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Background: Obstructive sleep apnea (OSA) is linked to metabolic dysfunction-associated fatty liver disease (MAFLD), yet their 
exact causality and underlying mechanisms remain inconclusive. We aimed to investigate their causal associations and shared 
biomarkers using Mendelian randomization (MR) and bioinformatics approaches.
Methods: We used OSA-related and MAFLD-related GWAS data to explore their causal relationship and the role of body mass index 
(BMI) through two-sample and network MR analysis. Gene expression profiles were analyzed to identify intersection genes through 
differential expression analysis and weighted gene co-expression network analysis (WGCNA). Functional enrichment (GO and 
KEGG), protein–protein interaction (PPI) networks, and immune cell infiltration analyses (ssGSEA) were performed on the inter-
secting genes. We then conducted MR analysis to assess the relationship between immune cells and both diseases. Inverse variance 
weighting (IVW) served as the primary MR method, supplemented by MR-Egger regression, weighted median, and weighted mode.
Results: MR analysis revealed that OSA increased the risk of MAFLD [odds ratio (OR)=1.40, 95% CI 1.14–1.73, p= 0.002], with 
OSA potentially mediating the effect of BMI on MAFLD, accounting for 62.3% of the mediation. Bioinformatics identified 42 
intersection genes. Four hub genes (FOS, EGR1, NR4A1, JUN) were ultimately obtained by PPI network, which were strongly linked 
to immune cell infiltration. Additionally, three immune cell phenotypes (CD4RA on TD CD4+, HLA DR on CD14+ CD16-monocytes, 
and HLA DR on CD14+ monocytes) were found to be associated with both OSA and MAFLD.
Conclusion: OSA may causally influence MAFLD and mediate the effect of BMI on MAFLD. Four key genes and three immune cell 
phenotypes play crucial roles in the shared pathogenesis of both diseases.
Keywords: obstructive sleep apnea, metabolic dysfunction-associated fatty liver disease, OSA, Mendelian randomization, 
bioinformatics

Introduction
Obstructive sleep apnea (OSA) is an increasingly common sleep-related respiratory disorder, characterized by chronic 
intermittent hypoxia (CIH) and sleep fragmentation.1 It is estimated that nearly one billion people worldwide are affected 
by OSA.2 OSA is associated with a range of chronic metabolic comorbidities, including cardiovascular disorders, 
hypertension, type 2 diabetes, and metabolic dysfunction-associated fatty liver disease (MAFLD), contributing to 
a significant increase in morbidity and mortality.3–5 MAFLD, previously known as nonalcoholic fatty liver disease 
(NAFLD), is a most common chronic liver disease, with an incidence of 25–30% globally.6 The MAFLD encompasses 
a spectrum of conditions, ranging from isolated steatosis to the serious state of metabolic dysfunction-associated 
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steatohepatitis (MASH), MASH-fibrosis, and cirrhosis.7 MASH is distinguished by hepatocellular ballooning and lobular 
inflammation, which may ultimately progress to end-stage complications, including cirrhosis and hepatocellular 
carcinoma.8 Unfortunately, the effective treatments for MAFLD/NASH have been challenging.9 Thus, a deeper under-
standing of the mechanisms driving MAFLD, especially its development into MASH, is crucial for improving treatment 
strategies in clinical practice.

Numerous emerging evidence consistently highlights OSA’s pivotal role in the pathogenesis and progression of 
MAFLD. Clinical studies suggest that CIH associated with OSA may exacerbate liver injury and accelerate the 
progression from NAFLD to MASH.10,11 For instance, a study by Fu et al based on biopsy-confirmed NAFLD 
demonstrated that OSA significantly increases the risk of NASH in patients with obesity.12 A meta-analysis, including 
nine studies with 2272 individuals, indicated that OSA was strongly associated with steatosis, lobular inflammation, 
ballooning degeneration, and fibrosis.13 Additionally, CIH induced rapid juvenile murine NASH model further suggested 
CIH can trigger and accelerate MASH.14 The underlying mechanisms linking OSA to NAFLD/MASH involve oxidative 
stress, inflammation, insulin resistance, lipid metabolism disorders, and gut microbiome dysbiosis.15 In a rat model of 
CIH, Chen et al identified differentially expressed genes (DEGs) primarily related to hepatic metabolism, apoptotic 
process, and oxidative stress.16 However, to date, the exact molecular mechanisms underlying the comorbidity of OSA 
and MAFLD have been poorly characterized.

