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Abstract: Obesity is a major global public health issue linked to a wide range of chronic diseases. Understanding its complex causal 
pathways requires robust analytical methods. Mendelian randomization (MR), which employs genetic variants as instrumental 
variables, effectively addresses confounding and reverse causation and has become a key tool in obesity research. This review 
summarizes the development of MR methodologies, from single-sample to multivariable, mediation, and time-series models, and 
highlights key findings from the past decade. MR studies have revealed causal associations between obesity and nine major disease 
categories, including cardiovascular, metabolic, cancer, psychiatric, respiratory, renal, reproductive, musculoskeletal, and dermatolo-
gical disorders. Obesity influences disease risk through mechanisms involving energy metabolism, hormonal regulation, and inflam-
mation, with heterogeneity by age, sex, and fat distribution. Key genes such as MC4R, LEPR, FTO, and FGF21 have been identified as 
potential therapeutic targets. Current challenges include instrument strength, pleiotropy, population stratification, and the external 
validity of GWAS data. Future research that integrates multi-ancestry GWAS, functional validation, and multi-omics approaches may 
further enhance the utility of Mendelian randomization. MR provides a robust genetic framework for elucidating obesity’s causal 
effects and informing targeted interventions and personalized treatment strategies. 
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Introduction
With rapid economic development in China, obesity has become a major public health concern, with more than half of 
adults classified as overweight or obese.1 The World Health Organization (WHO) defines obesity as excessive fat 
accumulation that may impair health,2 and it constitutes a key component of metabolic syndrome.3 Obesity can be 
quantified using indicators such as body mass index (BMI), waist circumference, and waist-to-hip ratio. According to 
WHO BMI classifications, overweight is defined as a BMI of 25.0–29.9 kg/m², obesity as ≥30 kg/m², and severe obesity 
as ≥40 kg/m².4 The development of obesity is influenced by a complex interplay of genetic factors, environmental 
exposures, and gene-environment interactions. Although numerous clinical studies have demonstrated that obesity 
significantly increases the risk of metabolic diseases, cardiovascular diseases, musculoskeletal disorders, psychiatric 
conditions, and various cancers,5 the causal nature of these associations remains unclear due to potential confounding and 
reverse causation.

To address these limitations, researchers have increasingly adopted Mendelian randomization (MR), a method that 
uses genetic variants associated with obesity to infer causal effects on disease outcomes. Often described as a “natural 
randomized controlled trial (RCT)”, MR leverages the random allocation of genetic variants at conception, providing 
stable and unbiased exposure measures. This minimizes confounding and reverse causation, enabling more robust causal 
inference. The application of MR in obesity research has evolved significantly, progressing from single-sample analyses 
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to multi-sample approaches and integrating mediation analysis and temporal modeling. These methodological advances 
allow researchers to explore the causal pathways linking obesity to various diseases under diverse contexts. This review 
systematically examines the methodological evolution of MR over the past decade and highlights key genetic discoveries 
in obesity research, aiming to provide a genetic foundation for the development of targeted therapies for obesity and its 
related conditions.

Principles and Methodology of Mendelian Randomization
Mendelian randomization (MR) is a statistical approach based on large-scale genome-wide association study (GWAS) 
data, widely used in epidemiology to infer causal relationships between exposures and disease outcomes. Originally 
proposed by Katan in 1986,6 MR leverages Mendel’s second law of inheritance, using genetic variants as instrumental 
variables (IVs). Since alleles are randomly allocated at conception and are not altered by disease processes or environ-
mental and lifestyle factors, MR minimizes bias from confounding and reverse causation.7 Single nucleotide polymorph-
isms (SNPs) are commonly used as IVs,8 enabling estimation of causal effects through their associations with both 
exposures and outcomes.

MR relies on three core assumptions: (1) Relevance — IVs must be strongly associated with the exposure; (2) Independence 
— IVs must be independent of confounders of the exposure-outcome relationship; and (3) Exclusion restriction — IVs affect the 
outcome only through the exposure.9,10 (Figure 1) These assumptions ensure that MR can robustly estimate causal effects for 
modifiable risk factors and address limitations of traditional observational studies. Over the past two decades, MR has evolved 
from its initial use in identifying disease risk factors to broader applications, including elucidating drug mechanisms.11

To address different research needs, several MR extensions have been developed: Single-sample MR, the traditional 
form, estimates causal effects using genetic, exposure, and outcome data from the same cohort via two-stage least squares 
(2SLS) regression.12 However, it requires large sample sizes, which may not always be available.13 Two-sample MR 
addresses this limitation by using separate GWAS summary statistics for the exposure and outcome from independent 
samples, with SNPs serving as the link between them.14 This increases statistical power but requires careful matching of 
populations to avoid bias from population stratification.15

Bidirectional MR helps infer causal direction when genetic variants may influence both variables, making it difficult 
to disentangle cause and effect. It uses independent IVs for each trait to assess bidirectional relationships.7 For instance, 
if A causes B, IVs for A should influence both A and B, while IVs for B should not influence A.

Figure 1 Mendelian randomization core hypothesis diagram. 
Notes: The core assumptions of Mendelian randomization include the correlation assumption(①), independence assumption(②), and exclusivity assumption(③). “X” on 
Path ② indicates that the genetic variant should be independent of all confounding factors. “X” on Path ③ indicates that the genetic variant must influence the outcome only 
indirectly through the exposure, and not through any direct pathway. 
Abbreviations IV, instrumental variable; SNP, single nucleotide polymorphism.
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Multivariable MR (MVMR) allows simultaneous evaluation of multiple exposures and their direct effects on an 
outcome.16 It requires a sufficient number of independent SNPs and adherence to additional assumptions to account for 
horizontal pleiotropy and confounding. Mediation MR (MMR) extends MR to decompose total effects into direct and 
indirect effects mediated through an intermediate variable,16 providing insights into causal pathways and potential 
intervention targets when direct modification of the exposure is difficult.

