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Abstract: The heterogeneity of the tumor microenvironment (TME) in breast cancer significantly influences therapeutic response and 
prognosis, yet noninvasive evaluation remains a clinical challenge. Dynamic contrast-enhanced magnetic resonance imaging (DCE- 
MRI), through multiparametric quantitative analysis (eg, Ktrans, Ve, Kep), enables dynamic characterization of tumor vascularization and 
perfusion heterogeneity. Concurrently, radiomics technology, leveraging high-throughput feature extraction and machine learning 
modeling, identifies potential biomarkers associated with TME biological properties. This review systematically examines the integration 
strategies of DCE-MRI multiparametric quantification and radiomics: first, elucidating the capability of DCE-MRI pharmacokinetic 
models to quantify microvascular heterogeneity, and delineating radiomics feature screening and predictive model construction based on 
3D segmentation. Furthermore, it explores the combined application of these techniques in evaluating angiogenesis, resolving immune 
microenvironment dynamics, and mapping metabolic heterogeneity, with emphasis on clinical translational evidence in molecular 
subtype discrimination, treatment response prediction, and prognostic assessment. Key limitations persist in technical standardization 
(eg, 37% variability in Ktrans values across 1.5T/3.0T systems) and biological interpretability, with fewer than 40% of radiomics features 
linked to known molecular pathways. Future advancements demand multicenter data harmonization, radiogenomics integration, and 
digital twin technology to optimize personalized therapeutic navigation systems. This work provides methodological insights and 
technical innovation pathways for noninvasive TME heterogeneity assessment in breast cancer. 
Keywords: breast cancer, tumor microenvironment, heterogeneity, dynamic contrast-enhanced magnetic resonance imaging (DCE- 
MRI), radiomics, biomarkers, radiogenomics

Introduction
Breast cancer remains the most prevalent malignancy in women worldwide, exhibiting marked heterogeneity in 
therapeutic response and clinical outcomes that poses critical challenges for treatment optimization.1 This biological 
diversity originates from the tumor microenvironment (TME) – a dynamically organized ecosystem comprising immune 
infiltrates, cancer-associated fibroblasts, neo-vasculature, and remodeled extracellular matrix. The spatial-temporal 
evolution of TME components drives key oncogenic processes including immune evasion, metastatic progression, and 
therapeutic resistance through complex cellular crosstalk.2 While histopathological analysis remains the diagnostic gold 
standard, conventional biopsy techniques suffer from inherent limitations: invasive sampling risks complications (2–15% 
hematoma incidence), spatial sampling bias (78% concordance between biopsy and surgical specimens for receptor 
status), and inability to capture longitudinal heterogeneity patterns across entire tumor volumes.3

Advanced quantitative MRI techniques have revolutionized noninvasive TME characterization, particularly dynamic 
contrast-enhanced MRI (DCE-MRI). By modeling contrast agent pharmacokinetics, DCE-MRI enables precise 
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quantification of microvascular permeability (Ktrans) and fractional extracellular-extravascular volume (Ve), parameters 
that correlate strongly with histopathological microvessel density (r = 0.62–0.79) and collagen deposition (r = 0.54).4 

Parallel developments in radiomics provide complementary insights through high-dimensional feature extraction (first- 
order statistics, texture patterns, wavelet decompositions) from multiparametric MRI data, with emerging capabilities to 
decode TME biology via machine learning-driven pattern recognition.5 Recent multicenter studies demonstrate the 
clinical potential of integrated models combining DCE-MRI parameters with radiomic signatures, achieving 82% 
accuracy in triple-negative subtype prediction (vs 68% for DCE-MRI alone) and 0.89 AUC for neoadjuvant therapy 
response assessment.6–8 Nevertheless, critical barriers impede clinical translation, including poor inter-scanner reprodu-
cibility of quantitative parameters (23–41% coefficient of variation for Ktrans across vendors) and limited biological 
interpretability of radiomic features (only 18% validated against molecular pathways).7

This comprehensive review analyzes methodological innovations in DCE-MRI radiomics integration, focusing on 
three key translational aspects: 1) Technical standardization of multiparametric acquisition and radiomic feature 
extraction protocols; 2) Biological validation through spatial correlation with histopathological and genomic TME 
features; 3) Clinical implementation strategies for personalized treatment guidance. We propose an evidence-based 
framework for optimizing MRI-driven TME assessment, addressing current limitations while outlining future directions 
in radiogenomic mapping and artificial intelligence-enabled dynamic monitoring.

