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Objective: To investigate the role of MRI peritumoral imaging in predicting microvascular invasion (MVI) status in patients with 
combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA).
Methods: Clinical and pathological data and MRI images of 118 patients with surgically resected and pathologically confirmed 
cHCC-CCA were retrospectively collected. The tumor in MRI images was segmented by ITK-SNAP software in three dimensions and 
extended 1 centimeter(cm) towards the tumor periphery. Then, the Python open-source platform was used for radiomics analysis. 
Mutual information and recursive elimination methods were used to select the optimal features. Clinical models and radiomics models 
were constructed based on six classifiers. The model’s effectiveness was comprehensively evaluated using receiver operating 
characteristic (ROC), area under curve (AUC), and decision curve analysis (DCA), and the model results were output using 
Shapley Additive exPlans (SHAP).
Results: The differences in HBeAg, capsule, target sign, and lymph node metastasis between MVI negative and positive groups were 
statistically significant (p < 0.05). Based on peritumoral, 1cm fusion model (in arterial phase) has an AUC of 0.940 (95% CI: 
0.801–0.947) and 0.825 (95% CI: 0.633–0.917) in the training/testing set when identifying the MVI status of cHCC-CCA. The 
accuracy, sensitivity, and specificity in the testing set are 0.778, 0.800, and 0.726, respectively. The DCA shows that when the 
threshold is approximately 11.08%–66.47%, the net return of the fusion model is higher than that of the clinical and radiomics models 
under the same conditions.
Conclusion: Radiomics with a 1cm extension around the tumor can improve the performance of machine-learning models in 
predicting MVI labels.
Keywords: peritumoral radiomics, microvascular invasion, combined hepatocellular carcinoma and cholangiocarcinoma, Shapley 
additive explans

Introduction
Combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA) is composed of both hepatocellular carci-
noma (HCC) and intrahepatic cholangiocarcinoma (ICC) components, exhibiting differentiation characteristics of both 
hepatocytes and cholangiocytes. It is the least common pathological type of primary liver cancer, accounting for 
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approximately 0.4% −14.2%.1 In 1903, Tucker first proposed the definition of cHCC-CCA.2 Subsequently, its definition 
and related terminology continue to be updated.3 There is still controversy over the origin of cHCC-CCA and abnormal 
differentiation of liver progenitor cells and HCC may be its origin.1,4–6 The specific etiology associated with cHCC-CCA 
is not yet clear. However, cHCC-CCA has the same risk factors as HCC, including hepatitis B, hepatitis C infection, and 
cirrhosis.7

Microvascular invasion (MVI) is a poor prognostic factor for surgical resection and liver transplantation in patients 
with primary liver cancer.8–11 Puncture sampling or postoperative pathology were routinely used to diagnose MVI. 
Due to the heterogeneity within the tumor and the possibility of sampling errors caused by preoperative biopsy, the 
results used for detecting MVI may be unreliable. In recent years, there have been many studies on MVI, and high 
levels of alpha-fetoprotein (AFP), protein induced by vitamin k absence or antagonist (PIVKA-II) of serum, arterial 
phase tumor edge enhancement, and low signal intensity around the liver and gallbladder phases are potential 
biomarkers for predicting MVI status in patients with primary liver cancer.12–14 The combination of MRI image 
features and radiomics has improved the prediction efficiency of MVI to varying degrees.15–17 The preoperative 
prediction of MVI may play a guiding role in planning the treatment process, such as using antiviral drugs, expanding 
the surgical resection range, and postoperative adjuvant therapy to reduce the risk of postoperative recurrence. 
Although some studies involve MVI studies of cHCC-CCA, most of the differences between MVI negative and 
positive groups are analyzed using clinical basic features and imaging radiomics signs,14,18,19 without further 
investigating the inherent differences from the heterogeneity of the tumor itself. This study aims to explore the 
value of enhanced MRI radiomics features of the tumor, tumor and the 1cm surrounding the tumor (hereinafter referred 
to as peritumoral 1cm) in the preoperative prediction of MVI in cHCC-CCA, providing a basis for clinical treatment 
decision-making.

Methods
Inclusion and Exclusion Criteria
This study is retrospective, and both medical center ethics committees exempted patients from informed consent. 
A total of 57 MVI-positive and 61 MVI-negative cases were included. We collected information on patients who 
underwent surgical resection of liver masses at Nanfang Hospital of Southern Medical University and Eastern 
Hepatobiliary Surgery Hospital in Shanghai from May 2010 to March 2021. The inclusion criteria are as follows: 1. 
Pathological confirmation of compliance with cHCC-CCA after surgical resection; 2. Maximum diameter ≥1cm; 3. 
Perform an enhanced MRI scan within four weeks before surgery; 4. Before the MRI examination, no anti-tumor 
treatment was performed, such as radiotherapy, transhepatic arterial chemoembolization (TACE), etc.; 5. Complete 
clinical and imaging data; 6. There were no tumors elsewhere in the body. Exclusion criteria: 1. Maximum diameter 
<1cm; 2. The contrast agent used for MRI examination is an intracellular contrast agent; 3. The presence of venous 
cancer thrombi is observed on MRI images; 4. Before the MRI examination, anti-tumor treatment was performed; 5. 
Have a history of tumors in other parts of the body; 6. Poor image quality and unclear observation of lesions. The 
flowchart of the cases included in this study is shown in Figure 1. After data integration, the training and test sets were 
randomly divided in a 7:3 ratio.