Time-varying MR (TVMR) is an emerging approach that examines how causal effects of exposures on outcomes 
change over time.17 It overcomes the limitations of traditional MR, which estimates lifetime average effects, and helps 
identify critical intervention windows. However, TVMR faces challenges such as age-dependent genetic effects and 
increased susceptibility to confounding in intergenerational studies.

The MR analytical process typically includes defining datasets, selecting IVs, testing IV assumptions, conducting MR 
analyses, and performing sensitivity analyses with visualizations.18 The availability of large GWAS resources, such as the 
UK Biobank and GWAS Catalog, has greatly enhanced MR research. Common analytical methods include inverse- 
variance weighted (IVW) estimation and Wald ratio, supplemented with sensitivity analyses such as MR-Egger 
regression,19 funnel plots, and Q-statistics to detect and correct for pleiotropy.20 Combining allele-score and mode- 
based approaches further improves causal inference accuracy.

Current Research Status of Mendelian Randomization in the Field of Obesity
Exploring the Biological Mechanisms of Obesity Etiology Using Mendelian 
Randomization
From 2014 to 2024, over 20 studies have systematically revealed multiple influencing factors of obesity through Mendelian 
randomization methods. As early as 2014, when Mendelian randomization had not yet been widely applied, researchers 
used MR to find that fetal protein-A from the liver increased the probability of obesity.21 In 2015, Helle et al demonstrated 
that the lactase persistence gene leads to obesity by increasing milk intake, although it does not directly cause obesity.22 

Subsequent studies, however, proved that lactase persistence is positively correlated with obesity, suggesting that increasing 
milk intake in the target population may lead to obesity;23 thus, the specific impact of the lactase persistence gene on obesity 
requires further research. In 2017, studies from both China and abroad indicated that the methylation level of the ATP4A 
gene and DNA methylation at certain gene loci in blood cells may affect BMI.24 Additionally, Böckerman’s research 
showed that individuals with higher education levels have a significantly reduced likelihood of obesity.25 In 2018, Tao’s 
study indicated that larger maternal hip circumference is associated with heavier birth weights in infants, emphasizing the 
importance of preventing excessive maternal weight.26 In 2019, Mulugeta found that severe depression can lead to obesity 
through variations in the MC4R gene,27 and subsequent research indicated that severe depression can also trigger obesity by 
activating the HPA axis. In the same year, Fu discovered that elevated homocysteine levels increase the risk of obesity,28 

expanding the application scope of MR research. This suggests that MR can be used not only to study influencing factors 
but also to include any gene-determined substances such as proteins and metabolites in MR research.

Since 2021, there has been an explosive growth in research literature utilizing Mendelian Randomization (MR) to 
explore the mechanisms of obesity. Dennis’s study indicates that a high-fat, low-carbohydrate diet may increase the risk 
of obesity by 29%,29 while a 2023 article suggests that an increase in noodle intake can lead to the same result.30 

Research by Shaza and Pang Yao identifies eight proteins that may influence obesity levels: ITIH3, LRP11, SCAMP3, 
NUDT5, OGN, EFEMP1, TXNDC15, and PRDX6.31,32 Qian Xu et al revealed a bidirectional causal relationship 
between gut microbiota (such as Akkermansia and Bifidobacterium) and obesity,33 with subsequent studies indicating 
that these may contribute to obesity through metabolites and inflammatory factors.34 A study focused on children showed 
that Akkermansia has a protective effect against childhood obesity,35 suggesting that its impact mechanisms may differ 
across age groups and warrant further investigation. In 2022, Loukas et al found that the intake of DHA and Omega-3 
can reduce the risk of obesity.36 Yuqian Li demonstrated that the methylation of the SOCS3 gene is associated with 
obesity.37 Yuefeng Yu explored the relationship between sleep and visceral fat using both linear and nonlinear MR,38 and 
the following year, Yannis used the same method to study the effects of sleep on metabolic syndrome.39 Bryony also 
investigated the relationship between sleep and obesity characteristics, with their findings indicating that insufficient 
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sleep can lead to the accumulation of visceral fat (VAT), promoting obesity, particularly central obesity.40 Kim et al 
studied the relationship between smoking and obesity-related characteristics,41 and the following year, Germán similarly 
researched this relationship.42 Unsurprisingly, their results indicated that smoking can lead to an increase in visceral fat, 
thereby causing obesity. Stefan identified causal associations between the DBNDD1 and ERAP1 genes and obesity.43 

Wang and Li found that specific metabolites in plasma (such as arachidonic acid, arginine, and glycine) and peripheral 
cells (such as platelets and CD14+ monocytes) are significantly associated with obesity.34,44 Overall, the Mendelian 
Randomization method in obesity research has gradually evolved from single-variable studies to multi-sample, multi- 
variable, and comprehensive factor analyses, encompassing genetic, metabolic, dietary, behavioral, gut microbiota, and 
socioeconomic dimensions, leading to a more comprehensive understanding of the complex etiology of obesity (Table 1).