Observational studies have attempted to determine the association between OSA and MAFLD, but the findings are 
susceptible to confounding factors. Mendelian randomization (MR) is commonly employed to infer the causal potential 
relationship between exposure and outcome, as it mitigates the effects of residual confounding and reverse causality.17 

Previous MR analysis have investigated the causal link between OSA and MAFLD, suggesting that no direct causal 
relationship exists.18,19 Nevertheless, these studies did not rule out the possibility of an indirect effect of OSA on 
MAFLD via body mass index (BMI). As is well known, obesity and OSA often coexist. Moreover, these MR studies did 
not further investigate the interconnected relationships among BMI, OSA, and MAFLD. Thus, further investigation is 
needed to elucidate these relationships, which will facilitate a more comprehensive understanding of how OSA influences 
MAFLD. In this study, we aimed to conduct two-sample MR and network MR to explore the causal relationship between 
OSA and MAFLD, considering the role of BMI. Furthermore, we will employ bioinformatics approaches to investigate 
the mechanisms underlying this relationship between OSA and MAFLD, thereby providing new perspectives and 
strategies for understanding their shared pathogenesis.

Materials and Methods
Data Sources
The genome-wide association studies (GWAS) for OSA were acquired from a large-scale, recently conducted GWAS 
summary data from FinnGen R11 (https://r11.finngen.fi/), which includes 50200 OSA cases and 401484 controls normal 
controls of European individuals. The diagnosis of OSA in the database is based on the International Classification of 
Diseases (ICD) code (ICD-10: G47.3; ICD-9:3472), defined by subjective symptoms, clinical assessment, and sleep 
records, using AHI ≥ 5/h or respiratory event index ≥5/h. Summary-level statistics for MAFLD were extracted from 
a GWAS meta-analysis based on four European cohorts, comprising a total of 8434 NAFLD cases and 770,180 
controls.20 The GWAS data for immune cells were available from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) 
(IDs from GCST0001391 to GCST0002121).21 These datasets include 731 immunophenotypes, consisting absolute cell 
(AC) counts (n = 118), median fluorescence intensities (MFI) reflecting surface antigen levels (n = 389), morphological 
parameters (MP) (n = 32), and relative cell (RC) counts (n = 192).

Gene expression microarray data from the GSE135917 and GSE89632 datasets were downloaded from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The GSE135917 datasets (platform: 
GPL14951) include gene expression data from subcutaneous adipose tissue samples, comprising 34 OSA patients and 
8 healthy controls. The GSE89632 dataset (platform: GPL14951) contained 63 liver tissue samples, consisting of 24 
controls and 39 MAFLD patients.
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MR Analysis
Before performing MR analysis, instrumental variables were selected. We identified genetic instruments with 
a p-value threshold of p < 5×10−8 for significant single nucleotide polymorphisms (SNPs) and removed SNPs with 
linkage disequilibrium (r2 > 0.001 and clumping window < 10Mb) according to the European 1000Genomes Project 
Phase 3 as reference panel for linkage disequilibrium. We also used the PhenoScanner (http://www.phenoscanner. 
medschl.cam.ac.uk/) to investigate and remove pleiotropic SNPs, including smoking behavior and alcohol 
consumption.

To increase the number of SNPs, the threshold was relaxed to p < 1×10−5 for immune cells. Furthermore, SNPs with 
F-statistics < 10, indicative of weak instrument associations, were excluded (F-statistic formula: F = β²/σ², where β 
represents the SNP-exposure effect estimate and σ is the standard deviation of the variant).22 After harmonizing data, we 
further filtered out SNPs strongly associated with the outcome (p < 5×10−8).