Clinical Data and Histopathology
Collect preoperative clinical data, including gender, age, AFP, cardiovascular antigen (CEA), carbohydrate antigen 199 
(CA199), HBsAg, and HBeAg, which are commonly used indicators. All surgical specimens were sampled according to 
the 7-point baseline sample collection plan. The diagnosis of MVI was determined by histopathological examination, and 
cancer cell nests were observed in the vascular lumen lined with endothelial cells under a microscope. If the number of 
cancer cells was above 50, MVI was considered to exist. A total of 61 MVI grades 0, 48 MVI grades 1, and 9 MVI 
grades 2 were included in this study. Grades 1 and 2 were collectively called MVI positive, and grade 0 was negative. 
The diagnosis of liver cirrhosis is also determined in histopathology.
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MRI Image Acquisition
The two institutions use 1.5T (General Electric, Optima MR360) and 3.0T (General Electric, Signa HDxt) scanning 
systems. Table 1 summarizes the scanning parameters of different machines. All patients were treated with a 16-channel 
abdominal coil. 0.1mmol/kg of contrast agent (Gadolinium-DTPA, Gd) was injected into the cubital vein with a high- 
pressure syringe at a rate of 2.0mL/s. The scanning time for each machine after the injection of the contrast agent is 
roughly the same. Arterial phase scanning is performed at 20–25 seconds, portal phase scanning at 50–60 seconds, and 
delayed phase scanning at 90–120 seconds.

Figure 1 Data inclusion flow chart. 
Abbreviations: cHCC-CCA, combined hepatocellular carcinoma and cholangiocarcinoma; TACE, transhepatic arterial chemoembolization; MVI, Microvascular invasion.

Table 1 Sequences and Parameters of Dynamic-Enhanced MRI

Institution Nanfang Hospital Eastern Hepatobiliary  
Surgery Hospital

Field(T) 3.0 1.5

TR (ms) (T2/AP=PVP=DP) 3600/3.8 5100/5.0
TE (ms) (T2/AP=PVP=DP) 90/1.7 85/1.7

Angle (°) (T2/AP=PVP=DP) 90/15 90/15

ST(mm) (T2/AP=PVP=DP) 5/2.0 5/2.5
FOV 400×352 420×420

Matrix 132×114 320 × 224

Abbreviations: TR, Repetition Time; TE, Echo Time; ST, Slice Thickness; T2, T2-weighted imaging; 
AP, Arterial phase; PVP, Portal venous phase; DP, Delay phase; FOV, Field of View.
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Image Analysis
The MRI results were evaluated by a radiologist with six years of experience in abdominal diagnosis and verified by 
a physician with 21 years of experience in radiological diagnosis. In case of disagreement, the two parties shall decide after 
discussion. They do not know the patient’s clinical and pathological data. All evaluations are based on the liver imaging 
reporting and data system (LI-RADS) version 2018 (https://www.acr.org). The evaluation indicators include: tumor size 
(longest diameter on the largest cross-section, select the lesion with the longest diameter for multiple lesions), edge (whether 
smooth), shape (circular, elliptical, lobulated, irregular), number (number of lesions synchronously enhanced with the primary 
lesion), capsule, arterial phase edge enhancement (circular enhancement of arterial phase tumor edge), peritumoral enhance-
ment during the arterial phase (crescent or polygonal enhancement area around the early arterial tumor), hepatic lobe atrophy, 
hepatic capsule retraction (tumor adjacent to the hepatic capsule being pulled to form an umbilical concave sign), peripheral 
bile duct dilation (dilation of the surrounding or distal bile duct), lipid (High signals in the in-phase are reduced in the out- 
phase), Target sign (low central signal, high peripheral signal on diffusion-weighted imaging), lymph node metastasis 
(presence of enlarged lymph nodes in the hepatic hilum and retroperitoneal area).

Radiomics Analysis
The process of radiomics analysis is shown in Figure 2.

Target Delineation
Two senior radiologists (8 and 12 years of experience in abdominal imaging diagnosis, respectively) delineated the lesions 
independently without knowing the pathological results. Using the open-source software ITK-SNAP (version 3.8.0), each tumor 
lesion was delineated layer by layer on T2 weighted imaging (T2WI), arterial phase (AP), portal vein phase (PVP), and delayed 
phase (DP) to form a three-dimensional region of interest. They completed lesion segmentation within four weeks. After 
completing the delineation of the target area, use cv2.dilate to uniformly expand the region of interest (ROI) to the surrounding 

Figure 2 Radiomics flow chart.
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area by 1cm, and have it verified by a doctor with eight years of experience in abdominal imaging diagnosis. Manually remove 
parts beyond the liver contour or covering large blood vessels such as the portal vein to avoid interfering with information and 
affecting model performance. Use sitkLinear and sitkNearestNeighbor to resample the original image and mask, respectively. 
Normalize the pixel values of the original image to 0–1 using the min-max normalization method.

