis, hazard ratios (HR), 95% 
confidence intervals (CI), and p-values were calculated, with p ≤ 0.05 considered significant. Variables meeting this 
threshold proceeded to further analysis. Multicollinearity was examined using the generalized variance inflation factor 
(GVIF), where values exceeding 5 indicated moderate collinearity.

KM curves estimated RFS, with Log rank tests used for group comparisons. Median follow-up time was determined via 
the reverse Kaplan-Meier method. All statistical tests were two-tailed, with p-values < 0.05 deemed statistically significant.

Results
Baseline Characteristics
A total of 279 HCC cases were included in this study and divided into a training cohort (196 cases) and a validation 
cohort (83 cases) at a 7:3 ratio. The baseline characteristics of the two cohorts were comparable (Table 1). Overall, 
88.53% of the patients were male and 11.47% were female. The median age was 52 years, with no significant difference 
between the training and validation cohorts (p = 0.726). The proportion of cases with tumor diameters between 2 cm and 
5 cm was 63.80%, with no significant difference between the two cohorts (p = 0.081). The prevalence of liver cirrhosis 
was 49.82% (p = 0.628), and the majority of cases (96.06%) had HBV infection. Regarding pathological grading, 
moderate differentiation accounted for 81.00%, with no significant difference between the cohorts (p = 0.453). Based on 
the LI-RADS classification, LR-5 lesions comprised 61.65%, LR-M 34.77%, and LR-4 3.58%, with no significant 
difference between the cohorts (p = 0.860). Additionally, tumor grayscale echogenicity and contrast-enhanced ultrasound 
patterns showed no significant differences between the two cohorts (p > 0.05).

Figure 1 Flowchart of machine learning model development and validation for recurrence prediction. 
Abbreviation: I/E, inclusion/exclusion criteria.
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Table 1 Baseline Patient Characteristics by Cohort

Characteristics ALL (n=279) Training Cohort (n=196) Validation Cohort (n=83) p value

Recurrence Occurrence 97 (34.77%) 70 (35.71%) 27 (32.53%) 0.709
Gender of Male 247 (88.53%) 175 (89.29%) 72 (86.75%) 0.687

Age (y)a 52.00 [44.00; 60.00] 52.00 [44.75; 60.00] 53.00 [44.00; 60.50] 0.726

MVI Present 80 (28.67%) 56 (28.57%) 24 (28.92%) 1.000
WHO Grade 0.453

Well 22 (7.89%) 17 (8.67%) 5 (6.02%)

Moderate 226 (81.00%) 155 (79.08%) 71 (85.54%)
Poor 31 (11.11%) 24 (12.24%) 7 (8.43%)

Cirrhosis Present 139 (49.82%) 100 (51.02%) 39 (46.99%) 0.628
Chronic HBV Present 268 (96.06%) 189 (96.43%) 79 (95.18%) 0.738

Tumor size 0.081

≤ 2cm 26 (9.32%) 23 (11.73%) 3 (3.61%)
> 2 cm, ≤ 5 cm 178 (63.80%) 124 (63.27%) 54 (65.06%)

> 5cm 75 (26.88%) 49 (25.00%) 26 (31.33%)

AFP 0.431
≤ 100 ng/mL 191 (68.46%) 134 (68.37%) 57 (68.67%)

> 100 ng/mL, ≤ 200 ng/mL 10 (3.58%) 9 (4.59%) 1 (1.20%)

> 200 ng/mL 78 (27.96%) 53 (27.04%) 25 (30.12%)
DCP 0.260

≤ 40 AU/mL 62 (22.22%) 48 (24.49%) 14 (16.87%)

> 40 AU/mL, ≤100 AU/mL 58 (20.79%) 37 (18.88%) 21 (25.30%)
> 100 AU/mL 159 (56.99%) 111 (56.63%) 48 (57.83%)