We conducted a two-sample MR analysis to explore the causal effects between OSA and MAFLD, following the 
Strengthening the Reporting of Mendelian Randomization Studies (STROBE-MR) statement.23 Multiplicative random- 
effects inverse variance weighting (IVW) was used as the primary analysis method We also applied three additional 
methods (MR-Egger, weighted median, and weighted mode) as supplements to ensure the robustness and validity of the 
results.22,24,25 Additionally, we further performed network MR analysis to explore the interconnected relationships 
among BMI, OSA, and MAFLD. The network MR analysis26 was based on three estimates: the total effect (c): MR 
results from exposure to outcome; the direct effect (a): MR results from exposure to mediator; the direct effect (b): MR 
results from mediator to outcome; Mediation effect (a*b): a*b/c.

For significant MR results, we used several sensitivity analyses to evaluate pleiotropy, heterogeneity, and stability. 
MR-Egger regression and MR-Pleiotropy Residual Sum and Outlier methods (MR-PRESSO) global tests were used to 
examine horizontal or directional pleiotropy.25,27 Cochrane’s Q statistic was applied to test for heterogeneity, with p > 
0.05 indicating no heterogeneity.28 A leave-one-out analysis was conducted to assess the stability of the MR results by re- 
evaluating the data after omitting each SNP.

Differential Expression Analysis
We used the “limma” package in R software (R 4.4.1) to identify differentially expressed genes (DEGs) between control 
and disease groups, based on the standardized GSE135917 and GSE89632 datasets. The criteria for selecting DEGs were 
an adjusted p-value < 0.05 and |logFC| ≥ 0.585 across both datasets. Volcano plots and heatmaps were generated to 
visualize the differential expression results for each group.

Weighted Gene Co-Expression Network Analysis (WGCNA)
WGCNA was employed to screen the characteristic module genes that are highly correlated with OSA and MAFLD by 
constructing gene co-expression networks.29 For effective WGCNA, the following steps were taken:, (1) the genes with 
a median absolute deviation (MAD) was calculated, and the genes with MAD < 30% were removed; (2) sample 
hierarchical clustering was performed to identify outlier samples, and outliers were excluded; (3) the 
“pickSoftThreshold” function was utilized to determine an appropriate soft threshold, establishing a scale-free co- 
expression network; (4) a topological overlap matrix (TOM) was construct, and hierarchical clustering with the dynamic 
pruning-tree algorithm was employed to identify different gene modules; (5) Pearson correlation analysis was applied to 
examine the relationship between gene modules and clinical phenotypes.

Functional Enrichment Analysis
The Venn diagram was constructed to obtain intersection genes based on DEGs and gene modules from both datasets. 
Then, functional enrichment analysis of these intersection genes was performed, including the Gene Ontology (GO)30 

and Kyoto Encyclopedia of Genes and Genomes (KEGG).31 The GO analysis focused on Biological Process (BP), 
Molecular Function (MF), and Cellular Component (CC), with the top 10 GO terms visualized. A p < 0.05 was 
considered statistically significant.
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Protein–Protein Interaction (PPI) Network Construction
For the intersection genes, a PPI network was constructed using the STRING database (http://string-db.org/), with 
a minimum interaction score of 0.4.32 The data from String database was further analyzed using Cytoscape 
software (version 3.9.1). Subsequently, four algorithms, including Maximal Clique Centrality (MCC), Maximum 
Neighborhood Component (MNC), Degree, and Edge Percolated Component (EPC), were selected to jointly detect 
hub expression genes. The top five intersection genes identified by each algorithm were considered as hub genes. 
A venn diagram was used to visualize the interaction of each algorithm with the hub genes. Violin plots were 
created to display the expression profiles of hub genes across the two databases. Receiver operating characteristic 
(ROC) curves and the area under the curve (AUC) were used to assess the diagnostic performance of the hub 
genes.

Immune Infiltration Analysis
To explore the role of immune cells in the pathogenesis of OSA and MASH, we performed immune infiltration 
analysis.33,34 The ssGSEA algorithm was utilized to quantify the infiltration levels of 24 immune cell types in both 
OSA and MAFLD compared to controls, based on immune cell-related expression matrices. Furthermore, Spearman 
correlations were employed to investigate the correlation between hub genes and immune-infiltrating cells. Box plots and 
correlation heatmaps were generated to present the results of immune infiltration.