Extraction and Screening of Radiomics Features
Based on the Digital Imaging and Communications in Medicine (DICOM) images and ROI of four different stages of tumors and 
peritumoral 1cm, initial features and peritumoral 1cm features were extracted for each region of interest using Python 3.9.7 
(Pyradiomics version 2.12). To determine inter-observer consistency, we calculated the Intra-class Correlation Coefficient (ICC) 
for the lesions segmented by the two physicians. Those with values greater than 0.8 were included in subsequent studies, and then 
the feature values were normalized using the min-max method. Feature selection uses mutual information (MI) and recursive 
elimination (RE) method in sequence and conducts ten fold cross-validation to select the optimal feature.

Model Construction and Evaluation
Construct a clinical model based on the included clinical indicators and imaging features. The original radiomics model was 
constructed, respectively, based on the tumor range, and the peritumoral model was constructed within the range of 
peritumoral 1cm, respectively. Then, the radiomics features and peritumoral radiomics features were combined with clinical 
imaging features to construct fusion models and peritumoral fusion models, respectively. This study used logistic regression 
(LR), k-NearestNeighbor (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and eXtreme 
Gradient Boosting (XGB) to build different models. The models were validated using independent validation sets, and the 
effectiveness of the models was evaluated based on area under the curve (AUC), specificity, sensitivity, and decision curve 
analysis (DCA). And analyze the classification process of the model using the SHAP interpretability method.

Statistical Analysis
All statistical analyses were conducted using SPSS software (version 25.0), and a p-value <0.05 for the bilateral test 
statistic was considered statistically significant. Continuous variables with normal distribution are represented as mean ± 
standard deviation and compared with two groups using an independent sample t-test. The number of cases and 
percentage represent the categorical variables, and the χ2 test was used for statistical description. Bootstrapping is 
used to calculate the confidence interval (CI) of the AUC.

Result
Clinical Imaging Feature Analysis
The clinical baseline data and imaging analysis of cHCC-CCA patients showed a statistically significant difference (p < 0.05) 
in HBeAg, capsule, target sign, and lymph node metastasis between MVI negative and MVI positive groups. Compared with 
MVI-positive patients, negative patients had a higher probability of negative HBeAg. The incidence of capsule and target 
signs in MVI-positive patients is lower than in negative patients, but their lymph node metastasis rate is relatively high. There 
was no statistically significant difference in gender, age, size, number, AFP, CEA, CA199, cirrhosis, HBsAg, edge enhance-
ment in arterial phase, peritumoral enhancement, edge, morphology, lipid deposition, hepatic lobe atrophy, capsule depression, 
and bile duct dilation between the two groups of cases (p > 0.05). The analysis of clinical and imaging characteristics of MVI 
positive and negative groups is presented in Table 2 and Table 3, respectively.

Imaging Radiomics Analysis
We used six different machine learning models to construct clinical, radiomics, and fusion models based on tumors and 
peritumoral 1cm. Table 4 lists the model performance with certain advantages among different modeling methods based on 
the tumor and peritumoral 1cm. The results showed that AP_SVM fusion model based on peritumoral 1cm showed the best 
performance in identifying the MVI status of cHCC-CCA, with AUC of 0.940 (95% CI: 0.801–0.947) and 0.825 (95% CI: 
0.633–0.917) in the training/testing set, and accuracy, sensitivity, and specificity of 0.778 (95% CI: 0.639–0.889), 0.800 (95% CI: 
0.563–1.000), and 0.726 (95% CI: 0.565–0.941) in the testing set, respectively. In the radiomics model, the AUC of the best 
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Table 2 Clinical Baseline Data Analysis of MVI Negative and Positive in 
cHCC-CCA

MVI-0 MVI-1 Chi/t p

Sex 0.170 0.680

Male 51(83.6%) 46(80.7%)

Female 10(16.4%) 11(19.3%)
Agea 52.44±11.367 53.51±10.245 −0.534 0.594

AFP 0.246 0.884

0-20 (μg/L) 27(44.3%) 23(40.4%)
21-400 (μg/L) 20(32.8%) 21(36.8%)

>400 (μg/L) 14(23.0%) 13(22.8%)
CEA 0.683 0.409

0-5 (ng/mL) 43(70.5%) 44(77.2%)

>5 (ng/mL) 18(29.5%) 13(22.8%)
CA199 1.577 0.209

0-35 (u/mL) 47(77.0%) 38(66.7%)

>35 (u/mL) 14(23.0%) 19(33.3%)
Cirrhosis 0.150 0.698

Negative 30(49.2%) 26(45.6%)

Positive 31(50.8%) 31(54.4%)
HBeAg 4.753 0.029*

Negative 42(68.9%) 28(49.1%)

Positive 19(31.1%) 29(50.9%)
HBsAg 1.565 0.211

Negative 23(37.7%) 28(49.1%)

Positive 38(62.3%) 29(50.9%)

Notes: aData was compared using an independent sample t-test. Excepted where indi-
cated, data were compared using the χ2 test. *p-value less than 0.05. 
Abbreviations: MVI, microvascular invasion; cHCC, combined hepatocellular carcinoma 
and cholangiocarcinoma; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA199, 
cancer antigens 199; HBeAg, hepatitis b envelope antigen; HBsAg, hepatitis b surface antigen.