TB > 34 μmol/L 7 (2.51%) 3 (1.53%) 4 (4.82%) 0.202

ALB > 36 g/L 236 (84.59%) 166 (84.69%) 70 (84.34%) 1.000
AST > 40 U/L 88 (31.54%) 68 (34.69%) 20 (24.10%) 0.109

ALT > 40 U/L 98 (35.13%) 67 (34.18%) 31 (37.35%) 0.712

US Echogenicity 0.596
Hypoechoic 229 (82.08%) 162 (82.65%) 67 (80.72%)

Isoechoic 14 (5.02%) 11 (5.61%) 3 (3.61%)

Hyperechoic 36 (12.90%) 23 (11.73%) 13 (15.66%)
CEUS

Arterial phase enhancement patterns 1.000

Homogeneous Hyperenhancement 166 (59.50%) 117 (59.69%) 49 (59.04%)

Inhomogeneous Hyperenhancement 110 (39.43%) 77 (39.29%) 33 (39.76%)

Isoenhancement 3 (1.08%) 2 (1.02%) 1 (1.20%)

Feeding artery Present 209 (74.91%) 146 (74.49%) 63 (75.90%) 0.922
Chaotic vessels Present 114 (40.86%) 78 (39.80%) 36 (43.37%) 0.673

Boundary of the tumor enhancement 0.274

Clear 252 (90.32%) 180 (91.84%) 72 (86.75%)
Obscure 27 (9.68%) 16 (8.16%) 11 (13.25%)

Tumor necrosis Present 74 (26.52%) 53 (27.04%) 21 (25.30%) 0.879

ACR LIRADS 2017 0.860
LR-4 10 (3.58%) 8 (4.08%) 2 (2.41%)

LR-5 172 (61.65%) 121 (61.73%) 51 (61.45%)

LR-M 97 (34.77%) 67 (34.18%) 30 (36.14%)

Notes: aData are median values, and data in parentheses represent the interquartile range. Unless otherwise specified, data in parentheses are percentages. 
Abbreviations: MVI, microvascular invasion; WHO, World Health Organization; HBV, Hepatitis B Virus; AFP, alpha-fetoprotein; DCP, des-γ-carboxy- 
prothrombin; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TB, total bilirubin; US, ultrasound; CEUS, contrast-enhanced 
ultrasound; ACR LIRADS 2017, 2017 American College of Radiology Liver Imaging Reporting and Data System.

https://doi.org/10.2147/JHC.S530848                                                                                                                                                                                                                                                                                                                                                                                                                                                   Journal of Hepatocellular Carcinoma 2025:12 1292

Liang et al                                                                                                                                                                            

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Feature Selection and Model Development
The median follow-up time in this study was 33 months (95% CI: 31–35). In univariate Cox regression analysis, 
variables with p ≤ 0.05 were identified as follows: MVI (HR = 2.16, 95% CI: 1.34–3.47, p = 0.002), tumor size > 5 cm 
(HR = 2.63, 95% CI: 1.00–6.89, p = 0.050), inhomogeneous hyperenhancement (HR = 1.91, 95% CI: 1.19–3.07, p = 
0.007), tumor necrosis (HR = 1.98, 95% CI: 1.23–3.21, p = 0.005), and LR-M (HR = 1.97, 95% CI: 1.23–3.17, p = 
0.005) (Figure 2). Additionally, the GVIF analysis showed that all variables had values below 5 (MVI: 1.0718, tumor 
size: 1.7935, arterial phase enhancement patterns: 2.1604, tumor necrosis: 2.2306, LIRADS: 1.2237), indicating minimal 
multicollinearity. These results confirm the independence of the selected features and support the stability of the model.

Based on these selected features, four predictive models were developed: GBM, RSF, CoxBoost, and XGBoost. Model 
performance in the training and validation cohorts was evaluated using the C-index and ROC curves. The C-index for RFS 
is shown in Table 2. In the training cohort, the C-index for predictions were as follows: GBM (1-year: 0.802, 2-year: 0.735, 
average: 0.775), RSF (1-year: 0.802, 2-year: 0.741, average: 0.779), CoxBoost (1-year: 0.737, 2-year: 0.674, average: 
0.718), and XGBoost (1-year: 0.762, 2-year: 0.695, average: 0.738). In the validation cohort, the C-index for predictions 