Statistical Analysis
R software (version 4.3.1, R Foundation for Statistical Computing, Austria) was employed for statistical analyses and 
graph generation. A p-value of <0.05 considered to be nominally significant. However, the Bonferroni correction method 
was used to adjust for multiple testing. For immunophenotypes analyses, a significant p-value was set as at 6.8×10-5 
(0.05/731).

Results
MR Analysis
The study framework is illustrated in Figure 1. After a rigorous screening process, a total of 19 SNPs were identified in 
the forward MR analysis, and 4 SNPs in the reverse MR analysis (Supplementary Table S1). In the main MR analysis, we 
found a suggestive association between OSA and an increased risk of MAFLD (OR: 1.40, 95% CI: 1.14–1.73, p = 
0.002). Further reverse MR analysis exploring the effects of MAFLD on OSA (p>0.05). In sensitivity analyses, no 
significant heterogeneity was detected using the Cochran Q-test (all p>0.05). Both the MR Egger intercept test (all 
p >0.05) and the MR-PRESSO test (all global p>0.05) did not detect any evidence of pleiotropy. Finally, leave-one-out 
analyses indicated that the effects were not influenced by any single SNP (Figure 2A, Supplementary Table S2, 
Supplementary Figures S1 and S2).

In network MR analyses, genetic variant of OSA was not associated with BMI (IVW: β= 0.04, p =406), but BMI was 
found a significant association with both MAFLD (IVW: β = 0.36, p <0.001) and OSA (IVW: β= 0.66, p < 0.001). These 
results indicated that BMI does not mediate the association between OSA and MAFLD (mediation effect: 4.2%). 
Conversely, OSA may act as a mediator in the pathway from BMI and MAFLD, with the mediated proportion of 
62.3% (Figure 2B).

DEG Identification in OSA and MAFLD
A total of 380 DEGs were identified in OSA compared to controls, including 237 up-regulated genes and 143 down- 
regulated genes (Supplementary Table S3). Similarly, comparison of MAFLD and controls revealed 2289 DEGs, 
comprising 1021 up-regulated genes and 1268 down-regulated genes (Supplementary Table S4). Volcano plot was 
used to illustrate all DEGs (Figure 3A and B), and heatmaps were created to display the top 50 upregulated or 
downregulated DEGs (Figure 3C and D).
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Figure 1 Overview and analysis process of our research. 
Abbreviations: OSA, Obstructive sleep apnea; MAFLD, metabolic dysfunction-associated fatty liver disease; MR, Mendelian randomization; GWAS, genome-wide 
association study; GEO, Gene Expression Omnibus; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein–protein interaction; ROC, Receiver operating characteristic.
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Identification of Key Module Genes in OSA and MAFLD
We performed WGCNA analysis to identify the key module genes associated with OSA and MAFLD (Supplementary 
Table S5). Based on the WGCNA method, the optimal soft-thresholding power was set at 11 for GSE135917 dataset and 
5 for GSE89632 dataset (Figure 4A and B). Cluster dendrograms were generated for OSA and MAFLD using a minimum 
module size of 50 and a merge cut height of 0.25 (Figure 4C and D). Finally, a total of 13 co-expression modules were 
identified for OSA dataset and 9 co-expression modules for MAFLD (Figure 4E and F). Consequently, we selected the 
modules MElightgreen (r = 0.63, p = 9e-6) and MEblue (r = 0.86, p = 1e-18), which indicated the highest positive 
correlation with OSA and MAFLD, respectively. Additionally, the modules MEturquoise (r = −0.55, p = 1e-4) and 
MEred (r = −0.67, p = 4e-09) were selected for their strong negative correlations.