Table 3 Analysis of MRI Features of MVI Negative and Positive in cHCC-CCA

MVI-0 MVI-1 Chi p

Size 0.214 0.644

≤5cm 41(67.2%) 36(63.2%)
>5cm 20(32.8%) 21(36.8%)

Number 1.148 0.284

Single 49(80.3%) 41(71.9%)
Multiple 12(19.7%) 16(28.1%)

Capsule 10.505 0.001*

Negative 27(44.3%) 42(73.7%)
Positive 34(55.7%) 15(26.3%)

Rim Enhancement 0.728 0.394

Negative 20(32.8%) 23(40.4%)
Positive 41 (67.2%) 34(59.6%)

Peritumoral Enhancement 0.161 0.688
Negative 32(52.5%) 32(56.1%)

Positive 31(47.5%) 25(43.9%)

Margin 0.672 0.412
Negative 27(44.3%) 21(36.8%)

Positive 34(55.7%) 36(63.2%)

(Continued)
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model (Based on the tumor in the arterial phase) is 0.832 (95% CI: 0.612–0.827)/0.800 (95% CI: 0.571–0.830) (training set/test 
set), and the accuracy, sensitivity, and specificity in the test set are 0.667 (95% CI: 0.500–0.806), 0.867 (95% CI: 0.667–1.000), 
and 0.524 (95% CI: 0.300–0.739), respectively. The clinical model performed best in XGB with an AUC of 0.890 (95% CI: 
0.727–0.911)/0.668 (95% CI: 0.425–0.747) (training set/test set), with accuracy, sensitivity, and specificity of 0.611 (95% CI: 

Table 3 (Continued). 

MVI-0 MVI-1 Chi p

Shape 0.988 0.804

Rotundity 12(19.7%) 9(15.8%)
Oval 13(21.3%) 13(22.8%)

Lobulated 21(34.4%) 17(29.8%)

Irregular 15(24.6%) 18(31.6%)
Lipid 1.395 0.238

Negative 54(88.5%) 46(80.7%)

Positive 7(11.5%) 11(19.3%)
Hepatic Lobe Atrophy 1.882 0.170

Negative 32(52.5%) 37(64.9%)

Positive 29(47.5%) 20(35.1%)
Capsule Depression 1.751 0.186

Negative 38(80.0%) 42(73.3%)

Positive 23(37.7%) 15(26.3%)
Target Sign 16.380 <0.001*

Negative 19(31.1%) 39(68.4%)

Positive 42(68.9%) 18(31.6%)
Bile Duct Dilation 0.401 0.526

Negative 56(91.8%) 54(94.7%)
Positive 5(8.2%) 3(5.3%)

Lymph Node Metastases 4.311 0.038*

Negative 57(93.4%) 46(80.7%)
Positive 4(6.6%) 11(19.3%)

Notes: Data were compared using the χ2 test. *p-value less than 0.05. 
Abbreviations: MVI, microvascular invasion; cHCC-CCA, combined hepatocellular carci-
noma and cholangiocarcinoma.

Table 4 Comparison of Best Model Performance for Different Combinations Within Tumors and Peritumoral 1cm

Model Accuracy 
(95% CI)

Precision 
(95% CI)

Recall  
(95% CI)

AUC_Test 
(95% CI)

AUC_Train 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Fusion Expand 
(AP_SVM)

0.778 

(0.639–0.889)

0.706 

(0.467–0.917)

0.800 

(0.600–1.000)

0.825 

(0.633–0.917)

0.940 

(0.801–0.947)

0.800 

(0.563–1.000)

0.762 

(0.565–0.941)
Original 

(PVP_SVM)
0.778 

(0.639–0.917)

0.733 

(0.500–0.947)

0.733 

(0.500–0.938)

0.740 

(0.617–0.906)

0.935 

(0.722–0.896)

0.733 

(0.500–0.944)

0.810 

(0.636–0.956)

Radiomics Expand 
(AP_RF)

0.639 
(0.444–0.778)

0.542 
(0.300–0.722)

0.867 
(0.571–1.000)

0.775 
(0.502–0.788)

1.000 
(1.000–1.000)

0.867 
(0.583–1.000)

0.476 
(0.278–0.684)

Original 
(AP_LR)

0.667 

(0.500–0.806)

0.565 

(0.350–0.778)

0.867 

(0.688–1.000)

0.800 

(0.571–0.830)

0.832 

(0.612–0.827)

0.867 

(0.667–1.000)