Table 1 Summary of Exploring the Biological Mechanisms of Obesity Using Mendelian 
Randomization

Category Representative Factors or Markers

Genetics Lactase persistence gene
DBNDD1 gene

ERAP1 gene

Methylation level of ATP4A gene

DNA methylation of certain gene loci in blood cells
Methylation of SOCS3 gene

Metabolism Fetal protein-A
Proteins: ITIH3, LRP11, SCAMP3, NUDT5, OGN, EFEMP1, TXNDC15, and PRDX6

Homocysteine
Arachidonic acid, arginine, glycine

DHA

Omega-3
Platelets, CD14+ monocytes

Gut microbiota Akkermansia
Bifidobacterium

Diet High-fat low-carbohydrate diet
Noodle intake

Behavior Higher education

Mother’s hip circumference

Severe depression
Sleep duration

Smoking

Abbreviations: BMI, body mass index; WHO, World Health Organization; MR, Mendelian randomization; GWAS, 
genome-wide association studies; IV, instrumental variable; SNP, single nucleotide polymorphism; MVMR, multivariable 
Mendelian randomization; TVMR, time-series Mendelian randomization; IVW, inverse variance weighting; VAT, visceral 
adipose tissue; WHR, waist-to-hip ratio; CAD, coronary artery disease; CVD, cardiovascular disease; AF, atrial fibrillation; 
PAD, peripheral artery disease; VTE, venous thromboembolism; DVT, deep vein thrombosis; PE, pulmonary embolism; T1D, 
type 1 diabetes; T2D, type 2 diabetes; LADA, latent autoimmune diabetes in adults; DR, diabetic retinopathy; HDP, 
hypertensive disorders in pregnancy; PLC, primary liver cancer; NSCLC, non-small cell lung cancer; HL, Hodgkin 
lymphoma; GMV, gray matter volume; ADHD, attention deficit hyperactivity disorder; HPG, hypothalamic-pituitary- 
gonadal; PCOS, polycystic ovary syndrome; BioT, bioavailable testosterone; HPA, hypothalamic-pituitary-adrenal; BFR, 
body fat rate; EAC, esophageal adenocarcinoma; BE, Barrett’s esophagus; CRC, colorectal cancer; HGSC, high-grade 
serous ovarian cancer; FEV1/FVC, forced expiratory volume in one second/forced vital capacity; FEF25–75%, forced 
expiratory flow between 25% and 75% of vital capacity; IgA, immunoglobulin A. IPF, Idiopathic pulmonary fibrosis; HTN, 
Hypertension; GH, Gestational Hypertension; CKD, Chronic Kidney Disease; TMD, Temporomandibular Disorder; AD, 
Alzheimer’s Disease; ASD, Autism Spectrum Disorder; SCZ, Schizophrenia; IHD, Ischemic Heart Disease; BC, Breast 
Cancer; PC, Prostate Cancer; HMB, Heavy Menstrual Bleeding; EC, Endometrial Cancer; BPH, Benign Prostatic 
Hyperplasia.
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Investigating the causal relationship between obesity and its related diseases through 
Mendelian randomization
Cardiovascular Diseases
Over the past decade, Mendelian randomization (MR) studies have systematically elucidated the causal relationship 
between obesity and cardiovascular diseases (CVD). Early research focused on key genetic variants such as FTO, MC4R, 
and TMEM18, demonstrating that elevated body mass index (BMI) significantly increases the risk of heart failure, 
ischemic stroke, and deep vein thrombosis (DVT). For instance, Sara et al employed a genetic risk score approach and 
found that each one-unit increase in BMI markedly raised the risk of heart failure.45 Subsequently, Klovaite and Anette’s 
team identified specific variants (FTO rs9939609, MC4R rs17782313, GNPDA2 rs10938397, BDNF rs10767664) that 
contribute to ischemic heart disease by modulating lipid metabolism and blood pressure.46,47 Since 2016, increasing 
attention has been directed toward the impact of obesity on hemodynamics and coagulation pathways, revealing strong 
associations with peripheral artery disease and venous thromboembolism (VTE).48,49 Yuan et al further highlighted that 
central obesity exerts a greater influence on VTE risk compared to overall obesity.50 Moreover, Susanna and Benjamin’s 
teams proposed that inflammatory pathways may serve as key mediators linking obesity to aortic valve stenosis.51,52

Post-2020, MR studies have adopted more refined approaches, investigating the impact of obesity on micro-
vascular function and incorporating early-life factors. Francesco et al reported that variants in FTO (rs9939609), 
MC4R (rs17782313), and GNPDA2 (rs10938397) are associated with elevated urinary albumin-to-creatinine ratios, 
indicating microvascular damage.53 Research from 2021 suggested that childhood obesity-induced gene expression 
changes (eg, ADCY3 rs4077678) can have long-lasting effects on the risk of atrial fibrillation, stroke, and 
atherosclerosis in adulthood.54–56 Recent studies from 2023 to 2024 have further validated the role of these obesity- 
associated genes in post-stroke sequelae and heart failure, underscoring the importance of early prevention and 
intervention.57–60

Collectively, MR studies consistently demonstrate that obesity increases the risk of various cardiovascular diseases 
through multiple pathways, including alterations in metabolism, blood pressure regulation, lipid profiles, and inflamma-
tory responses. BMI-related genes such as FTO, MC4R, and GNPDA2 play central roles in these processes. These 
advances provide a robust genetic foundation for understanding cardiovascular pathology and support obesity prevention 
as a key strategy in cardiovascular disease management.