Functional Enrichment Analysis of Intersection Genes
After intersecting the DEGs and key module genes, we obtained 42 intersection genes between the two diseases (Figure 5A). 
GO enrichment analysis of these intersection genes revealed significant enrichment in BP terms such as “response to 

Figure 2 Results of Mendelian randomization. (A) Forward and reverse Mendelian randomization explored the associations between OSA and MAFLD; (B) Network 
Mendelian randomization study explored the interconnected relationships among BMI, OSA, and MAFLD. 
Abbreviations: OSA, Obstructive sleep apnea; MAFLD, metabolic dysfunction-associated fatty liver disease; BMI, Body mass index. CI, confidence interval; OR, odds ratio. 
SNP, single-nucleotide polymorphism.
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lipopolysaccharide” and “T−helper 17 cell differentiation”, CC terms like “RNA polymerase II transcription regulator 
complex”, and “cytoplasmic side of plasma membrane”, and MF terms such as “DNA−binding transcription activator 
activity, RNA polymerase II−specific”, and “DNA−binding transcription activator activity”. KEGG pathway analysis 
showed significant enrichment in the “TNF signaling pathway” and “IL−17 signaling pathway” (Figure 5B and C).

Selection of Hub Genes
We constructed a PPI network for the 42 intersection genes using the STRING database. After excluding 10 non- 
interaction genes, 32 genes were retained (Figure 6A). The CytoHubba plugin in Cytoscape, along with four algorithms 
(MCC, Degree, MNC, and EPC), was used to identify hub genes from the intersection genes (Figure 6B). Finally, four 
genes (FOS, ATF3, JUN, EGR1) were identified as hub genes. Expression analysis showed that all four hub genes 
exhibited significantly low expression in both OSA and MAFLD (Figure 6C and D). ROC curve analyses demonstrated 
satisfactory diagnostic performance for all hub genes, with AUC values >0.8 (Figure 6E and F).

Immune Cell Infiltration Analysis
Utilizing the ssGSEA algorithm, we quantified immune cell infiltration in OSA and MAFLD. Compared to the control group, the 
MAFLD group showed significantly higher levels of certain immune cells, such as “Activated.CD8.T.cell”, “CD56bright. 

Figure 3 Differential gene expression analysis. ((A) OSA; (B) MAFLD) Volcano plots depict the differential expression genes (DEGs) in OSA and MAFLD; ((C) OSA; (D) 
MAFLD) Heatmaps illustrate the top 50 DEGs in OSA and MAFLD.
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natural.killer.cell”, “Gamma.delta.T.cell”. Conversely, the MAFLD group had lower levels of immune cells like “Activated. 
CD4.T.cell”, “Activated.dendritic.cell”, “CD56dim.natural.killer.cell”. In OSA, the results indicated higher infiltration of 
“Activated.CD8.T.cell”, “CD56bright.natural.killer.cell”, “Central.memory.CD8.T.cell”, but ower infiltration of “Eosinophil” 

Figure 4 Weighted gene co-expression network analysis. ((A) OSA; (D) MAFLD) Determination of soft threshold powers in OSA and MAFLD. ((B) OSA; (E) MAFLD) 
Gene cluster trees in OSA and MAFLD. ((C) OSA; (F) MAFLD) Modular-feature relationship in OSA and MAFLD, with numbers in the modules representing correlation 
coefficients and p-values.
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and “Monocyte” (Figure 7A and B). Correlation analysis further showed a high consistency between the hub genes and some 
immune cells (Figure 7C and 7D).

MR Analysis of the Effect Immune Cells on OSA and MAFLD
Given the close association of immune cells with both diseases, we further explored the causal relationships between 731 
immune cell phenotypes and OSA as well as MAFLD using MR analysis. Detailed SNP information is provided in 
Supplementary Table S6. The results revealed that 103 immune phenotypes were related to OSA, and 27 immune 
phenotypes to MAFLD (Supplementary Table S7). After intersecting the immune cells, we obtained 4 immune 
phenotypes (CD4RA on TD CD4+, HLA DR on CD14+ CD16- monocyte, HLA DR on CD14+ monocyte and 
Myeloid DC %DC) that causally influenced both OSA and MAFLD. Among them,

Myeloid DC %DC was excluded due to its protective effect in MAFLD but risk factor in OSA. The remaining three 
phenotypes (CD4RA on TD CD4+, HLA DR on CD14+ CD16- monocyte and HLA DR on CD14+ monocyte) were 
associated with an increase in both OSA and MAFLD (all IVW OR >1.00, p<0.05) (Figure 8). Sensitivity analysis 
further confirmed the robustness of the results (Supplementary Table S2, Supplementary Figures S1 and S2).