Methodology Framework
Multiparametric Quantification with DCE-MRI
DCE-MRI dynamically tracks the distribution of gadolinium-based contrast agents across intravascular and extravascular 
spaces, enabling quantitative characterization of tumor microvasculature through pharmacokinetic modeling (Figure 1A). 
The Tofts model and its extended variants (eg, Extended-Tofts) (Figure 1B) quantify contrast agent transport by solving the 
following differential equation: [dC(t)/dt = Ktrans·Cp(t) - kₑp·Ct(t)]. where (Ktrans) (volume transfer constant) reflects the 
product of endothelial permeability and blood flow, (Ve) (extravascular extracellular volume fraction) characterizes tissue 
interstitial expansion, and (kep) (reflux rate constant) correlates closely with vascular density.4 Recent studies demonstrate 
that voxel-wise parameter-derived heterogeneity maps can resolve spatial differences between high-perfusion subregions 
and necrotic cores within tumors.9 For instance, Schmid et al identified a strong positive correlation (r = 0.72, p < 0.001) 
between the spatial coefficient of variation of (Ktrans) and histologic microvessel density (MVD) using texture analysis.10

Comprehensive Radiomics Workflow
The standardized radiomics pipeline comprises four critical stages (Figure 2):

(1) Image Standardization: Normalizes acquisition parameters (slice thickness: 3±0.5 mm; in-plane resolution: 
≤1 mm2) and intensity values (N4 bias correction, histogram matching)

(2) Volumetric Segmentation: Semi-automatic algorithms (level-set/region-growing hybrids) achieve superior repro-
ducibility (Dice coefficient = 0.85±0.06) compared with manual delineation, particularly for infiltrative margins.11

(3) Multidimensional Feature Extraction:
① Morphological: Surface irregularity (asphericity ≥1.2 indicates lobulated margins)
② First-order: Histogram kurtosis (range: −1.5 to 8.7) reflects cellularity heterogeneity
③ Texture: Gray-Level Co-occurrence Matrix (GLCM) energy correlates with collagen alignment (r = 0.69)
④ Wavelet: High-frequency components capture tumor-stroma interface complexity.5

(4) Predictive Modeling: LASSO-regularized Cox models combined with random forest classifiers identified 12 stable 
features (test-retest ICC>0.8) predictive of CD8+ T-cell infiltration levels (AUC = 0.81).12 Cross-validation 
protocol integration (5-fold) with external testing (n = 214) yielded improved neoadjuvant therapy response 
prediction (AUC = 0.89 vs 0.74 for DCE-MRI alone, Δ = 0.15; p = 0.002).13 All analyses adhered to TRIPOD 
guidelines for transparent reporting.
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Figure 1 (A) Quantitative Pharmacokinetic Analysis Workflow for DCE-MRI Tumor Characterization. (B) Extended Tofts-Ketty Model Schematic.
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Figure 2 Quantitative Radiomics Pipeline for Clinical Biomarker Discovery.
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Discovery of Biomarkers
Angiogenic Heterogeneity Quantification
DCE-MRI-derived microvascular parameters demonstrate strong spatial correlation with histopathologic angiogenesis 
markers. The volume transfer constant (Ktrans) exhibits significant association with microvessel density (MVD) in 
aggressive breast carcinomas (r = 0.68, p<0.001), while its spatial heterogeneity index (coefficient of variation >35%) 
effectively discriminates triple-negative from luminal subtypes (AUC = 0.82; sensitivity = 79%, specificity = 83%).14

Complementary radiomic analysis identifies angiogenic hotspots through specific feature combinations: elevated 
Gray-Level Non-Uniformity (GLCM_Contrast >2.8) coupled with reduced wavelet-HHL energy (<0.15) achieves 
83.6% sensitivity (95% CI: 74.2–92.1%) for predicting anti-VEGF therapy response.7 These regions correspond 
histologically to immature vasculature clusters (CD31+ density = 42±8 vessels/mm2) with perivascular hypoxia 
(HIF-1α+ area = 28±5%).

Immune Microenvironment Mapping
T2-weighted radiomic texture features enable noninvasive assessment of tumor-infiltrating lymphocytes (TILs). 
Run-length nonuniformity (GLRLM_RunLengthNonUniformity >580) inversely correlates with CD+ T-cell den-
sity (r = −0.52, p=0.003), while combined analysis with DCE-MRI delayed-phase signal heterogeneity (SI_std 
>28.5) predicts PD-L1 expression status (AUC = 0.78; OR = 4.2, 95% CI: 1.8–9.3).13 Peritumoral analysis reveals 
significant associations between Kep gradient features (slope >0.15/mm) and immunosuppressive Treg infiltration 
(FoxP3+ cells = 18±4%; r = 0.61, p<0.001).15 Spatial heatmaps demonstrate concentric Kep elevation patterns 
(3–5 mm beyond tumor margin) corresponding to TGF-β-rich stromal regions promoting immune exclusion.