Metabolic Diseases
Obesity exerts significant effects on a wide range of metabolic diseases through multiple biological pathways. As early as 
2017, Censin et al demonstrated that genetic variants associated with childhood obesity and insulin sensitivity—including 
FTO (rs1421085), MC4R (rs6567160), GNPDA2 (rs13130484), ADCY3 (rs11676272), TMEM18 (rs4854349), and 
SEC16B (rs543874)—increase the risk of type 1 diabetes.61 Subsequent studies expanded to other common metabolic 
diseases, such as gout, hypertension, and type 2 diabetes (T2D). For example, Susanna et al reported that obesity-related 
variants (FTO rs9939609, among others) may contribute to gout by promoting fat accumulation and dysregulating uric 
acid metabolism.62 Lee et al confirmed a significant causal relationship between BMI-associated genetic variants and the 
development of hypertension.63 Moreover, studies by Tao and Tom et al revealed that these genetic variants not only 
directly increase the risk of T2D but may also indirectly contribute to coronary heart disease.64,65

Since 2023, research has increasingly focused on integrating mechanistic insights. Yuan et al identified that variants in 
FTO (rs9941349), TMEM18 (rs4854344), BDNF (rs571312), GNPDA2 (rs6752378), and SEC16B (rs7138803) sig-
nificantly increase T2D risk by influencing lipid metabolism, chronic inflammation, and insulin resistance.66 In addition, 
these pathways appear to contribute to diabetic complications such as diabetic retinopathy and gestational hypertension.67 

The long-term impact of childhood obesity has also been repeatedly validated; recent studies suggest that childhood 
obesity may increase the risk of preeclampsia in adult women via sex hormone regulatory pathways.

MR studies clearly demonstrate that multiple BMI-associated genetic variants systematically increase the risk of 
metabolic diseases—including diabetes, hypertension, and gout—through mechanisms involving metabolic dysregula-
tion, inflammation, and hormonal imbalances. These findings further highlight the critical importance of early-life 
interventions to prevent the long-term metabolic consequences of obesity.
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Cancer
Since the first report in 2009 linking FTO gene variant (rs9939609) to lung cancer risk,68 the relationship between obesity 
and cancer has been progressively elucidated. Early studies focused on variants in FTO, MC4R, and GNPDA2, which 
were associated with elevated risks of lung cancer, esophageal adenocarcinoma, and colorectal cancer. Aaron et al 
demonstrated that obesity-related gene variants promote gastrointestinal cancers by influencing gastroesophageal reflux, 
inflammatory pathways, and gut microbiota, with a more pronounced effect of elevated BMI on colorectal cancer risk in 
women.69,70 Caroline et al further revealed sex-specific mechanisms underlying the association between obesity and 
colorectal cancer.71 Similarly, Suzanne et al reported that these variants also increase the risk of non-high-grade serous 
ovarian cancer (non-HGSC).72

Since 2021, research has expanded to both hormone-related and non-hormone-related cancers. Muktar’s team showed 
that obesity-associated variants promote risks of multiple myeloma and endometrial cancer through insulin resistance and 
inflammation pathways, whereas in certain contexts (eg, breast cancer), altered estrogen signaling may confer 
a protective effect.73 Mathew et al confirmed the involvement of these obesity-driven pathways in gastrointestinal 
cancers.74 In 2022, Wu et al identified associations of FTO (rs9941349), BDNF (rs571312), and GNPDA2 (rs6752378) 
variants with pancreatic cancer risk, potentially mediated by obesity-induced CRP-driven inflammatory pathways. 
Abao’s 2023 findings further highlighted that variants in AKT1 (rs2498804), IL-6 (rs1800795), and TNF (rs1800629) 
may regulate PI3K-AKT and JAK/STAT3 signaling in obesity-induced gastric cancer progression.75

Recent studies have also emphasized the differential impact of fat distribution on cancer risk. Bai et al reported that 
body fat percentage is a better predictor of non-small cell lung cancer than BMI,76 while Xu et al found that visceral and 
hepatic fat are stronger predictors of primary liver cancer than general obesity. Moreover, in certain cancers, obesity- 
related variants may exert protective effects. Wu et al demonstrated that HOXC4/5/6 (rs10876528), TBX15 (rs1106529), 
and GDF5 (rs224333)—which regulate fat metabolism and immune responses—may lower Hodgkin lymphoma risk.77 

Hasnat et al found that in premenopausal women, these variants may reduce breast cancer risk through hormone- 
regulation pathways;78 however, other studies reported that obesity significantly increases postmenopausal breast cancer 
risk,79 underscoring a menopausal status-dependent effect.

A large body of MR evidence now supports a causal relationship between obesity and multiple cancers. 
Mechanistically, this involves dysregulated lipid metabolism, inflammatory activation, hormonal axis alterations, and 
gut microbiota changes. The impact of obesity varies by cancer type, organ specificity, and individual characteristics, 
suggesting that cancer prevention strategies should account for sex, fat distribution, and physiological stage to enable 
more precise, subtype-specific interventions.