Figure 2 Forest plot of univariate Cox regression analysis. 
Notes: Reference categories—tumor size: ≤2 cm; WHO grade: well-differentiated; AFP: ≤100 ng/mL; DCP: ≤40 AU/mL; US echogenicity: hypoechoic; arterial phase 
enhancement patterns: homogeneous hyperenhancement; LR: LR-5. 
Abbreviations: HR, hazard ratio; CI, confidence interval.
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were as follows: GBM (1-year: 0.804, 2-year: 0.710, average: 0.759), RSF (1-year: 0.792, 2-year: 0.704, average: 0.750), 
CoxBoost (1-year: 0.743, 2-year: 0.673, average: 0.726), and XGBoost (1-year: 0.751, 2-year: 0.679, average: 0.724).

The time-dependent AUC and C-index curves for all four models provide a comprehensive evaluation of performance 
over time (Figure 3A–D), while the corresponding 1-year and 2-year ROC curves illustrate discriminative ability for 
early recurrence prediction (Figure 3E–H). The AUC values for RFS are shown in Table 2, with the specific values as 
follows: In the training cohort, the AUC values were: GBM (1-year: 0.820, 95% CI: 0.745–0.894; 2-year: 0.764, 95% CI: 
0.690–0.840; average: 0.792), RSF (1-year: 0.818, 95% CI: 0.746–0.890; 2-year: 0.772, 95% CI: 0.700–0.845; average: 
0.795), CoxBoost (1-year: 0.745, 95% CI: 0.654–0.836; 2-year: 0.699, 95% CI: 0.616–0.782; average: 0.722), and 
XGBoost (1-year: 0.774, 95% CI: 0.691–0.858; 2-year: 0.720, 95% CI: 0.638–0.801; average: 0.747). In the validation 
cohort, the AUC values were: GBM (1-year: 0.817, 95% CI: 0.721–0.914; 2-year: 0.716, 95% CI: 0.600–0.835; average: 
0.766), RSF (1-year: 0.808, 95% CI: 0.708–0.908; 2-year: 0.712, 95% CI: 0.594–0.830; average: 0.762), CoxBoost 
(1-year: 0.747, 95% CI: 0.620–0.874; 2-year: 0.680, 95% CI: 0.554–0.806; average: 0.714), and XGBoost (1-year: 0.763, 
95% CI: 0.640–0.886; 2-year: 0.689, 95% CI: 0.564–0.813; average: 0.726).

Performance Validation of the Optimal Model
Given these findings, the GBM model outperformed the other models. Feature importance analysis using the Permutation 
Importance method identified MVI, tumor size, and LIRADS as the most influential factors, underscoring their critical 
role in predicting early recurrence (Figure 4).

To assess the GBM model’s predictive performance over time, the 1-year and 2-year calibration curves demon-
strated a strong alignment between predicted and observed recurrence probabilities, indicating good model calibration 
and reliability (Figure 5A and B). Additionally, DCA for both 1-year and 2-year predictions showed that the GBM 
model provides a modest net benefit across a range of decision thresholds, supporting its potential clinical utility 
(Figure 5C–F).

Kaplan-Meier Analysis and Risk Stratification
In this study, the GBM model stratified patients into high- and low-risk groups based on the median predicted value. KM 
survival analysis revealed significant differences in recurrence times between the two groups in both the training and 
validation cohorts, with the high-risk group showing shorter recurrence times (training cohort: Log rank test, p < 0.001; 
validation cohort: Log rank test, p = 0.003) (Figure 5G and H). These results confirm that the GBM model effectively 
predicts early recurrence and provides valuable risk stratification for hepatocellular carcinoma.

