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Purpose: The feasibility and accuracy of ultrasound-based radiomics, deep learning, and combined deep learning radiomics models 
were investigated in the differentiation of papillary thyroid carcinoma and papillary thyroid microcarcinoma to decrease the risk of 
overtreatment of papillary thyroid microcarcinoma.
Methods: A total of 549 patients with confirmed 180 papillary thyroid carcinoma and 436 papillary thyroid microcarcinoma nodules 
from Hospital One were enrolled and randomly divided into training and validation cohorts at a ratio of 8:2 with 56 patients left as 
independent testing set 1. Fifty patients from Hospital Two were enrolled as independent testing set 2. Radiomics signature and five 
deep learning networks, such as visual geometry group 13 (VGG13), VGG16, VGG19, AlexNet, and EfficientNet, were generated for 
papillary thyroid carcinoma and papillary thyroid microcarcinoma differentiation. Combined deep learning and radiomics models were 
constructed to further improve the differentiation ability.
Results: An area under curves of 0.826 and 0.822 was achieved with radiomics model for papillary thyroid carcinoma and papillary 
thyroid microcarcinoma differentiation in the independent testing set 1 and set 2, respectively. VGG19 achieved the best area under 
curves of 0.890 and EfficientNet achieved the best accuracy of 0.867. The best accuracy and area under curves of 0.904, 0.900, and 
0.931, 0.946 were achieved with the combination of VGG + radiomics (R_V_Combined) and EffiecientNet + radiomics 
(R_E_Combined) in the independent testing set 1 and set 2, respectively.
Conclusion: Deep learning and radiomics combination models are promising in the noninvasively preoperative differentiation of 
papillary thyroid microcarcinoma and papillary thyroid carcinoma to decrease the overtreatment of patients with papillary thyroid 
microcarcinoma and to minimize the complications caused by overtreatment.
Keywords: papillary thyroid carcinoma, papillary thyroid microcarcinoma, ultrasound, deep learning, radiomics

Introduction
For the past few decades, the incidence of thyroid cancer is increasing rapidly worldwide with papillary thyroid 
carcinoma (PTC) being the most common type of thyroid cancer.1 Except for the actual increase in tumor occurrence, 
the increased prevalence of PTC is due to the increasing use of high-resolution ultrasound (US) imaging and US-guided 
fine-needle aspiration biopsies (FNAB).2 The increased accuracy of pathological thyroid examinations also contributes to 
the increased diagnosis of PTC, especially the overdiagnosis of papillary thyroid microcarcinoma (PTMC),3 which is 
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defined as a PTC with a diameter of ≤10 mm.4 Studies reported that most of PTMCs (over 70%) are diagnosed 
incidentally in autopsies and thyroidectomy specimens, and most PTMCs are benign with reported mortality from 0% 
to 1%.5 Therefore, the risks of overdiagnosis and overtreatment are highly possible for PTMCs, which causes potential 
complications, distress, and economic burdens for patients with PTMCs.6 Preoperative differentiation of PTMC from 
PTC is of great clinical significance to avoid overtreatment and to determine the appropriate treatment options for 
patients with PTMCs.7

US imaging of the thyroid and neck is usually the initial workup for a patient with a thyroid nodule, but the visual 
interpretation of US images in the diagnosis of PTC and PTMC is limited not only because the diagnosis highly depends 
on the radiologists’ experience but also the interobserver variation.8 Although the study of Ma et al demonstrated that 
combining conventional US, contrast-enhanced ultrasound (CEUS) and real-time elastography (RTE) is able to improve 
the diagnostic accuracy of PTMC, it is not a routine clinical practice for a patient with all three types of US exams.9 With 
the emergence of radiomics, studies reported that US-based radiomics is able to differentiate benign and malignant 
thyroid nodules.10,11 Deep learning models with convolutional neural network (CNN) have also been investigated for the 
differentiation of benign and malignant thyroid nodules with US images and demonstrated excellent performance 
compared with radiologists.12–14 However, few studies have addressed the application of radiomics and deep learning 
models in the differentiation of PTC and PTMC.

In this study, the feasibility and accuracy of US-based radiomics, deep learning, and combined deep learning 
radiomics models were investigated in the differentiation of PTMC and PTC to decrease the risk of overtreatment 
with patients’ data from two hospitals, one hospital for training and testing, and second hospital for external 
validation.