Psychiatric Disorders
Obesity is intricately linked to various psychiatric disorders through complex genetic and metabolic pathways. Early 
studies indicated that obesity-related genes may influence brain structure and function. Stéphanie et al reported that the 
VEGFA (rs6905288) variant may impair angiogenesis and cerebral blood flow, leading to reduced gray matter volume in 
individuals with abdominal obesity.80 Additionally, Maria et al found that variants in FTO (rs9939609), MC4R 
(rs17782313), BDNF (rs10767664), and GNPDA2 (rs10938397) may increase depression risk by altering fat metabolism 
and inflammatory pathways.81 Since 2021, research has expanded to include neurodegenerative diseases such as 
dementia and Alzheimer’s disease. Anwar et al reported that obesity may accelerate brain aging,82 while Zhuang et al 
identified that specific genes such as CARTPT promote the progression from obesity to Alzheimer’s disease.83

Emerging evidence also highlights the significant impact of obesity on child mental health. Ding et al revealed that 
several genes involved in neurodevelopment, metabolism, and synaptic plasticity—DCC (rs11663824), NEGR1 
(rs2815752), NCAM1 (rs7106434), INO80E (rs6556833)—may mediate the risk of attention-deficit/hyperactivity dis-
order (ADHD), depression, and autism spectrum disorders.84 Amanda and Thais et al further confirmed that these risks 
are more pronounced among children with higher BMI.85,86 More recently, in 2023, Chen et al demonstrated that obesity- 
related variants such as POMC (rs713586) may increase the risk of schizophrenia by modulating energy metabolism and 
neurotransmitter systems,87 providing deeper insights into the biological connections between obesity and severe 
psychiatric disorders.
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Overall, obesity increases the risk of various psychiatric disorders through mechanisms involving brain metabolism, 
inflammation, and neurodevelopmental pathways. The long-term negative impact of childhood obesity on future mental 
health underscores the importance of early intervention and personalized prevention strategies for psychiatric disorders.

Respiratory Diseases
Between 2019 and 2024, Mendelian randomization (MR) studies have progressively revealed strong causal links between 
obesity and a variety of respiratory diseases. In 2019, variants in FTO (rs9939609), MC4R (rs17782313), and BDNF 
(rs10767664) were found to increase asthma risk through pathways involving lipid metabolism and inflammation.88 

Subsequent studies further explored airway structure and immune regulation, identifying variants in ERBB3 (rs4759229), 
COL16A1 (rs6681149), UNC13D (rs111365807), SMAD3 (rs79071878), and FOXA3 (rs8103278) as contributors to 
airway remodeling processes, particularly in non-allergic adult asthma.89–91

Obesity has also been shown to adversely affect lung function. Nicole et al demonstrated that obesity-related genes 
impair lung function through inflammatory, metabolic, and neuroregulatory mechanisms, leading to airway obstruction 
(eg, reduced FEV₁/FVC ratio) and small airway damage (eg, reduced FEF25–75%).92 In children, obesity-related systemic 
inflammation—mediated by factors such as IL-6 and adiponectin—has also been linked to an increased risk of asthma.93

In recent years, research has expanded to other respiratory diseases. Feng et al reported that obesity-related variants 
(FTO, GCKR, GNPDA2) are associated with chronic obstructive pulmonary disease (COPD), pneumonia, pulmonary 
embolism, and idiopathic pulmonary fibrosis. Other groups have further shown that these variants, through their effects 
on BMI, influence the risk of obstructive sleep apnea and acute respiratory distress syndrome (ARDS).

Overall, obesity systematically increases the risk of respiratory diseases via mechanisms involving inflammation, 
energy metabolism imbalance, and airway remodeling. MR studies provide robust genetic evidence supporting these 
causal relationships, highlighting the importance of weight control—especially in childhood—for the prevention of 
chronic respiratory diseases.

Kidney Disease
Although research in this area has emerged more recently, Mendelian randomization (MR) studies have begun to clarify 
how obesity adversely affects renal health through mechanisms involving metabolic dysregulation, inflammation, and 
glomerular hyperfiltration. In 2021, Yuan et al reported that variants in FTO (rs9939609), MC4R (rs17782313), SH2B1 
(rs7498665), SLC2A9 (rs6449213), and IL-6 (rs1800795) increase the risk of nephrolithiasis via pathways related to 
energy and uric acid metabolism.94 Yang et al further demonstrated that these genes are also associated with an elevated 
risk of chronic kidney disease (CKD), with obesity-related renal damage being particularly pronounced during 
adulthood.95 However, Nguyen et al argued that after adjusting for blood pressure and glycemic control, obesity may 
not be a direct causal factor for CKD.96 In diabetic nephropathy, Lu et al found that variants in FTO (rs17817449), 
MC4R (rs6567160), BDNF (rs6265), SEC16B (rs574367), and PAX6 (rs652722) contribute to metabolic abnormalities 
and inflammatory responses that trigger glomerular hyperfiltration and structural kidney damage, with women showing 
greater susceptibility.97

Recent studies have also explored the link between obesity and immune-related kidney diseases. In 2024, Dong et al 
reported that obesity may increase the risk of IgA nephropathy through pathways involving sodium channel regulation. 
Similarly, Zhang et al identified that variants in SCNN1B and SCNN1G mediate the risk trajectory from childhood 
obesity to diabetic nephropathy in adulthood.98

In summary, obesity increases the risk of various renal diseases through pathways involving energy metabolism 
abnormalities, inflammation, and elevated glomerular pressure. The long-term impact of childhood obesity on renal 
health should not be underestimated, and effective weight management remains a key strategy for kidney disease 
prevention.

