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Background and Objectives: Traumatic Fractures and dislocations are missed up to 10% at the first line of defense in the 
emergency room and by the junior orthopedic residents in training. This review was done to evaluate the accuracy of AI-assisted 
fracture detection and to compare with the residents in training.
Methods: We searched all related electronic databases for English language literature between January 2015 and July 2023, Pub Med, 
Scopus, Web of Science, Cochrane Central Ovid Medline, Ovid Embase, EBSCO Cumulative Index to Allied Health Literature, with 
keywords of Artificial Intelligence, fractures, dislocations, X-rays, radiographs and missed diagnosis. The data extracted included 
a number of patients/images studied, site of fractures analyzed, algorithms used, the accuracy of the report based on the algorithm, 
sensitivity, and specificity, area under the curve (AUC), comparison between the algorithm, junior orthopedic resident, emergency 
physicians, and board certified radiologists.
Results: Twenty-seven publications fulfilled our objectives and were analyzed in detail. Ninety-two thousand two hundred and thirty- 
six images were analyzed for fractures, which showed that the overall accuracy of the correct diagnosis was 90.35±6.88%, sensitivity 
90.08±8.2%, specificity 90.16±7 and AUC was 0.931±0.06. The accuracy of the AI model was 94.24±4.19, and that of orthopedic 
resident was 85.18±7.01 (P value of <0.0001), with sensitivity 92.15±7.12 versus 86.38±7.6 (P<0.0001) and specificity of 93.77±4.03 
versus 87.05±12.9 (P<0.0001). A single study compared 1703 hip fracture images between the AI model versus orthopedic resident 
and board-certified radiologist and found the accuracy to be 98% versus 87% and 92% (P value of <0.0001).
Conclusion: This review accentuates AI’s potential for accurate diagnosis of fractures. We believe the AI algorithm should be 
incorporated in the emergency rooms where trainee residents and junior orthopedic residents could routinely use AI so that the 
incidence of missed fractures can be curtailed.
Keywords: artificial intelligence, diagnostic imaging, fractures missed diagnosis, X-rays

Introduction
Fractures take place in people of all age groups. The episode depends on the type of trauma, location, and associated 
injuries. The incidence of fractures ranges between 733 and 4017 per 100000 patient-years.1–3 Traumatic fractures are the 
major cause of morbidity and mortality, and in one study, 23,917 individuals sustained 27,169 fractures, with 64.5% of 
the fractures occurring in women.1 The epidemiological data for fractures and dislocations in Saudi Arabia are not 
available.4,5 It is expected that the number of fractures and dislocations will increase due to population growth.

The reported incidence of missed diagnosis of fractures or dislocations by plain radiographs ranges between 3% and 
10%,6–8 and this inversely affects the final outcome of the recovery. The majority of the errors take place in the 
emergency room, where the radiographs are wrongly elucidated as some injuries might be tenuous, and in the majority, 
conspicuous injuries are missed due to improper training with sub-standard techniques employed in radiological 
evaluation.9 This could be more common in the junior residents under training in the emergency room and orthopedics 
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and traumatology. Unfortunately, this is not uncommon in trained radiologists as well. In the USA, radiologists were at 
the 6th position in malpractice claims,10–14 even though they make up about 3.1% of the 892 million physicians.15 It 
becomes mandatory to find ways to reduce this discrepancy at both fronts at the training levels and the trained level, and 
one such tenet is to bring the utilization of AI in the field of diagnosis of fractures and dislocations.

AI, which is part of computer science, can perform tasks that are usually performed by humans to humans. AI 
requires a high level of input from different images and then can use different algorithms using machine learning, deep 
learning, and convolutional neural networks to extricate high-level information from the input of images.16 Recent 
studies have suggested convincing accuracy of diagnosis of fractures and dislocations using AI algorithms, and with the 
objective to assess the accuracy, sensitivity, and specificity of AI algorithms in the diagnosis of fractures using plain 
radiographs, this review was carried out.