Materials and Methods
Patients
Patients diagnosed with papillary thyroid neoplasm in Hospital One from January 2018 to September 2020 were 
retrospectively reviewed according to the electronic medical records. Enrolled patients were randomly divided into 
training, validation, and independent testing sets. Fifty PTC cases acquired from Hospital Two were used as an 
independent external testing dataset. The inclusion criteria were as follows: 1) pathologically confirmed PTMCs 
and PTCs; 2) diagnosed by US images with detailed sonographic features described. The exclusion criteria 
included the followings: 1) with preoperative therapy (resection biopsy, neoadjuvant radiotherapy, or chemother-
apy); 2) benign thyroid lesions; 3) missing important histopathological results (immunohistochemical results or 
lymph-nodule results); 4) incomplete information or images. Routine clinical tests and patients’ characteristics 
were also extracted from the records. Figure 1 shows the flowchart for patients’ enrollment. This study was 
approved by the ethics committee in Clinical Research (ECCR) of the First Affiliated Hospital of Wenzhou 
Medical University and conducted following the Declaration of Helsinki (ECCR no. 2019059) with confirmed 
patient confidentiality. The requirement of informed consent was waived by the ECCR according to the retro-
spective nature of this study.

US Examinations and Clinical Factors
US examinations of thyroid nodules were performed with high-frequency linear probes (5 MHz to 14 MHz) with 
a variety of US systems: Philips EPIQ7C (Philips Medical Systems, the Netherlands), GE Volume E8 (GE Medical 
Systems, USA), Siemens ACUSON OXANA 2 (Siemens Medical Solutions, USA), Esaote MyLab Class C (Esaote, 
Italy), Hitachi HI VISION Preirus (Hitachi-Aloka Medical, Japan) and Mindray Resona 7T (Mindray Medical 
International, China). The US images included both transverse and longitudinal sections of nodules. Clinical character-
istics included basic information (age and sex) and ultrasound findings, which consist of composition, echogenicity, 
shape, margin, and echogenic foci, as well as stages scored according to the thyroid imaging reporting and data system 
(TI-RADS) criteria of the American College of Radiology.15
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Radiomics Features Extraction and Modeling
Target volumes were contoured manually by one junior radiologist on the US images and confirmed by a senior 
radiologist with over 15 years of experience. Supplementary Figure 1 shows the typical US with contoured target 
volumes. Python (v. 3.7.0; https://www.python.org/) and package pyradiomics 2.2.0 (version 2.2) were used to extract 
radiomics features from the manually segmented target volumes. Based on different matrices that capture the spatial 
intensity distribution and wavelet filtering, a total of 1566 radiomics features were extracted, which includes 88 
exponential features, 88 gradient features, 88 logarithm features, 70 square features, 352 wavelet features, and 880 log 
features, respectively. Radiomics features with a p <0.05 in Mann–Whitney U-tests were selected as potentially 
informative features, then the least absolute shrinkage selection operator (LASSO) was applied to identify optimal 
features for PTMC and PTC classification.16 A ten-fold cross validation was applied to tune the elastic net parameters to 
reduce the redundant information and to avoid over-fitting. A minimum standard deviation and maximum area under 
curves (AUC) were achieved by tuning coefficient λ. The linear combination of selected radiomics features with 
respective weights makes the final radiomics signature.

Deep Learning Models
In the preprocessing, a rectangular region of interest (ROI) was cropped from raw US images according to the tumor 
segmentation mask and resized to 224×224 pixels for normalization. Five deep learning networks, visual geometry group 
13 (VGG13),17 VGG16, VGG19, AlexNet, and EfficientNet were pre-trained on Imagenet and then adopted as the deep 
learning networks in this study using python 3.7 programming language Tensorflow 2.4, and Keras 2.2.4 open-source 
programming packages.18 As shown in Supplementary Figure 2 the structures of different deep learning networks, VGG 
uses a pooling layer as a demarcation and has six block structures with each having the same number of channels. 
Because both the convolutional and fully connected layers have weight coefficients, they are also referred to as weight 
layers. The pooling layer does not involve weights. For the VGG CNN, its convolutional layers and pooling layers are 
responsible for feature extraction, and the final 3 fully connected layers are responsible for the classification task (×2 

Figure 1 The patient enrollment process for the training set and the two independent testing sets. The training cohort and the independent testing set 1 patient enrollment 
process are shown on the left, and the independent testing set 2 is shown on the right. These two datasets are from two different hospital patients.
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means that the module in brackets is repeated twice). The AlexNet network consists of 8 layers with the first 5 layers 
convolutional and the last 3 layers of fully connected. Each backbone of the EfficientNet contains 7 blocks with each 
having different numbers of sub-blocks.