Reproductive Health
Mendelian randomization (MR) studies have clarified that multiple BMI-associated genetic variants influence reproduc-
tive health through mechanisms involving metabolic dysregulation, hormonal imbalance, and abnormal fat distribution. 
In 2019, Brower et al identified that variants in FTO (rs1421085), MC4R (rs6567160), SEC16B (rs543874), GNPDA2 
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(rs10938397), PCSK1 (rs261967), BDNF (rs7103411), and MAP2K5 (rs2241420) may increase the risk of polycystic 
ovary syndrome (PCOS) via insulin resistance and hormonal pathways.99 Subsequent studies revealed that central obesity 
has a stronger association with PCOS,100 maintaining a BMI between 20–25 kg/m² supports normal reproductive 
function,101 and variants such as GIPR (rs11672660) and PROX1 (rs3767846) may further mediate the adverse effects 
of childhood and adult obesity on PCOS risk.102 In 2022, Samvida et al reported that ZNF664 (rs11057429) is associated 
with other female reproductive abnormalities, including menorrhagia and preeclampsia.103 Pubertal development dis-
orders have also gained attention. In 2024, Fang et al found that variants in LIN28B (rs7759938), MKRN3 
(rs530324838), and DLK1 (rs1802710) may influence the timing of puberty onset in females by modulating the 
hypothalamic-pituitary-gonadal (HPG) axis. Zhou et al further demonstrated that INSR (rs1051690) increases endome-
trial cancer risk through enhanced estrogen exposure and insulin resistance.

In men, studies by Rao and Wan et al showed that variants in FTO (rs1421085), MC4R (rs6567160), SHBG (rs6258), 
LEPR (rs1137101), CYP19A1 (rs2470152), and IRS1 (rs2943650) affect energy metabolism, sex hormone conversion, 
and sperm quality, thereby increasing the risk of benign prostatic hyperplasia and infertility.104,105

Collectively, these findings suggest that obesity systematically disrupts both male and female reproductive health 
through multiple pathways, affecting processes from pubertal development and endocrine balance to reproductive system 
disorders and reproductive cancers. These insights underscore the critical role of obesity prevention and management in 
safeguarding reproductive health.

Bone and Joint Health
In recent years, researchers have increasingly applied Mendelian randomization (MR) to investigate the impact of obesity 
on bone and joint health. Early work by Kalliope et al demonstrated that variants in FTO (rs8044769), MC4R 
(rs6567160), LEPR (rs1137101), and INSR (rs1051690) significantly increase the risk of osteoarthritis through pathways 
involving BMI regulation and inflammation.106 Subsequent studies highlighted the role of visceral fat in contributing to 
cartilage wear and joint loading. In 2021, Zhou et al reported that related genetic variants also increase the risk of 
intervertebral disc degeneration and lumbar spondylosis, potentially via mechanisms involving cartilage metabolism 
disruption and chronic inflammation.107

The long-term impact of childhood obesity has also been explored. Cao et al found that early-life obesity increases the 
risk of adult knee and hip joint degeneration through fat accumulation pathways.108 Since 2023, research has expanded 
into bone density regulation. Victoria’s team identified that variants in SPO3 (rs13204965, rs13194508), IQCH 
(rs3743347), HOXC4 (rs894738), and HOXC5 (rs4759320) may reduce bone density through Wnt signaling and bone 
formation pathways.109

Recent studies further clarified the dualistic nature of obesity’s effects on bone density. He et al proposed that while 
increased BMI enhances bone loading and formation, fat-induced inflammation may stimulate osteoclast activity, thereby 
exacerbating osteoporosis. Ying et al confirmed that childhood obesity elevates long-term osteoporosis risk via metabolic 
alterations.110 Additionally, Chen et al observed that in individuals with low BMI, variants related to fat metabolism and 
cartilage formation increase the risk of temporomandibular joint disorders (TMJD).111

Collectively, MR studies reveal a bidirectional effect of obesity on bone and joint health: increased body weight may 
enhance bone density, but adipose tissue-driven chronic inflammation and metabolic dysfunction can promote osteo-
porosis and joint degeneration. These insights underscore the importance of optimizing body composition and fat 
distribution for maintaining bone health.

Skin Diseases
Obesity has been causally linked to a variety of skin diseases, with Mendelian randomization (MR) studies providing 
strong genetic support for these associations. In 2017, Milena et al identified that variants in FTO (rs1558902), KCNK3 
(rs11126666), POC5 (rs2112347), GRP (rs7243357), and ERBB4 (rs7599312) may elevate the risk of multiple sclerosis 
through neuroinflammatory and immune regulatory pathways.112 Notably, the long-term impact of childhood obesity on 
this disease is particularly pronounced and may involve disruptions in vitamin D metabolism.113
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Subsequent research has focused on more common skin conditions. Ashley et al reported that variants in MC4R 
(rs7138803), LEPR (rs1137101), and IL-6R (rs2228145) significantly increase the risk of psoriasis through activation of 
inflammatory signaling, with higher susceptibility observed in individuals with childhood obesity.114 In 2020, Yik et al 
further demonstrated that the TNF (rs1800629) variant promotes the development of atopic dermatitis.115 More recently, 
in 2024, Huang et al found that obesity may indirectly increase the risk of pressure ulcers by inducing type 2 diabetes, 
suggesting a potential link between obesity and impaired skin barrier function.116

Overall, obesity increases the risk of various skin diseases through mechanisms involving chronic inflammation, 
metabolic dysregulation, and immune system imbalance. MR studies have been instrumental in elucidating these causal 
pathways, underscoring the importance of weight management in the prevention of skin-related disorders.