0.524 

(0.300–0.793)
Clinical XGB 0.611 

(0.444–0.750)

0.545 

(0.222–0.875)

0.400 

(0.143–0.667)

0.686 

(0.425–0.747)

0.890 

(0.727–0.911)

0.400 

(0.167–0.667)

0.762 

(0.565–0.947)

Notes: Excepted where indicated, data are test set results. 
Abbreviations: T2, T2-weighted imaging; AP, Arterial phase; PVP, Portal vein phase; DP, Delayed phase; AUC, area under the curve; SVM, Support vector machine; RF, 
random forest; LR, logistic regression.
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0.444–0.750), 0.400 (95% CI: 0.167–0.667), and 0.762 (95% CI: 0.565–0.947) in the test set. Supplement 1–5 lists the model 
results of different classifiers based on tumor, peritumoral 1cm, respectively.

The optimal model DCA curve based on different modeling methods within the tumor shows that when the threshold 
is approximately 41.40%–52.16%, the net profit of the fusion model is higher than that of the clinical and radiomics 
models. Based on the DCA curves of various models with a tumor circumference of 1cm, when the threshold is 
approximately 11.08%–66.47%, the net profit of the fusion model is higher than that of the clinical and radiomics 
models. Figures 3 and 4 show the comparison of ROC curves and DCA of the optimal models in different ranges, 
respectively. The confusion matrix results show that in the identification of MVI status within the tumor, peritumoral 
1cm, and clinically optimal models, the optimal model based on peritumoral 1cm correctly judged 16 and 12 cases of 
MVI negative and positive in the test set data, while the correct judgments based on the optimal models within the tumor 
and clinically optimal models were 11/13 and 16/6, respectively (as shown in Figure 5).

The SHAP interpreter outputs the importance of each feature in the optimal model (SVM fusion model based on 
peritumoral 1cm in arterial phase), ranking the top five features in sequence as capsule, target sign, capsule retraction, 
lipid, and arterial edge enhancement. In Figure 6, red on the right side of the y-axis indicates a positive correlation 
between this feature and MVI status, while red on the left indicates a negative correlation, and blue is the opposite.

Figure 3 ROC comparison of the optimal model based on the tumor (left) and peritumoral 1cm (right). 
Abbreviations: ROC, Receiver Operating Characteristic Curve; AUC, Area Under Curve.

Figure 4 DCA comparison of the optimal model based on the tumor (left) and peritumoral 1cm (right). 
Abbreviation: DCA, Decision curve analysis.
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Figure 5 Optimal model confusion matrix for different combinations (tumor, peritumoral 1cm, clinical). 
Abbreviations: LR, logistic regression; AP, arterial phase; SVM, support vector machine; XGB, eXtreme Gradient Boosting; MVI, Microvascular invasion.

Figure 6 Shap diagram of a fusion model combined arterial phase radiomics features of peritumoral 1cm and clinical data (based on SVM). A red dot indicates that the value 
is positively correlated with the MVI state, while blue is the opposite. 
Abbreviation: SVM: support vector machine.
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Discussion
MVI, a well-established poor prognostic factor in primary liver cancer, correlates strongly with early recurrence and lower 
survival rates.11 Prior studies have identified potential MVI biomarkers in cHCC-CCA, including elevated AFP, intratumoral 
fat deposition, and irregular arterial-phase enhancement.13,14,20,21 However, this study contradicts these findings by demon-
strating no association between AFP and MVI presence in cHCC-CCA. This discrepancy may arise from methodological 
limitations, including multicenter retrospective data bias, uneven distribution of MVI grades (with only a small subset of grade 
2 cases), and lack of subclassification based on MVI severity. An intriguing observation in this study is the higher prevalence 
of HBeAg negativity among MVI-negative cHCC-CCA patients. Given the dual histological components of cHCC-CCA, 
prior research highlights the impact of tumor component proportions on imaging phenotypes and prognosis.22–24 Specifically, 
MVI incidence increases in cHCC-CCA subgroups with >70% hepatocellular components.24 As HBeAg is a pathological 
marker strongly linked to hepatocellular differentiation,25 it may indirectly reflect tumor composition.

Recent advances in radiomics have enabled more sophisticated peritumoral tissue analysis. While most studies focus 
on MVI prediction in HCC,16,26 few have explored this approach in cHCC-CCA, where clinical/imaging data remain the 
primary diagnostic modality.14,18,27 This study integrates peritumoral 1cm radiomics features with clinical parameters to 
improve MVI detection. Consistent with prior reports,27–29 radiomics analysis uncovered subtle textural changes in 
adjacent tissues undetectable by visual inspection, confirming the value of this approach.

The peritumoral 1cm range was chosen to balance practicality and diagnostic yield. Expanding beyond this threshold risks 
incorporating liver capsule artifacts or irrelevant tissues, while narrower margins may insufficiently capture microenviron-
mental heterogeneity. This decision aligns with surgical guidelines advocating <1cm resection margins combined with 
adjuvant radiotherapy for HCC.30,31 However, the rarity of cHCC-CCA and lack of standardized subtyping limit the 
generalizability of these findings.