In the training stage, rectangular ROIs were fed into the networks to update model parameters with classification 
results as the output. The loss function was calculated based on the cross-entropy of the outputs and labels. A learning 
rate of 1e-4, dropout parameter of 0.6, training Epoch of 100, the activation function ReLu, the classification function 
softmax, and the Adam optimizer were applied to update the model parameters with a batch size of 32 and a maximum 
iteration step of 300. Compiled prediction codes were generated based on the data weights obtained from training to 
obtain the predicted value of each test picture. Identical parameters were applied for the training of these deep learning 
networks. The computer environment configuration for deep learning modeling was Linux 64-bit operating system, GPU 
RTX2080, and video memory 6GB with all other applications shut down while the program is running.

Fused Models and Evaluation
Firstly, radiomics and deep learning models were developed to differentiate PTC and PTMC independently. In order to 
improve the classification performance, the prediction scores of radiomics and deep learning models were fused by 
applying an information fusion method.19 As shown in Figure 2, the prediction results were obtained independently by 
training each model in the early stage, then logistic regression was applied to fuse the outputs of each model to make 
a decision. The minimum loss value, positive predictive value (PPV), negative predictive value (NPV), recall rate, F1 
score, and the AUCs of receiver operating characteristics (ROC) curves were calculated to evaluate and compare the 
performance of these models.20

Statistical Analysis
Detailed clinical differences between PTC and PTMC were compared by t-test, chi-square test, and Mann–Whitney 
U-test. LASSO regression model building was done using the “glmnet” package. Glmnet function in R language was 
applied for n cross validation (n = 10), which means that data was separated into 10 subsets. All statistics were two-sided 
and p-values less than 0.05 were considered to be statistically significant. Statistical analysis was performed using the 
R analysis platform (version 3.6.0), OriginPro2018, MedCalc (version 19.3.0), SPSS 19 software, and Python 3.7.

Figure 2 Schematic pipeline of the radiomics and deep learning modeling, as well as their combination for the differentiation of papillary thyroid tumor and papillary thyroid 
microcarcinoma. 
Abbreviations: Fc2, 2 fully connected layer; R_score, radiomics score.
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Results
A total of 549 patients with an average age of 46.55±11.33 years (ranges from 14 to 81 years) were enrolled in this study 
with confirmed 180 PTC and 436 PTMC nodules from Hospital One, as shown in Figure 1 the flowchart of patient 
selection. Patients were randomly divided into training cohort and validation cohort at a ratio of 8:2. There were 56 
patients from Hospital One used as independent testing set 1. Fifty patients from Hospital Two with confirmed 25 PTC 
and 25 PTMC nodules were enrolled as independent testing set 2 for the external validation of these models. There were 
205 PTC and 461 PTMC nodules with an average diameter of 15.80±7.15 mm and 6.89±3.25 mm, respectively. Detailed 
clinical characteristics of these patients were presented in Table 1. A total of 612 PTMC and 311 PTC US images were 
analyzed.

A total of 203 radiomics features were selected out of the extracted 1777 features according to the Mann–Whitney 
U-test with a p <0.05. A final 10 features were further screened out from the 203 features to build the radiomics signature 
using the LASSO logistic regression model, as shown in Supplementary Figure 3. These features included 5 first order 
features, 2 grey level run length matrix (GLRLM) features, 1 Gray Level Dependence Matrix (GLDM), and 2 Gray Level 
Size Zone Matrix (GLSZM). Detailed features and their corresponding non-zero coefficients were presented in Table S1. 
The ROC evaluation of radiomics signature in the differentiation of PTC and PTMC was shown in Figure 3 with an AUC 
of 0.908 (95% CI: 0.887–0.928), 0.826 (95% CI: 0.734–0.918), and 0.822 (95% CI: 0.710–0.936) in the validation 
cohort, independent testing set 1 and independent testing set 2, respectively.