Figure 5 Functional and pathway enrichment analysis. (A) Venn diagram of intersecting analysis of DEGs and key module genes for OSA and MAFLD; (B) GO analysis of 
intersection genes; (C) KEGG enrichment of intersection genes.
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Discussion
There is a growing body of evidence linking obstructive sleep apnea (OSA) and metabolic-associated fatty liver disease 
(MAFLD), yet the exact causality and underlying molecular mechanisms remain unclear. To elucidate the complex 
associations between these two conditions, we conducted two-sample MR and network MR to explore the causal effect 

Figure 6 Construction of PPI network and identification of hub genes. (A) PPI network of intersection genes. (B) Hub genes determined by MCC, MNC, Degree, and EPC 
algorithms. (C and D) Expression profiles of hub genes in OSA and MAFLD; (E and F) ROC curves demonstrate the predictive performance of hub genes in OSA and 
MAFLD.
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between OSA and MAFLD as well as the role of BMI. Our study found OSA were associated with the increased the risk 
of MAFLD and may serve as a mediator in the effect of BMI on MAFLD. Moreover, we further identified four hub genes 
(FOS, ATF3, JUN, EGR1) and 3 immune cell phenotypes (CD4RA on TD CD4+, HLA DR on CD14+ CD16- monocyte, 

Figure 7 Immune cell infiltration analysis. ((A) OSA; (C) MAFLD) Composition of immune cells in OSA and MAFLD; ((B) OSA; (D) MAFLD) Analysis of the correlation 
between hub genes and various infiltrating immune cells, as well as among infiltrating immune cells. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Figure 8 Results of Mendelian randomization of immune cell phenotypes and OSA and MAFLD. (A) Venn diagram of immunophenotypes that OSA and MAFLD; (B) Forest 
plots of immunophenotypes influencing both OSA and MAFLD.
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HLA DR on CD14+ monocyte), which may play key roles in pathogenic mechanism linking OSA to MAFLD. These 
findings provide new insights into the physiological interactions between these two diseases.

The association between OSA and MAFLD has long been an ongoing debate topic. Observational studies suggest that 
OSA is associated with MAFLD, independently of obesity.10,12,35 Nevertheless, obesity is a well-known risk factor for 
OSA. Epidemiological studies showed up to 93.5% of patients with obesity have OSA, and approximately 70% of 
individuals with OSA were obese.36,37 So, we cannot ignore the role of BMI in the relationship between the two diseases. 
Zhang et al conducted univariable MR analyses and reported the causal link between OSA and MAFLD was observed,19 

which was consistent with our study. Notably, while Zhang et al proposed that BMI might mediate the OSA-MAFLD 
link, our network MR analysis provides stronger evidence that OSA itself may mediate the effect of BMI on MAFLD. 
Thus, it would reasonably be speculated that both OSA and BMI may jointly promote the occurrence and development of 
MAFLD.

OSA is known to induce a range of physiological disturbances, such as oxidative stress, systemic inflammation, 
intermittent hypoxia, hypercapnia, and sympathetic hyperactivity.1 However, the exact mechanisms by which these 
factors contribute to MAFLD remain unclear. In this study, we identified four molecular signatures (FOS, ATF3, JUN, 
EGR1) that might participate toward the development of MAFLD in the context of OSA. FOS, an activator protein 1 
(AP-1) transcription factor subunit plays an important role in regulating various physiological processes, including 
control of stress responses, organogenesis, and immune responses.38 JUN, an essential component of AP-1, binds to Fos 
and forms the AP-1 transcription factor complex, involving in inflammation regulation, immune regulatory function.39 