The influence of each feature in the optimal model on the predicted output is calculated by SHAP. The features with greater 
weight are all image features. Capsule, capsule retraction, lipid deposition, and tumor edge enhancement have been identified 
as potential signs associated with MVI status in patients with primary liver cancer.12,13,15 However, Huang et al believed there 
was no difference between tumor edge enhancement and lipids in the MVI status of cHCC-CCA patients.19 The target signs 
indicated that there were cystic and necrotic areas in the center of the tumor, and the signal attenuation on DWI might be due to 
the in vasive growth of the tumor, the rapid growth of the tumor leading to internal blood supply insufficiency, local infection 
and other reasons, which reflected MVI to some extent. These findings reinforce the complementary roles of radiomics and 
serum biomarkers in clinical diagnostics.15 It was found that there were incorrect MVI classifications in the model. Among the 
three false negative cases, HBsAg, cirrhosis and rim enhancement were all positive, while capsule depression was all negative. 
This is quite different from the five false positive cases. We found that some of the results did not conform to the SHAP 
analysis results. It might be caused by the selection bias resulting from the small sample size or by the underfitting effect in the 
model training process. In the future, efforts need to be made to overcome adverse outcomes from these aspects.

Clinical utility analysis demonstrated superior net benefit for the fusion model compared to standalone clinical/ 
radiomics models. The peritumoral 1cm based model exhibited a wider risk threshold range, enabling more balanced 
decision-making between therapeutic benefits and risks.32,33

Our research has several limitations. Firstly, due to the data from multiple centers and the uneven sample size among 
different centers, a single central data was not used as the training, testing, and external validation sets. Secondly, our 
study did not classify cHCC-CCA into different subtypes based on its latest classification, exploring the differences in 
MVI among different subtypes and differential diagnosis, which also needs further research in the future. Finally, the 
subjects included in this study were all patients who underwent surgical resection, and some patients may have received 
empirical anti-HCC treatment without undergoing pathological examination, which led to some selection bias.

Conclusion
Our research indicates that using machine learning algorithms for comprehensive analysis of imaging radiomics features 
within peritumoral 1cm can more accurately predict the MVI status of cHCC-CCA patients and explain the evaluation 
process of the model in decision-making through the SHAP method.
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Abbreviations
MVI, microvascular invasion; cHCC, combined hepatocellular carcinoma and cholangiocarcinoma; cm, centimeter; 
ROC, receiver operating characteristic; AUC, area under curve; DCA, decision curve analysis; SHAP, Shapley 
Additive exPlans; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; AFP, alpha-fetoprotein; 
PIVKA-II, protein induced by vitamin k absence or antagonist II; CEA, carcinoembryonic antigen; CA199, cancer 
antigens 199; HBeAg, hepatitis b envelope antigen; HBsAg, hepatitis b surface antigen; LI-RADS, liver imaging 
reporting and data system; T2WI, T2 weighted imaging; AP, arterial phase; PVP, portal vein phase; DP, delayed 
phase; LR, logistic regression; KNN, k-NearestNeighbor; SVM, support vector machine; DT, decision tree; RF, random 
forest; XGB, eXtreme Gradient Boosting; CI, confidence interval.

Data Statement
We confirm that all clinical data contained in this study have been anonymous or confidential.

Ethical Approval and Consent to Participate
The study were approved by the Southern Medical University Nangfang Hospital Ethics Review Committee and 
Shanghai Eastern Hepatobiliary Surgery Hospital Ethics Review Committee, and written informed consent was not 
required for this study because MRI has been used clinically as a standard imaging examination.

Consent to Publish
This publication has been approved by the responsible authorities at the institution where the work is carried out.

Acknowledgments
We want to thank the whole study team at 4 Hospitals for their continuous support. In addition, we would like to express 
our gratitude to Zhongjian Liao for the data support provided for this research.

Funding
This study has received funding from the Natural science foundation of Guangdong province (2018A030313951), the 
Science and Technology Plan Project of Ganzhou (2022–RC1339, 2023LNS17497), and the Medical Scientific Research 
Foundation of Guangdong Province, China (No.B2025403).

Disclosure
The author(s) reports no conflicts of interest in this work.

References
1. Beaufrère A, Calderaro J, Paradis V. Combined hepatocellular-cholangiocarcinoma: an update. J Hepatol. 2021;74(5):1212–1224. doi:10.1016/j. 