Table 2 shows the performance of different deep learning models in the differentiation of PTC and PTMC with an 
accuracy of 0.800 (95% CI: 0.700–0.837), 0.850 (95% CI: 0.775–0.875), 0.850 (95% CI: 0.737–0.873), 0.850 (95% CI: 
0.763–0.875) and 0.863 (95% CI: 0.787–0.932) in the validation cohort for AlexNet, VGG13, VGG16, VGG19, and 
EfficientNet, respectively. The ROC curves and the corresponding confusion matrices of different deep learning models 
were shown in Figure 4. As shown in Figure 4b the AUCs of AlexNet, VGG13, VGG16, VGG19, and EfficientNet were 
0.800 (95% CI: 0.708–0.892), 0.850 (95% CI: 0.772–0.928), 0.846 (95% CI: 0.765–0.927), 0.890 (95% CI: 
0.818–0.962), and 0.867 (95% CI: 0.789–0.945), respectively. Accordingly, VGG19 and EfficientNet were selected to 
combine with radiomics signature for further analysis. To further interpret the results of deep learning models, a heatmap 
of output features was generated by activating the visualization class. The generated heatmap was then overlaid onto the 
original image to generate the final deep learning visualization heatmap, as shown in Figure 4a the US images of 3 cases 
of PTMC and PTC, and their activated heatmap with VGG19. The heatmap could produce a coarse localization map 
highlighting the import regions for the classification targets.

Detailed comparison of the performance of radiomics signature, deep learning models, and combined deep learning 
radiomics models with the independent testing set 1 and set 2 were presented in Table 3. The accuracy of VGG19, 

Table 1 The Clinical Characteristics of Enrolled Patients for Training and Testing

Characteristics Training and Validation Sets Independent Testing Set 1 Independent Testing Set 2

PTMC PTC P PTMC PTC P PTMC PTC P

Patient number 346 147 40 16 25 25

Node number 396 164 40 16 25 25

Sex 0.35 0.92 0.77

Male 94 34 8 3 10 9

Female 252 113 32 13 15 16

Age (years) 46.73±11.23 46.45±13.13 <0.0001 44.75±12.25 42.13±13.57 0.54 49.04±5.50 47.76±16.64 0.14

Diameter(mm) 6.89±3.26 16.01±7.30 <0.0001 13.61±5.15 7.14±3.17 <0.0001 8.01±2.09 15.21±5.94 <0.0001

TI-RADS 0.76 0.81 0.75

3 0 0 1 0 0 0

4 27 10 5 2 19 18

5 368 154 34 14 3 6

6/7 1 0 0 0 3 1

Notes: Categorical variables were compared by using the chi-square test; Continues variables were compared by using the Mann–Whitney U-test. 
Abbreviations: PTMC, papillary thyroid microcarcinoma; PTC, papillary thyroid carcinoma; TI-RADS, thyroid imaging reporting and data system.
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EfficientNet, Radiomics, combined radiomics VGG19 (R_V_combined), and radiomics EffiecientNet combination 
(R_E_combined) were 0.829, 0.798, 0.766, 0.904, 0.851 and 0.680, 0.680, 0.740, 0.780, 0.900 with the independent 
testing set 1 and set 2, respectively. Figure 5 shows the ROC curves of these models with an AUC of 0.826 (95% CI: 
0.734–0.918), 0.890 (95% CI: 0.818–0.962), 0.867 (95% CI: 0.790–0.945), 0.931 (95% CI: 0.870–0.993), 0.908 (95% 
CI: 0.849–0.966) and 0.822 (95% CI: 0.709–0.936), 0.698 (95% CI: 0.546–0.849), 0.899 (95% CI: 0.806–0.993), 0.874 
(95% CI: 0.778–0.969), 0.946 (95% CI: 0.885–1.000) for Radiomics, VGG19, EfficientNet, R_V_combined, and 
R_E_combined with the independent testing set 1 and set 2, respectively.