Methods
We searched all related electronic databases for English language literature between January 2015 and July 2023, Pub 
Med, Scopus, Web of Science, Cochrane Central Ovid Medline, Ovid Embase, EBSCO Cumulative Index to Allied 
Health Literature, Web of Science, and Cochrane Central with keywords of Artificial Intelligence, fractures, disloca-
tions, X-rays, radiographs, missed diagnosis. All articles that fulfilled the following inclusion criteria: primary research 
using validated AI algorithms for fracture detection and Only studies with a comparative study between AI algorithms 
and clinicians were included in the analysis. Only studies with a comparative study between AI algorithms and 
clinicians were included in the analysis. All other publications and data were excluded, including reports by letter to 
the editor, conference presentations, and systematic reviews. EndNoteTM 39 was used to tabulate the references and 
delete any duplicates.

Data Extraction
We extracted available information from included studies fitting our inclusion criteria. The data extracted included 
a number of patients/images studied, site of fractures analyzed, algorithms used, the accuracy of the report based on the 
algorithm, sensitivity and specificity, area under the curve (AUC), comparison between the algorithm, junior orthopedic 
resident, emergency physicians, and board certified radiologists.

Statistical Analysis
The diagnostic prediction of the fractures of different algorithms was analyzed using contingency tables for validation. 
Regression analysis was performed between the different sites of fractures and the influence of the algorithms. A p-value 
of <0.05 was accepted as statistically significant at a 95% confidence interval (CI). SPSS (Statistical Package for Social 
Sciences) Inc., which is a statistical software developed by IBM for data management, advanced analytics, multivariate 
analysis, and business intelligence version 29, was used.

Results
We identified 2049 studies retrieved in which 347 were duplicates, and 1651 publications were excluded due to inclusion 
and exclusion criteria. Fifty-one studies were reviewed in depth as they nearly fulfilled the inclusion criteria, and only 27 
publications fulfilled our objectives to be analyzed in detail and were included in this study (Figure 1). Eighty-eight 
thousand, nine hundred and ninety-six images were analyzed for fractures (Table 1), which showed that the overall 
accuracy of the correct diagnosis was 90.35±6.88 (73.59–98) percent, sensitivity 90.08±8.2 (73.8–99) percent, specificity 
90.16±7 (72–100) and AUC was 0.931±0.06 (0.72–0.994). The fractures analyzed were common fractures from the wrist, 
upper and lower limbs, and spine. All studies had internally and externally validated algorithms for Diffusion- 
convolutional neural networks (DCNN). The majority of the studies limited their analysis for diagnoses based on 
a single view of the radiograph.

Table 2 shows the analysis of 214950 images where a comparison was made between the AI algorithm versus a junior 
resident in training. The accuracy of the AI model was 94.24±4.19, and that of orthopedic resident was 85.18±7.01 (P value of 
<0.0001), with sensitivity 92.15±7.12 versus 86.38±7.6 (P<0.0001) and specificity of 93.77±4.03 versus 87.05±12.9 
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(P<0.0001). Yamada et al (2020) 40 compared the AI model versus orthopedic residents and board-certified radiologists and 
found the accuracy to be 98% versus 87% and 92% (P value of <0.0001). Figure 2 shows the comparison between the AI 
model and the clinician for accuracy, sensitivity, and specificity.

Figure 1 PRISMA flowchart Showing the Final Selection of Analyzed studies.

Table 1 Characteristics of Studies, Number of Images Analyzed, Site of Fractures, Algorithms Used, Accuracy, Sensitivity, Specificity 
and Area Under Curve

Authors Number of 
Xrays

Fracture Algorithm 
Used

Accuracy 
Percent

Sensitivity 
Percent

Specificity 
Percent

AUC

1. Kim and MacKinnon 
(2018)17

1389 Distal Radius 
and Ulna

CNN 90 90 88 0.954

2. Adams et al (2019)18 643 Neck of femur DCNN 94 NR NR 0.98

3. Cheng et al (2019)19 25505 Lower limbs CNN 95.9 98 0.98

4. Derkatch et al 

(2019)20

12,742 Vertebral 

Fractures

DCNN 87.4 88.4 0.94

5. Rayan et al (2019)21 21,456 S/C humerus CNN 88 91 84 0.95

6. Starosolski et al 

(2019)22

2188 Tibial fractures DCNN 97.9 95.9 100 0.99

7. Choi et al (2020)23 1266 S/C Humerus CNN 80.5 93.9 92.2 0.976

(Continued)
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Table 1 (Continued). 