jhep.2021.01.035
2. EFG I M S T. Primary cancer of the liver. Ind Med Gaz. 1903.
3. Allen RA, Lisa JR. combined liver cell and bile duct carcinoma. Am J Pathol. 1949;4:647–655.
4. Wang G, Wang Q, Liang N, et al. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer. Cell Death Dis. 2020;11.
5. Rosenberg N, Van Haele M, Lanton T, et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on 

senescence and IL-6 trans-signaling. J Hepatol. 2022;77(6):1631–1641. doi:10.1016/j.jhep.2022.07.029
6. Schizas D, Mastoraki A, Routsi E, et al. Combined hepatocellular-cholangiocarcinoma: an update on epidemiology, classification, diagnosis and 

management. Hepatobiliary Pancreatic Dis Int. 2020;19(6):515–523. doi:10.1016/j.hbpd.2020.07.004
7. Liu C, Fan S, Lo C, et al. Hepatic resection for combined hepatocellular and cholangiocarcinoma. Archiv Surg. 2003;138(1):86–90. doi:10.1001/ 

archsurg.138.1.86
8. Wang T, Yang X, Tang H, et al. Integrated nomograms to predict overall survival and recurrence-free survival in patients with combined 

hepatocellular cholangiocarcinoma (cHCC) after liver resection. Aging. 2020;12(15):15334–15358. doi:10.18632/aging.103577
9. Tang Y, Wang L, Teng F, Zhang T, Zhao Y, Chen Z. The clinical characteristics and prognostic factors of combined hepatocellular carcinoma and 

cholangiocarcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma after surgical resection: a propensity score matching analysis. 
Int J Med Sci. 2021;18(1):187–198. doi:10.7150/ijms.50883

10. Wang Y, Zhou C, Zhu G, et al. A multidimensional nomogram combining imaging features and clinical factors to predict the invasiveness and 
metastasis of combined hepatocellular cholangiocarcinoma. Ann Translat Med. 2021;9(20):1518. doi:10.21037/atm-21-2500

Journal of Hepatocellular Carcinoma 2025:12                                                                                    https://doi.org/10.2147/JHC.S515651                                                                                                                                                                                                                                                                                                                                                                                                   1451

Guo et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/j.jhep.2021.01.035
https://doi.org/10.1016/j.jhep.2021.01.035
https://doi.org/10.1016/j.jhep.2022.07.029
https://doi.org/10.1016/j.hbpd.2020.07.004
https://doi.org/10.1001/archsurg.138.1.86
https://doi.org/10.1001/archsurg.138.1.86
https://doi.org/10.18632/aging.103577
https://doi.org/10.7150/ijms.50883
https://doi.org/10.21037/atm-21-2500


11. Wu Y, Liu H, Zeng J, et al. Development and validation of nomogram to predict very early recurrence of combined hepatocellular-cholangiocarcinoma 
after hepatic resection: a multi-institutional study. World J Surg Oncol. 2022;20(1):20. doi:10.1186/s12957-022-02488-3

12. Zhang L, Yu X, Wei W, et al. Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology. Eur Radiol. 
2020;30(10):5327–5336. doi:10.1007/s00330-020-06895-6

13. Wang X, Wang W, Ma X, et al. Combined hepatocellular-cholangiocarcinoma: which preoperative clinical data and conventional MRI character-
istics have value for the prediction of microvascular invasion and clinical significance? Eur Radiol. 2020;30(10):5337–5347. doi:10.1007/s00330- 
020-06861-2

14. Zhang J, Dong W, Li Y, Fu J, Jia N. Prediction of microvascular invasion in combined hepatocellular-cholangiocarcinoma based on preoperative 
contrast-enhanced CT and clinical data. Eur J Radiol. 2023;163:110839. doi:10.1016/j.ejrad.2023.110839

15. Yang W, Zhu F, Chen W. Texture analysis of contrast-enhanced magnetic resonance imaging predicts microvascular invasion in hepatocellular 
carcinoma. Eur J Radiol. 2022;156:110528. doi:10.1016/j.ejrad.2022.110528

16. Qu C, Wang Q, Li C, et al. A radiomics model based on Gd-EOB-DTPA-enhanced MRI for the prediction of microvascular invasion in solitary 
hepatocellular carcinoma ≤ 5 cm. Front Oncol. 2022;12.

17. Lv K, Cao X, Du P, Fu JY, Geng DY, Zhang J. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World 
J Gastroenterol. 2022;28(20):2176–2183. doi:10.3748/wjg.v28.i20.2176

18. Liao Z, Lu L, Liu Y, et al. Clinical and DCE-CT signs in predicting microvascular invasion in cHCC-ICC. Cancer Imaging. 2023;23(1):23. 
doi:10.1186/s40644-023-00538-x

19. Huang S, Zuo M, Xie C. Combining preoperative clinical and imaging characteristics to predict MVI in hepatitis B virus-related combined 
hepatocellular carcinoma and cholangiocarcinoma. J Personal Med. 2023;13(2):246. doi:10.3390/jpm13020246

20. Hou GM, Jiang C, Du JP, Yuan KF. Sarcopenia predicts an adverse prognosis in patients with combined hepatocellular carcinoma and 
cholangiocarcinoma after surgery. Cancer Med. 2022;11(2):317–331. doi:10.1002/cam4.4448

21. Chen Y, Lu Q, Zhu Y, Huang B, Dong Y, Wang W. Prediction of microvascular invasion in combined hepatocellular-cholangiocarcinoma based on 
preoperative clinical data and contrast-enhanced ultrasound characteristics. Ultrasound Med Biol. 2022;48(7):1190–1201. doi:10.1016/j. 
ultrasmedbio.2022.02.014

22. Kim KH, Lee SG, Park EH, et al. Surgical treatments and prognoses of patients with combined hepatocellular carcinoma and cholangiocarcinoma. 
Ann Surg Oncol. 2009;16(3):623–629. doi:10.1245/s10434-008-0278-3

23. Sheng R, Yang C, Zhang Y, et al. The significance of the predominant component in combined hepatocellular-cholangiocarcinoma: MRI 
manifestation and prognostic value. Abdom Radiol. 2023;128:1047–1060.