Discussion
In recent years, Mendelian randomization (MR) studies have provided substantial causal evidence, further deepening our 
understanding of the mechanisms underlying obesity. Initially, MR studies focused on the effects of single genes; 
however, with the diversification of analytical strategies and expansion of data sources, MR has now widely integrated 
proteomic, metabolomic, behavioral, dietary, and gut microbiome data. This enables the development of multivariable 
models to assess the systemic impact of obesity. MR has been extensively applied to investigate causal relationships 
between obesity and various diseases, including cardiovascular disease, metabolic disorders, and cancer, with a marked 
increase in publications since 2021 (Figure 2). Findings indicate that the pathogenic effects of obesity vary by age, sex, 
and physiological status. These studies confirm that the development of obesity and its related diseases involves complex 
polygenic regulatory networks and multiple signaling pathways across physiological systems such as energy balance, 
neuroendocrine regulation, glucose metabolism, lipid metabolism, inflammatory response, and immune modulation.

Key polymorphisms and aberrant expression of certain genes serve as the molecular basis for imbalances in energy 
intake and expenditure, insulin signaling impairment, and abnormal lipid accumulation. Neuroendocrine pathways regulat-
ing appetite and energy balance play a central role in obesity susceptibility. MC4R, located in the hypothalamic 
paraventricular nucleus, suppresses appetite and promotes energy expenditure via α-MSH-mediated activation of the 
G_s protein and cAMP/PKA signaling pathway.117 LEPR mediates leptin signaling, activating the JAK2/STAT3 pathway, 
inhibiting orexigenic NPY/AgRP neurons, and activating anorexigenic POMC/α-MSH neurons, thereby enhancing MC4R- 
mediated anorexic effects.118 The BDNF/NTRK2 pathway, via PI3K/Akt and MAPK/ERK signaling, mediates satiety and 
modulates reward responses, linking obesity to emotional disorders.119

In terms of insulin and glucose metabolism, genes such as GIPR, FGF21, and PPARGC1A regulate insulin sensitivity 
and hepatic glucose-lipid homeostasis. GIPR activation enhances insulin responsiveness in adipose tissue and improves 
systemic insulin sensitivity.120 FGF21, through binding to FGFR1c/β-Klotho, activates ERK1/2 signaling to promote 
glucose uptake in adipose tissue and modulate gluconeogenesis and lipid metabolism in the liver.121 PPARGC1A 
regulates mitochondrial biogenesis and oxidative phosphorylation, enhancing metabolic efficiency in skeletal muscle 
and liver.122

Regarding lipid metabolism and adipogenesis, FTO regulates mRNA demethylation and influences preadipocyte 
differentiation, with high expression associated with adipose tissue expansion.123 Insulin-induced activation of 
SREBF1 promotes fatty acid and triglyceride synthesis, exacerbating fat accumulation.124 ACACB downregulation 
impairs β-oxidation of fatty acids, enhancing fat storage. The CREBRF variant is strongly linked to obesity in 
Polynesian populations, highlighting inter-population differences in energy storage regulation.125

Chronic low-grade inflammation is another critical mechanism in obesity-related metabolic dysregulation. TNF-α 
activates NF-κB and MAPK pathways, inducing expression of IL-6 and other cytokines, thereby inhibiting IRS1 activity 
and promoting insulin resistance.126 IL-6 also induces CRP expression in the liver via JAK/STAT3 signaling.127 

Additionally, TLR4 activation in obesity triggers macrophage infiltration in adipose tissue, amplifying local inflammation 
and exacerbating insulin resistance.128

Notably, genes such as TRAPPC9, BCL2A1, and TNNI3K, although not traditionally classified within metabolic 
pathways, indirectly influence obesity-related organ damage by modulating NF-κB activation, apoptosis inhibition, and 
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Figure 2 A summary chart of the relationship between obesity and various diseases through genetics. 
Notes: Created in BioRender. Shen, A. (2025) https://BioRender.com/gja148q. 
Abbreviations: IPF, Idiopathic pulmonary fibrosis; HTN, Hypertension; GH, Gestational Hypertension; LADA, Latent Autoimmune Diabetes in Adults; CKD, Chronic 
Kidney Disease; IgA, immunoglobulin A; TMD, Temporomandibular Disorder; AD, Alzheimer’s Disease; ADHD, Attention Deficit Hyperactivity Disorder; ASD, Autism 
Spectrum Disorder; SCZ, Schizophrenia; IHD, Ischemic Heart Disease; AF, Atrial Fibrillation; BC, Breast Cancer; PC, Prostate Cancer; PCOS, polycystic ovary syndrome; 
HMB, Heavy Menstrual Bleeding; EC, Endometrial Cancer; BPH, Benign Prostatic Hyperplasia.
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cardiac energy metabolism. TRAPPC9 in particular may bridge neurodevelopment and metabolic signaling, offering new 
avenues for exploring the “neuro-metabolic” axis.

Several obesity-related molecular targets have advanced into clinical application. MC4R agonists, GIPR/GLP-1R 
dual agonists, and FGF21 analogs represent cutting-edge therapeutic targets. Setmelanotide, an MC4R agonist, is the first 
approved treatment for congenital POMC or LEPR deficiency-related obesity, significantly reducing appetite and 
promoting weight loss.129 Dual GLP-1R/GIPR agonists, such as Tirzepatide, enhance insulin secretion and improve 
metabolic outcomes and weight management.130 FGF21 analogs (eg, Pegbelfermin, Efruxifermin) have shown promise 
in reducing hepatic steatosis and improving metabolic profiles in NAFLD/NASH patients with obesity.131 ACCβ 
(ACACB) inhibitors promote fatty acid β-oxidation and contribute to weight loss in NAFLD/NASH, though gastro-
intestinal side effects remain a concern.132