Discussion
In this study, the feasibility and accuracy of radiomics, deep learning models, and combined deep learning radiomics 
models were investigated in the differentiation of PTMC from PTC using US images. The models were further verified 
with external validation cohorts from a second hospital. An AUC of 0.826, 0.890, 0.867, 0.931, 0.908 and 0.822, 0.698, 
0.899, 0.874, 0.946 for Radiomics, VGG19, EfficientNet, R_V_combined, and R_E_combined models was achieved 
with the independent testing set 1 and set 2, respectively.

With the increasing prevalence of high-resolution US and other imaging modalities, the diagnosis of thyroid cancers 
has increased remarkably and continuously.21 Most of the newly diagnosed thyroid cancers are small PTCs including 
PTMCs.22 Studies reported that the average size of thyroid tumors decreased from 1.51 cm in the year 2000 to 1.02 cm in 
2005 with 36.9% of thyroid cancers being small than 1 cm in 2000, but PTMCs account for 61.48% of all thyroid cancers 
in 2005.23 Similarly, PTMCs account for about 70% of all cases enrolled in this study. However, more evidence 
demonstrated that most PTMCs have a very indolent nature and excellent outcomes.24 The increasing awareness of 
the impact of overtreatment on PTMCs also changed dramatically the international guidelines.6 Therefore, non-invasive 

Figure 3 The performance of radiomics signature with ROC curves in (a) training, (b) independent testing set 1, and (c) independent testing set 2.

Table 2 The Performance of Different Deep Learning Models in the Training and 
Validation Cohorts

ACC LOSS Depth Number of Layers PARAM

AlexNet Training 0.837 0.340 8 25 64,130,754
Validation 0.800 0.444

VGG13 Training 0.873 0.275 13 35 64,987,720

Validation 0.850 0.358
VGG16 Training 0.854 0.313 16 41 70,297,416

Validation 0.850 0.304

VGG19 Training 0.847 0.363 19 47 75,607,112
Validation 0.850 0.325

EfficientNet Training 0.908 0.270 82 290 4,052,133

Validation 0.863 0.610

Abbreviations: ACC, accuracy; LOSS, training loss value; PARAM, model parameters amount; VGG, visual 
geometry group.
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methods are urgently needed to differentiate PTMC from PTC preoperative to avoid overtreatment for patients with 
PTMC regardless of the increased diagnosis of thyroid cancers.

US is widely applied for preoperative imaging of PTC for diagnosis and staging. US features, such as irregular 
border, halo sign microcalcifications, macrocalcifications, isoechoic, and hypoechoic appearance, had been investigated 
to differentiate PTC from PTMC clinically.25 An AUC of 0.97, a sensitivity of 88.6%, and a specificity of 94.6% were 
reported in the prediction of PTMC with combined conventional US, CEUS, and RTE.9 However, the accuracy of US 
diagnosis is easily affected by image quality and the experience of US technician and radiologists, who handles the probe 
and interprets the US images.24 With the emergence of radiomics, the radiomics model had been proposed as a promising 
method to assess the risk of PTC metastasis using US images and achieved an AUC of 0.782 and an accuracy of 0.710, 
respectively.26 The presence of extrathyroidal extension (ETE) of PTC was preoperatively predicted with a radiomics 
model using CT images and achieved an AUC of 0.812 in the validation cohort.27 Radiomics models were also 

Figure 4 (a) The network features and heatmaps of 3 cases of papillary microcarcinoma of the thyroid and papillary thyroid carcinoma. The ROC curves and the 
corresponding confusion matrices of different deep learning models, (b) AlexNet, VGG13, VGG16, VGG19, EfficientNet; (c) ROCs comparison.
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investigated to predict the presence of B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation in PTC with an 
average AUC of 0.651, an accuracy of 64.3%, a sensitivity of 66.8%, and a specificity of 61.8% using US images, 
respectively.28 However, to the best of our knowledge, this is the first study to investigate the feasibility of US-based 
radiomics and deep learning models in the differentiation of PTC and PTMC. After manual target segmentation, feature 
extraction, and selection, an AUC of 0.826 and 0.822 was achieved with radiomics signature in the independent testing 
set 1 and set 2, respectively, in this study. The performance of our radiomics model was promising in comparison with 
other radiomics studies for PTC as mentioned previously.28–30 However, it was inferior to the direct prediction of PTC 
and PTMC with combined US, CEUS, and RTE.9