Table 2 Performance of Prognostic Models Built by Machine Learning Algorithms in the Training and 
Validation Cohorts

Model Time-AUC Mean 
AUC

Time-C-Index Mean 
C-Index

1-Year RFS 
AUC

2-Year RFS 
AUC

1-Year RFS 
C-Index

2-Year RFS 
C-Index

Training cohort

GBM 0.820 0.764 0.792 0.802 0.735 0.775

RSF 0.818 0.772 0.795 0.802 0.741 0.779
CoxBoost 0.745 0.699 0.722 0.737 0.674 0.718

XGBoost 0.774 0.720 0.747 0.762 0.695 0.738

Validation cohort
GBM 0.817 0.716 0.766 0.804 0.710 0.759

RSF 0.808 0.712 0.762 0.792 0.704 0.750

CoxBoost 0.747 0.680 0.714 0.743 0.673 0.726
XGBoost 0.763 0.689 0.726 0.751 0.679 0.724

Abbreviations: RFS, recurrence-free survival; C-index, concordance index; AUC, area under the receiver operating characteristic curve; 
GBM, gradient boosting machine; RSF, random survival forest; CoxBoost, Cox proportional hazards boosting; XGBoost, extreme gradient 
boosting.
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Figure 3 Predictive performance of machine learning models. (A and B) Time-dependent AUC curves in the training and validation cohorts, (C and D) time-dependent 
C-index curves in the training and validation cohorts, (E and F) 1-year and 2-year ROC curves in the training cohort, (G and H) 1-year and 2-year ROC curves in the 
validation cohort.
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Discussion
In recent years, ML has been increasingly applied to tumor diagnosis and prognosis prediction, particularly in the 
integration of multi-omics data. For instance, Chen et al21 developed diagnostic (AUC = 0.967) and prognostic models 
(AUC = 0.832) for gastric cancer by combining metabolomics with ML, enabling precise identification of high-risk 
populations. Wang et al22 further advanced this field by integrating 101 machine learning algorithms to construct the 
AIDPI prediction model, which uncovered the metabolic vulnerabilities of high-risk osteosarcoma patients and surpassed 
traditional clinical features in survival probability prediction. In the domain of radiomics, Lin et al23 utilized T2WI and 
CE-T1WI imaging features in conjunction with the XGBoost algorithm to develop a recurrence prediction model for 
endometrial cancer, demonstrating that incorporating imaging features led to superior predictive performance compared 
to conventional clinical models. Furthermore, a multi-center study24 established a 5-year survival prediction model for 
HCC patients following surgery, leveraging preoperative MRI radiomics features and random forest methods. This model 
achieved a mean AUC of 0.9804 in the training set and 0.7578 in the validation set, reinforcing the significant role of 
radiomics in HCC prognosis prediction.

Compared to MRI imaging studies, the application of CEUS in predicting postoperative recurrence of HCC remains 
relatively limited. Although previous studies have shown that preoperative CEUS arterial-phase “fast washout” enhance-
ment patterns can serve as an independent predictor of early HCC recurrence,25 research involving CEUS combined with 
ML to construct HCC prognosis models is still rare. This study develops and validates an early postoperative recurrence 
prediction model for HCC based on CEUS imaging features and clinical-pathological data. The results demonstrate that 
combining CEUS imaging features with machine learning methods improves the accuracy of recurrence risk assessment. 
Among various machine learning models, the GBM model performed best in both training and validation datasets, 
emphasizing the importance of CEUS imaging features, particularly the LI-RADS classification, in postoperative 
recurrence prediction and highlighting the value of ML in enhancing model prediction capability.

Figure 4 Feature importance analysis in the GBM model, highlighting the contribution of five key variables in model construction: Microvascular invasion (MVI), tumor size, 
LI-RADS classification, tumor necrosis, and arterial phase enhancement patterns.
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Figure 5 Performance evaluation of the GBM model for recurrence-free survival (RFS) prediction. (A and B) Calibration curves of the GBM model in the training (A) and 
validation (B) cohorts for 1-year (blue) and 2-year (red) RFS. (C–F) Decision curve analysis (DCA) for 1-year (C and E) and 2-year (D and F) RFS in the training (C and D) 
and validation (E and F) cohorts. The red line represents the GBM model. (G and H) Kaplan-Meier survival curves for RFS in the training (G) and validation (H) cohorts, 
stratified by GBM-predicted risk groups. Log-rank p-values are indicated.
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Feature importance analysis revealed that MVI, tumor size, and LI-RADS classification made substantial contribu-
tions to predicting postoperative recurrence of HCC in the ML model. Previous studies have confirmed that MVI is a key 
determinant of HCC recurrence, closely linked to the ability of tumor cells to spread through blood vessels and 
significantly associated with poorer prognosis.26,27 Additionally, research has demonstrated that tumor size plays 
a critical role in HCC prognosis. Larger tumors are more likely to experience MVI, higher recurrence risks, and poorer 
long-term survival rates. A retrospective study analyzing 813 HCC patients found that larger tumors were associated with 
a higher recurrence risk and lower long-term survival, with multivariate analysis confirming that tumor size > 5 cm is an 
independent risk factor, likely related to increased tumor load, vascular invasion, and intrahepatic micro-metastasis.28 