By contrast, targets such as FTO, SREBP-1c, ADCY3, and SH2B1 remain in early-stage development. While FTO 
inhibitors demonstrate anti-obesity effects in animal models, challenges related to central delivery and off-target toxicity 
must be addressed.133 SREBP-1c inhibitors, such as Fatostatin, suppress lipogenesis-related gene expression in vitro, but 
in vivo selectivity and toxicity require further optimization.134 Other promising targets, such as Leptin, BDNF, and 
CREBRF, present substantial drug development challenges. Leptin therapy is limited by central leptin resistance,135 and 
BDNF delivery is hindered by poor blood-brain barrier penetration.136 CREBRF, a transcription factor, lacks suitable 
binding pockets for small molecules, necessitating RNA-based or protein-protein interaction targeting approaches.137 

Anti-TNF-α and anti-IL-6R therapies improve insulin sensitivity in animal models but carry infection risks and poor 
long-term tolerability in humans. Despite these challenges, MR continues to provide valuable genetic insights that 
support target prioritization for obesity therapeutics.

It is important to note that even within the same gene, different genetic variants may affect disease development 
through distinct biological pathways. Future research should therefore further explore the potential associations between 
multiple variants within the same gene and various diseases, providing a stronger genetic basis for identifying novel 
therapeutic targets for obesity and its related comorbidities. Moreover, childhood obesity exerts long-term adverse effects 
on the risk of multiple adult diseases, emphasizing the need for early intervention during childhood and adolescence. 
Efforts from both societal and family levels are essential to prevent the long-term health consequences of obesity in 
adulthood. Additionally, future research should focus on the differential effects of fat distribution and composition on 
obesity-related outcomes, enabling a more refined understanding of obesity pathophysiology.

Despite the substantial progress made by MR in elucidating causal relationships between obesity and a wide range of 
diseases, several limitations remain when applying MR to explore the mechanisms of obesity. First, the validity of MR 
analysis depends critically on several core assumptions and the robustness of methodological design. The strength of 
instrumental variables (IVs) is a key determinant of the reliability of causal inference. Weak IVs can introduce substantial 
bias, resulting in estimates regressing toward the null or yielding misleading conclusions. To mitigate this issue, three- 
sample designs and partially Bayesian-weighted methods have been proposed to improve estimation efficiency and 
robustness.138

Even with sufficiently strong IVs, MR analyses remain susceptible to horizontal pleiotropy, where genetic variants 
affect the outcome through pathways unrelated to the exposure of interest. The recently developed MR-LDP model 
incorporates linkage disequilibrium (LD) structure information to better capture pleiotropic effects and enhance adapt-
ability to complex genetic backgrounds.139 Population stratification is another often underestimated but critical source of 
bias. In populations with systematic differences in allele frequencies, MR analyses may yield spurious associations even 
when no true causal relationship exists.140 To identify and control for this bias, methods such as the negative control 
outcome approach—introducing outcomes theoretically unaffected by the exposure—have been employed.141 Moreover, 
the MR-Twin approach, which compares siblings within the same family, can effectively account for population 
structure, environmental confounding, and generational effects without relying on external adjustments, offering clear 
advantages in controlling for population stratification.142

Limitations inherent to GWAS data—the foundational data for MR—also affect the generalizability and accuracy of 
MR inferences. Most GWAS studies are based on European populations, which limits the external validity of results and 
hampers their generalization to other ethnic groups. Additionally, some GWAS-identified SNPs lack clear biological 
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functional annotations. If such variants are used as IVs, they may introduce pleiotropic bias, undermining the credibility 
of causal inferences.143 Several strategies have been proposed to address these limitations: first, expanding GWAS 
sample diversity by including multi-ancestry data to enhance the external validity of MR results; second, prioritizing 
SNPs with known regulatory functions or expression quantitative trait loci (eQTL) evidence to reduce pleiotropy;143 and 
third, leveraging family-based data to improve causal inference accuracy and robustness by controlling for confounding 
factors.142

A second major limitation is that MR is inherently restricted to using genetic variants as IVs, making it difficult to 
directly assess non-genetic factors such as environmental exposures and lifestyle behaviors, thereby limiting its applica-
tion in fully elucidating the multifactorial etiology of obesity. Finally, obesity is a complex condition involving 
interactions across the genome, transcriptome, metabolome, and other biological layers. Its effective treatment typically 
requires multidisciplinary interventions and combined therapeutic strategies; MR alone cannot provide sufficient clinical 
guidance. Therefore, it is essential to rigorously assess the core assumptions of MR when constructing models and to 
complement MR analyses with thorough heterogeneity and sensitivity assessments, as well as other research approaches 
—such as randomized controlled trials and observational studies—to enhance the precision and reliability of causal 
inferences.

Conclusion
This review summarizes recent advances in the application of Mendelian randomization (MR) in obesity research, 
highlighting both methodological developments and its role in causal inference across multiple disease domains. By 
utilizing genetic variants as instrumental variables, MR effectively controls for confounding bias and has elucidated the 
causal relationships between obesity and various systemic diseases—including cardiovascular, metabolic, and cancer- 
related conditions. Additionally, MR studies emphasize the modulatory effects of childhood obesity, sex differences, and 
fat distribution on disease risk. Key biological pathways and genes, such as MC4R, LEPR, FTO, FGF21, and GCKR, 
have been identified, providing a genetic foundation and potential therapeutic targets for the treatment of obesity and its 
complications. Despite ongoing challenges such as instrument selection and pleiotropy, MR remains a vital tool for 
advancing precision medicine and informing public health interventions. Future integration with multi-omics and 
interdisciplinary approaches will further deepen our understanding of obesity mechanisms and support more effective 
intervention strategies.
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