ATF3 belongs to a member of the ATF/cAMP response element–binding family of transcription factors, and plays 
a crucial role in inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress, which has significant 
implications in the progression of MAFLD.40–42 EGR1 is a zinc-finger transcription factor involved in cell growth, 
metastasis, apoptosis, DNA repair, immune response, and fibrosis.43,44 Recently, studies have also shown EGR1 
contributes to MAFLD pathogenesis.45 As mentioned above, the function of hub genes widely involved in immune 
response. Consistent with these results, we also found four hub genes was a close association with special immune cell 
infiltration. Thus, these findings contribute to our understanding of the complex interactions between four genes and 
immune cell populations in the pathogenesis of MAFLD.

OSA-related CIH activates pathways such as NF-κB and HIF-1α, leading to immune cell activation and infiltration, 
such as lymphocytes, macrophages and monocytes, which results in the development of OSA-related disease.1,46 In 
MAFLD, various pathogenic factors trigger inflammation, leading to lipid overload, lipotoxicity, oxidative stress and ER 
stress in hepatic, which directly or indirectly result in immune cell activation and infiltration, and damage hepatocytes.47 

Thus, the immune cells play an integral role in pathogenesis and progression of MAFLD. The previous review described 
that OSA may mediate the occurrence and development of MAFLD through immune cells.48 In the study, our study 
found that 103 immune phenotypes were causally related to OSA, while 27 were linked to MAFLD. We obtained three 
common immune cell phenotypes (CD4RA on TD CD4+, HLA DR on CD14+ CD16- monocyte, HLA DR on CD14+ 
monocyte) between OSA and MAFLD. Three common immune cell phenotypes may play a crucial role in immune- 
mediated mechanisms in MAFLD caused by OSA, but further research is required to validate the findings. Notably, our 
findings also underscore the importance of clinical interventions targeting OSA itself to prevent or ameliorate MAFLD. 
For instance, orthopedic treatments such as rapid maxillary expansion and mandibular advancement have shown promise 
in pediatric OSA management by improving airway patency and reducing hypoxia severity, which may indirectly 
attenuate metabolic liver injury.49 Similarly, oral appliances designed to advance the mandible during sleep have 
demonstrated efficacy in select adult OSA populations, particularly for responders identified through tailored 
protocols.50 Future studies should evaluate whether these interventions—by alleviating OSA severity—reduce 
MAFLD risk or improve hepatic outcomes, particularly in high-risk cohorts.

Strengths and Limitations
Our study firstly employed comprehensive MR to explore causal impact of OSA on MAFLD and the role of BMI, 
combining bioinformatics methods to further investigate underlying mechanisms between them. Our findings provide 
new guidance for future etiology against these two diseases. However, our study had several limitations. Firstly, our MR 
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analysis only used GWAS data from the European population, resulting in potential biases when generalizing to other 
ancestry. We could not determine the degree of sample overlap between exposure and outcome populations among 
GWAS datasets, which may lead to the bias of results. Secondly, the lack of individual information, we could not further 
evaluate the effect of OSA severity and BMI stratification on MAFLD. Thirdly, we recognize that the relatively small 
number of instruments, particularly for MAFLD (n=4), may still impose non-negligible restrictions on pleiotropy-robust 
methods, and this limitation should be considered when interpreting causal estimates. Fourthly, although we have 
employed various methods to align with the core hypothesis of MR as much as possible, we are still unable to eliminate 
potential horizontal pleiotropy or biological pathways, such as inflammatory pathways and insulin resistance. Finally, 
lack of external experimental validation in vivo and in vitro, our findings from bioinformatics should be cautiously 
interpreted. Given the limitations, further experimental studies are required to elucidate their molecular mechanisms in 
these diseases.

Conclusion
In this study, our MR analyses provide a causal relationship between OSA and MAFLD, and suggest that OSA may 
mediate the effect of BMI on MAFLD. Four common hub genes and three common immune cell phenotypes may play 
crucial roles in common pathogenesis for both diseases, shedding new light on the mechanistic interactions of OSA- 
MAFLD, thereby offering novel insights for future basic research and clinical therapeutic markers.
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