The inclusion of imaging features further enhanced the model’s predictive ability. Previous studies have shown that LR- 
M lesions are independent risk factors for HCC prognosis, often associated with poorly differentiated, highly invasive 
tumors.16,29,30 Features such as inhomogeneous hyperenhancement and tumor necrosis, identified through CEUS 
imaging, also showed high importance, suggesting that CEUS imaging can partially reflect the biological characteristics 
and heterogeneity of the tumor.31–33 Therefore, imaging features not only hold significant value in predicting post-
operative recurrence of HCC but are also key variables in constructing ML models. The combined analysis of CEUS 
imaging features and clinical factors can help improve predictive accuracy, providing more precise information for 
postoperative recurrence risk assessment in HCC.

Compared to traditional Cox regression models, ML methods offer greater flexibility and generalizability in predict-
ing postoperative recurrence of HCC. While Cox regression models primarily rely on linear assumptions, ML methods 
can handle high-dimensional, nonlinear data, automatically identifying complex relationships between variables and 
optimizing model performance.34,35 Additionally, ML techniques can use feature importance analysis to pinpoint key 
predictors, which helps avoid selection bias and improves clinical applicability. However, the “black-box” nature of 
machine learning models remains a significant limitation, as it hinders interpretability. Recent advancements in explain-
able artificial intelligence (XAI) methods, such as SHapley Additive Explanations (SHAP), allow for the quantification of 
individual feature contributions to predictions.36–39 Future studies should incorporate SHAP or other interpretability tools 
to improve model transparency, enhance clinicians’ understanding of the decision-making process, and facilitate the 
integration of machine learning models into clinical practice.

Despite the promising predictive results, several limitations exist in this study. Firstly, being a retrospective analysis, 
the study is subject to selection bias, as it relies on past data that may not be representative of the broader patient 
population. The findings could be influenced by biases in data collection, patient selection, and clinical practices. To 
address this, future prospective, multi-center studies are needed to validate the stability and generalizability of the model 
in diverse clinical settings. Secondly, although this study incorporated CEUS imaging features and laboratory test results, 
it did not consider other factors that could influence recurrence, such as genomic information, the immune microenvir-
onment, and treatment-related variables. Genomic data and immune characteristics could offer valuable insights into 
recurrence risk. Future research should explore the integration of multi-omics data, combining radiomics, biomarkers, 
laboratory results, and clinical variables, to further enhance predictive accuracy. Thirdly, due to the retrospective design 
and exploratory nature of this study, a formal power calculation was not performed. To mitigate potential overfitting and 
enhance internal reliability, several model-specific strategies were applied, including univariate Cox regression for 
preliminary feature selection, regularization techniques (eg, CoxBoost and XGBoost), and internal validation methods 
such as 10-fold cross-validation and early stopping. Nevertheless, the relatively limited number of recurrence events may 
have constrained the statistical power of the analysis. Future prospective multi-center studies with predefined power 
calculations are necessary to validate and extend these findings.

Conclusion
This study developed and internally validated a machine learning-based model for predicting early postoperative 
recurrence in HCC, with the GBM model demonstrating the best performance. By integrating CEUS imaging features, 
particularly LI-RADS classification, the model offers a promising non-invasive approach for recurrence risk stratifica-
tion. While the current findings are encouraging, further prospective, multi-center studies are warranted to support 
broader clinical application.
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