Authors Number of 
Xrays

Fracture Algorithm 
Used

Accuracy 
Percent

Sensitivity 
Percent

Specificity 
Percent

AUC

8. Jiménez-Sánchez et al 
(2020)24

1347 Fractures CNN 90 NR NR 0.95

9. Mawatari et al 
(2020)25

327 Proximal Femur DCNN 87 88 72 0.905

10. Chen et al (2021)26 1306 Vertebral 
Fractures

DCNN 73.59 73.8 73.02 0.72

11. Cheng et al (2021)27 5204 Pelvis DL 92 90 93 0.973

12. Raisuddin et al 

(2021)28

953 Wrist Fractures DCNN 95 97 92 0.98

13. Yoon et al (2021)29 11838 Scaphoid 

Fractures

CNN 90 87.1 92.1 0.955

14. Grauhan et al (2022)30 2442 Shoulder CNN 85 90 86 0.879

15. Ozkaya et al (2022)31 390 Scaphoid 

Fractures

CNN 76 92 0.826

Abbreviations: CNN, Convolutional neural network; DL, Deep Learning; DNN, Deep Convolutional neural network; S/C, Supracondylar fracture.

Table 2 Comparative Data Between the AI Models and Clinicians

Authors Number of 
Patients

Fracture Algorithm 
Used

Accuracy 
Percent

Sensitivity Percent Specificity 
Percent

AUC

1. Chung et al 

(2018)32

1891 Extremities CNN 96 

93 (R)

99 

93 (R)

97 

97 (R)

0.99

2. Lindsey et al 

(2018)33

135409 Wrist CNN NR 78.8 (R) 

91.5 (MA)

87.5 (R) 

93.9 (MA)

NR

3. Wang et al 

(2019)34

4410 Proximal 

Femur

CNN 92 

88 (R)

96 

96 (R)

98 

93 (R)

0.962

4. Blüthgen et al 

(2020)35

524 Wrist DL NR 81 

71 (R)

86 

52 (R)

0.93

5. Chen et al 

(2020)36

3605 DL 97 

90 (R)

95.7 

91 (R)

96.08 

90 (R)

NR

6. Cheng et al 

(2020)37

3605 Hip DL 97 90 (R) 

99 (MA)

90 (R) 

95 (MA)

NR

7. Krogue et al 

(2020)38

3026 Hip DCNN 93.7 

76.1 (R)

93.7 

98.1 (MA)

83.8 (R) 

94.2 (MA)

0.819

8. Murata et al 

(2020)39

300 Vertebral DCNN 86 

77 (R) 
88(OS)

84.7 

72.4(R) 
77.5 (OS)

87.3 

90.9 (R) 
100 (OS)

0.91

9. Yamada et al 
(2020)40

1703 Hip CNN 98 
87 (R) 92(BC)

NR NR NR

(Continued)
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Discussion
This review shows that accuracy in the diagnosis of fractures using AI algorithms surpasses that of the trained and trainee 
residents. Secondly, the use of AI helped the trainees and trained radiologists in improving the accuracy, sensitivity, and 
specificity of fracture diagnosis. In this study, the AI with different models showed that the overall accuracy of the 
correct diagnosis was 90.35±6.88%, sensitivity 90.08±8.2%, specificity 90.16±7 and AUC was 0.931±0.06. These results 
were based on plain radiographs and included all limb and vertebral fractures.

In the recent past, there has been a consequential increase in different AI models, particularly CNNs, in the arena of trauma 
and orthopedics. Individual models have conclusively shown that AI models are accurate in the diagnosis of fractures, which 
are better than junior residents and, if not better, but at par with the senior radiologist. One aspect that needs to be questioned is 
that most of the reported data comes from retrospective testing, and few only are based prospectively on clinical practice. The 
accuracy of diagnosis of fractures varied at different sites of fractures. Murphy et al (2022)44 reported an analysis of hip 
fractures, comparing the AI model with two trained and expert clinicians, and found that the AI model was 19% more accurate 
than the physicians. Another report suggested that the sensitivity of the correct diagnosis increases by over 10%. Lindsey et al 
(2018)33 reported that the physician’s average sensitivity in the diagnosis of fractures improved from 80.8% to 91.5% (95% 
CI, 89.3–92.9%), and specificity was 87.5% to 93.9% (95% CI, 92.9–94.9%) when they were aided with Deep convolutional 
neural network and added to this the physicians experienced a reduction in misreading around 47.0%. Duron et al (2021)42 

Table 2 (Continued). 