Five deep learning networks were adapted and trained in this study to further investigate the differentiation of PTMC 
from PTC in this study. As shown in Table 2 and Figure 4, VGG19 achieved a best AUC of 0.890 and EfficientNet 
achieved a best accuracy of 0.867, respectively. As shown in Table 3, the performance of radiomics was inferior to two 
deep learning models in accuracy and AUC with independent testing set 1; however, the accuracy of the radiomics model 
was better than those of two deep learning models in accuracy with an external validation set (independent testing set 2). 
However, advanced deep machine learning approaches have been developed to handle the challenging health problems 

Table 3 The Performance of Radiomics Signature, Deep Learning Models and Combined Deep Learning 
Radiomics Models with Independent Test 1 and 2

Models Accuracy Precision Sensitivity Specificity PPV NPV F1 score AUC

Independent test 1

VGG19 0.829 0.750 0.750 0.871 0.750 0.871 0.829 0.890

EfficientNet 0.798 0.810 0.530 0.935 0.810 0.795 0.785 0.867

Radiomics 0.766 0.604 0.906 0.694 0.604 0.935 0.772 0.826

R_V_combined 0.904 0.848 0.934 0.848 0.919 0.875 0.905 0.931

R_E_combined 0.851 0.781 0.781 0.887 0.781 0.887 0.851 0.908

Independent test 2

VGG19 0.680 0.760 0.520 0.840 0.765 0.636 0.67 0.698

EfficientNet 0.680 0.890 0.400 0.960 0.909 0.615 0.679 0.899

Radiomics 0.740 0.730 0.760 0.720 0.731 0.75 0.739 0.822

R_V_combined 0.780 0.818 0.750 0.818 0.840 0.720 0.779 0.874

R_E_combined 0.900 0.884 0.920 0.880 0.885 0.917 0.899 0.946

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve; R_V_combined, radiomics and 
VGG19 combination; R_E_combined, radiomics and EfficientNet combination.

Figure 5 The performance of radiomics, deep learning, and combined deep learning radiomics models in differentiating PTMC from PTC with (a) independent testing set 1; 
(b) independent testing set 2.
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and to diagnose thyroid cancer.31,32 In this study, the application of deep learning networks did not guarantee superior 
differentiation ability for PTC and PTMC. On the other hand, the interpretability of deep learning models was weaker in 
comparison with radiomics features.33 In this study, visualization class was activated to generate a heatmap after the 
differentiation with deep learning networks to increase the interpretability of our deep learning models. As shown in 
Figure 4a the heatmap corresponding to the boundary of the tumor and the low echo area inside the tumor were 
highlighted, which are the features corresponding to deep learning network features.

In this study, the differentiation ability and accuracy of these models were further improved by combining radiomics 
and deep learning networks, as shown in Table 3 and Figure 5. The best accuracy and AUC of 0.904, 0.900, and 0.931, 
0.946 were achieved with the combination of VGG + radiomics (R_V_Combined) and EffiecientNet + radiomics 
(R_E_Combined) in the independent testing set 1 and set 2, respectively. Consistently, deep learning radiomics had 
been reported to improve the prediction ability using US images for breast cancers.34,35 The combination of radiomics 
scores and deep learning prediction scores was usually fused by information fusion, which includes three strategies of 
early fusion, mid-term fusion, and late-stage fusion.19 However, only the late-stage fusion strategy was applied in this 
study. Although automatic segmentation on US images for cervical cancer and ovarian cancer had been intensively 
investigated, further study is still necessary to transfer the automatic segmentation methods to PTC and PTMC on US 
images.29,30 On the other hand, the stability and reproducibility of radiomics features may be easily affected by the type 
of scan machines and the different automatic segmentation algorithms.36,37 Another limitation of this study is that the 
influence of clinical factors in the differentiation of PTMC and PTC was not fully investigated.

Conclusions
Deep learning and radiomics combination models are promising in the noninvasively preoperative differentiation of 
PTMC and PTC to decrease the overtreatment of patients with PTMC and to minimize the complications caused by 
overtreatment.
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