24. Zhou C, Lu X, Wang Y, Qian X, Yang C, Zeng M. Histopathological components correlated with MRI features and prognosis in combined 
hepatocellular carcinoma-cholangiocarcinoma. Eur Radiol. 2022;32(10):6702–6711. doi:10.1007/s00330-022-09065-y

25. Lampertico P, Agarwal K, Berg T, et al. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 
2017;67(2):370–398. doi:10.1016/j.jhep.2017.03.021

26. Shan Q, Hu H, Feng S, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor 
resection or ablation. Cancer Imaging. 2019;19(1):19. doi:10.1186/s40644-019-0203-y

27. Na HY, Kim JH, Kim H, et al. Multiregional analysis of combined hepatocellular-cholangiocarcinoma reveals histologic diversity and molecular 
clonality. Histopathology. 2023;84(2):402–408. doi:10.1111/his.15081

28. Chong H, Yang L, Sheng R, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular 
invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol. 2021;31(7):4824–4838. doi:10.1007/s00330-020- 
07601-2

29. Gao L, Xiong M, Chen X, et al. Multi-region radiomic analysis based on multi-sequence MRI can preoperatively predict microvascular invasion in 
hepatocellular carcinoma. Front Oncol. 2022;12.

30. Yu W, Wang W, Rong W, et al. Adjuvant radiotherapy in centrally located hepatocellular carcinomas after hepatectomy with narrow margin 
(<1 cm): a prospective randomized study. J Am College Surg. 2014;218(3):381–392. doi:10.1016/j.jamcollsurg.2013.11.030

31. Wang L, Liu Y, Rong W, et al. The role of intraoperative electron radiotherapy in centrally located hepatocellular carcinomas treated with narrow- 
margin (<1 cm) hepatectomy: a prospective, Phase 2 study. Hepatobiliary Surg Nutrit. 2022;11:515–529.

32. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction 
models and molecular markers. BMC Med Inform Decis Mak. 2008;8(1):53. doi:10.1186/1472-6947-8-53

33. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–574. 
doi:10.1177/0272989X06295361

Journal of Hepatocellular Carcinoma                                                                                          

Publish your work in this journal 
The Journal of Hepatocellular Carcinoma is an international, peer-reviewed, open access journal that offers a platform for the dissemination and 
study of clinical, translational and basic research findings in this rapidly developing field. Development in areas including, but not limited to, 
epidemiology, vaccination, hepatitis therapy, pathology and molecular tumor classification and prognostication are all considered for publication. 
The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/journal-of-hepatocellular-carcinoma-journal

Journal of Hepatocellular Carcinoma 2025:12 1452

Guo et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1186/s12957-022-02488-3
https://doi.org/10.1007/s00330-020-06895-6
https://doi.org/10.1007/s00330-020-06861-2
https://doi.org/10.1007/s00330-020-06861-2
https://doi.org/10.1016/j.ejrad.2023.110839
https://doi.org/10.1016/j.ejrad.2022.110528
https://doi.org/10.3748/wjg.v28.i20.2176
https://doi.org/10.1186/s40644-023-00538-x
https://doi.org/10.3390/jpm13020246
https://doi.org/10.1002/cam4.4448
https://doi.org/10.1016/j.ultrasmedbio.2022.02.014
https://doi.org/10.1016/j.ultrasmedbio.2022.02.014
https://doi.org/10.1245/s10434-008-0278-3
https://doi.org/10.1007/s00330-022-09065-y
https://doi.org/10.1016/j.jhep.2017.03.021
https://doi.org/10.1186/s40644-019-0203-y
https://doi.org/10.1111/his.15081
https://doi.org/10.1007/s00330-020-07601-2
https://doi.org/10.1007/s00330-020-07601-2
https://doi.org/10.1016/j.jamcollsurg.2013.11.030
https://doi.org/10.1186/1472-6947-8-53
https://doi.org/10.1177/0272989X06295361
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress

	Introduction
	Methods
	Inclusion and Exclusion Criteria
	Clinical Data and Histopathology
	MRI Image Acquisition
	Image Analysis
	Radiomics Analysis
	Target Delineation
	Extraction and Screening of Radiomics Features
	Model Construction and Evaluation

	Statistical Analysis

	Result
	Clinical Imaging Feature Analysis
	Imaging Radiomics Analysis

	Discussion
	Conclusion
	Abbreviations
	Data Statement
	Ethical Approval and Consent to Participate
	Consent to Publish
	Acknowledgments
	Funding
	Disclosure