Authors Number of 
Patients

Fracture Algorithm 
Used

Accuracy 
Percent

Sensitivity Percent Specificity 
Percent

AUC

10. Yu et al (2020)41 307 Proximal 
Femur

CNN NR 97.1 
100 (R) 

100 (BCR)

96.7 
96.8 (R) 

100 (BCR)

0.994

11. Duron et al 

(2021)42

60170 Fractures DL NR 79.4 70.8 (R) 93.6 89.5 (R) NR

12. Zhang et al 

(2023)43

3240 Wrist 

fractures

DCNN 97.75 

93.69 (BCO) 

92.53 (BCR)

97.13 91.94 (BCO) 

90.44 (BCR)

98.37 95.44 

(BCO) 

94.62 (BCR)

Abbreviations: CNN, Convolutional neural network; DL, Deep Learning; DNN, Deep Convolutional neural network; R, Resident; BCO, Board Certified Orthopedist; 
BCR, Board Certified Radiologist; OS, Orthopaedic Specialist; NR, Not Reported; MA, Model Aided.

Figure 2 Comparison between AI Model and Clinicians for Accuracy, Sensitivity and Specificity.
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further concurred after their review that emergency room physicians improved their results after AI assistance from 61.3% to 
74.3% (up 13.0%), and the trained radiologists enhanced their diagnosis from 80.2% to 84.6% (up 4.3%). Distal radius 
fractures, which amount to over 20% of all fractures, were studied using an ensemble model of AI between three groups: AI, 
orthopedic surgeons, and radiologists, and it was reported statistically significant between the three groups. The accuracy, 
sensitivity, and specificity between the attending orthopedic surgeons and radiologists showed significant differences: 93.69%, 
91.94%, and 95.44% compared to 92.53%, 90.44%, and 94.62%. When the physician’s groups were compared to the AI 
ensemble tool, it was a highly significant score of 97.75%, 97.13%, and 98.37% by the AI tool.43

Missed extremity fracture diagnosis in trauma practice has always been an issue and is the second most injuries to be 
misdiagnosed.45 The most common malpractice claims against radiologists involve inaccuracies in the reporting of extremity 
fractures.10,46,47 Orthopaedic residents are not immune to making misinterpretations of radiographs in extremity fractures. 
One such study from the United Kingdom highlights that Senior Orthopaedic Residents on plain radiographs missed 4% of 
fractures, 7.8% made a wrong diagnosis, and 12.6%, a fracture was diagnosed when there was none.48 Report indicates that 
over the years, the number of claims against orthopadicians has increased, but complaints have remained comparatively the 
same.49 In the present belligerent and litigation-oriented society, it is imperative that junior orthopedic residents have all the 
help in making a correct fracture diagnosis and not miss even a meager injury. AI and its algorithms can never replace human 
doctors but can unquestionably enhance and complement in improving the accuracy of fracture diagnosis.37 Moreover, 
adequate and timely training of trainee residents in radiographic interpretation is paramount. It was reported that junior 
residents till 3rd of training level are more vulnerable to making errors in radiographic interpretation.9

Our review has limitations due to the number of studies we have included in the analysis, as there are a number of 
publications that are increasing by the day, and it is possible that we have not included the most recent literature. Secondly, we 
could not add the data of comparative accuracy between the unaided and aided AI tools in the fracture diagnosis. Lastly, we are 
basing the conclusion on the retrospective studies, and there were no prospective studies to compare with. The strength of the 
study is we have compared a large dataset, which suggests that the different AI models are more accurate than the physicians.

In conclusion, this review highlights with unbiased evaluations recommend that the use of AI models can definitely 
help residents in training by increasing the accuracy of fracture diagnosis and reducing the errors in diagnosis of 
fractures. AI has developed cutting edge tools, which need to be further evaluated so that procurement authorities in 
hospitals could integrate AI into healthcare and help physicians at all levels to improve correctness in fracture diagnosis, 
to prevent complications of delayed diagnosis.

Disclosure
The authors report no conflicts of interest in this work.
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