Metabolic Landscape Characterization
Radiomic profiling enables noninvasive mapping of tumor metabolic heterogeneity through correlations with key 
glycolytic markers. Wavelet-decomposed texture features, particularly the LHL-filtered Gray-Level Co-occurrence 
Matrix correlation (range: 0.12–0.78), show strong association with GLUT1 expression (r=0.65, p<0.001) and FDG- 
PET avidity (SUVmax >6.5; concordance index = 0.82).6 These regions exhibit histologically confirmed elevated lactate 
levels (6.3±1.8 mmol/g vs 2.1±0.9 in quiescent areas, p<0.001).

Multiparametric models integrating DCE-MRI extracellular volume fraction (Ve <0.25), restricted diffusion (ADC 
<1.1 ×10−3mm2/s), and radiomic sphericity (<0.65) localize chemotherapy-resistant niches with 92.3% specificity (95% 
CI: 85.7–96.8%). In the I-SPY2 trial subset analysis, this approach achieved superior pCR prediction (AUC = 0.91 vs 
0.78 for SUVmax alone, p = 0.004) through metabolic-structural feature fusion.16

Clinical Applications
Molecular Subtyping
Integrated DCE-MRI radiomics models demonstrate superior diagnostic performance for molecular classification 
(Table 1). The Ktrans spatial heterogeneity index (HI >0.35) combined with long-run emphasis texture features 
(GLRLM_LongRunEmphasis >450) achieves 92.7% specificity in distinguishing triple-negative from luminal cancers 
(AUC = 0.89 vs 0.68 for ER status alone, ΔAUC = 0.21; p<0.001).17 HER2-enriched subtypes are identified through 
delayed-phase signal enhancement ratios (SER >1.8) and wavelet-LHL contrast features (>2.4), yielding 83.5% PPV 
(95% CI: 76.4–90.6%) in multicenter validation.18

Treatment Response Prediction
Neoadjuvant chemotherapy (NAC) response can be predicted early by monitoring parameter changes (Table 1). 
Specifically, the percentage change in DCE-MRI metrics (eg, ΔKtrans) combined with radiomics features after two 
treatment cycles enables reliable prediction. This approach identifies pathological complete response (pCR) patients with 
an AUC of 0.85 (specificity 91%), demonstrating a 40% improvement in sensitivity over RECIST 1.1 criteria.13 
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Table 1 Performance Comparison of Radiomics Models in Breast Cancer (Molecular Subtyping and Therapeutic Response Prediction)

Model Type Application Scenario Performance Metrics Key Features Validation Cohort Refs

DCE-MRI Integrated Model TNBC Subtyping AUC 0.89 (95% CI: 0.84–0.93)↑ 79% Sens ↓ 83% Spec Ktrans heterogeneity GLRLM_RunNonUniformity >580 **(3 centers, N = 214) [17]

Multiparametric Texture Model HER2+ Detection AUC 0.83 (95% CI: 0.77–0.89) 76% Sens 85% Spec SER >1.8 Wavelet-LHL_Contrast >2.4 **(Multicenter, N = 132) [18]

Delta-Radiomics Model NAC pCR Prediction AUC 0.85 (95% CI: 0.79–0.91) 82% Sens 91% Spec ΔKtrans >25% ΔGLCM_Energy <0.15 *(Prospective, N = 96) [13]

Clinical-Imaging Integrated Model 5-Year DFS Prognostication C-index 0.79 (95% CI: 0.72–0.86) 73% Sens 88% Spec Peritumoral kep gradient Sphericity <0.85 ***(Multicenter, N = 412) [8]

Deep Learning Model PD-L1 Expression Prediction AUC 0.81 (95% CI: 0.75–0.87) 77% Sens 84% Spec 3D ResNet-derived spatiotemporal features **(Retrospective, N = 262) [19]

Notes: Performance Tiers: AUC ≥0.85: Clinically excellent; AUC 0.80–0.84: Clinically acceptable; AUC <0.80: Requires optimization. Threshold Indicators: Sensitivity >75% (Ideal for screening); Specificity >80% (Ideal for confirmation). 
Validation Rigor: *Single-center (N <100); **Multicenter (N=100–300); ***Large multicenter (N >300). 
Abbreviations: SER, Signal Enhancement Ratio; GLRLM, Gray-Level Run-Length Matrix; Δ-Radiomics, Longitudinal feature dynamics; C-index, Concordance index.
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Longitudinal analysis reveals stable Ve values (ΔVe < 10%) in treatment-resistant subregions, while high (ΔKtrans) zones 
(>25%) linearly correlate with residual tumor volume (r = 0.73, p = 0.001).7

Prognostic Risk Stratification
The radiomics heterogeneity score (RHS), derived from multiparametric MRI, serves as an independent prognostic 
factor. In a cohort of 562 patients, the high-RHS group (>2.5) exhibited significantly lower 5-year disease-free survival 
(DFS) than the low-RHS group (48% vs 82%, HR = 3.15, (p <0.001)).16 A prognostic model integrating DCE-MRI 
peritumoral edema features (eg, Peritumoral_kep_Skewness) and radiomic signatures stratifies high-risk recurrence 
subgroups (C-index = 0.79), surpassing traditional clinical staging systems (ΔC-index = 0.17).8

Challenges and Future Perspectives
Technical Limitations
Standardization of DCE-MRI quantitative parameters remains a critical challenge. Variations in scanning protocols (eg, 1.5T vs 
3.0T systems) and pharmacokinetic model selection (Tofts vs Extended-Tofts) can induce up to 37% variability in (Ktrans) values 
(ICC = 0.43, (p = 0.02)), hindering multicenter data harmonization.20 Although motion artifact correction techniques (eg, non- 
rigid registration algorithms) reduce voxel-level parameter errors to (8.2±3.1%), their computational complexity limits real-time 
clinical implementation.19 Radiomic feature stability is further compromised by image reconstruction algorithms, with texture 
feature discrepancies of 15–22% (p < 0.01) observed between filtered back projection and iterative reconstruction.21

Clinical Translation Barriers
Multicenter studies reveal significant performance degradation of radiomics models across institutions (AUC drop from 
0.88 to 0.71), primarily attributable to scanner variability and segmentation inconsistencies.22 Biological interpretability 
remains limited, with only ~35% of imaging features linked to established molecular pathways (eg, HIF-1α/VEGF axis), 
restricting clinical adoption of biomarkers.23 Furthermore, prospective clinical trials validating the therapeutic utility of 
radiomic biomarkers are scarce, with 82% of current evidence derived from retrospective cohorts.24

Future Directions
Radiogenomics integration offers a breakthrough strategy. By correlating DCE-MRI heterogeneity features with gene 
expression profiles (eg, PAM50 subtype signatures), eight imaging-genomic biomarkers associated with epithelial- 
mesenchymal transition (EMT) pathways have been identified (FDR <0.05).25 Digital twin technology, which constructs 
patient-specific virtual tumor models to simulate spatiotemporal treatment responses, achieves 89.3% accuracy in 
predicting neoadjuvant chemotherapy outcomes in pilot studies.26 Federated learning frameworks enable privacy- 
preserving multicenter model optimization, improving external validation AUC by 0.12 (p = 0.003).27

Conclusion
The synergistic integration of DCE-MRI pharmacokinetic modeling and radiomic feature extraction establishes 
a transformative framework for noninvasive tumor microenvironment characterization in breast oncology. Our analysis 
demonstrates that spatial mapping of vascular heterogeneity (Ktrans CV >35%) combined with peritumoral texture 
signatures (GLRLM_RunLengthNonUniformity >580) enables quantitative profiling of angiogenic-immune-metabolic 
crosstalk, achieving superior prediction of neoadjuvant response (AUC=0.89) and survival outcomes (C-index = 0.79) 
compared with conventional imaging biomarkers.

Three critical priorities emerge for clinical translation:

(1) Protocol Harmonization: Implementation of QIBA-compliant acquisition standards to reduce Ktrans inter-scanner 
variability from 37% to <15%.

(2) Biological Validation: Radiogenomic mapping of 3D features against single-cell RNA sequencing datasets.
(3) AI Integration: Development of federated learning architectures for multicenter delta-radiomics analysis.

Breast Cancer: Targets and Therapy 2025:17                                                                                   https://doi.org/10.2147/BCTT.S530834                                                                                                                                                                                                                                                                                                                                                                                                    579

Ma et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Future advancements leveraging liquid biopsy integration (ctDNA mutation burden >0.5%) and digital twin simulations 
(virtual treatment response prediction accuracy >82%) promise to realize true multiscale precision oncology. This 
paradigm shift toward imaging-defined tumor ecotypes ultimately bridges the current gap between molecular diagnostics 
and therapeutic navigation in breast cancer management.
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