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Purpose: This study constructs a predictive model for hepatocellular carcinoma (HCC) transarterial chemoembolization (TACE) 
refractoriness using a machine learning (ML) algorithm and verifies the predictive performance of different algorithms.
Patients and Methods: Clinical and magnetic resonance imaging (MRI) data of 131 patients (48 with TACE refractoriness) who 
underwent repeated TACE treatment for HCC were retrospectively collected. The training and validation cohorts comprised 104 and 
27 cases, respectively, following an 8:2 ratio. Clinical imaging characteristics related to TACE refractoriness were identified through 
logistic regression analysis. HCC lesions on arterial phase, portal phase, delayed phase, and T2-weighted fat suppression MRI images 
before the first TACE were manually delineated as regions of interest. Dimension reduction was conducted using variance threshold, 
univariate selection, and least absolute shrinkage and selection operator methods. Relevant indices of TACE refractoriness were 
selected. ML algorithms, including a support vector machine, random forest, logistic regression and adaptive boosting, were used to 
construct the radiomics, clinical prediction, and combined models. The predictive performance of these models was evaluated using 
receiver operating characteristic curves. The optimal model was presented as a nomogram and verified through calibration and 
decision curve analyses.
Results: In evaluating radiomics models for predicting TACE refractoriness in HCC, the LR-developed portal venous phase (VP) 
model achieved optimal single-sequence performance (training AUC: 0.896, 95% CI: 0.843–0.941; validation: 0.853, 0.727–0.965). 
Multisequence models significantly surpassed single-sequence counterparts, with the T2WI-FS+AP+VP+DP multisequence LR model 
demonstrating peak efficacy (training: 0.905, 0.853–0.949; validation: 0.876, 0.773–0.976). The integrated clinical-radiomics model 
demonstrated robust predictive performance, achieving a training cohort AUC of 0.955 (95% CI: 0.918–0.984) with 0.885 accuracy, 
0.921 sensitivity, and 0.864 specificity, and maintained strong validation performance (AUC=0.941, 95% CI: 0.880–0.991).
Conclusion: Multisequence clinical-radiomics model accurately predicts TACE refractoriness in hepatocellular carcinoma.
Keywords: hepatocellular carcinoma, machine learning, transarterial chemoembolization, radiomics

Introduction
Transarterial chemoembolization (TACE) is a common treatment for malignant hepatic tumors, particularly advanced 
liver cancer. It plays a role in down-staging, bridging, providing palliative care, and treating earlier stages of hepatocel-
lular carcinoma (HCC), Complete embolization with a single blood supply and super-selective intubation can potentially 
achieve radical treatment.1,2 However, due to the heterogeneity of HCC and the limitations of TACE, some patients do 
not benefit from TACE treatment, and repeated ineffective TACE treatment can lead to reduced efficacy, tumor 
progression, and liver function damage.2 In 2010, the Japan Society of Hepatology (JSH) first proposed the concept of 
“TACE refractoriness” to identify this condition early and adjust treatment strategies accordingly. This concept was 
further refined in 2014 and remains in use today.3 Various countries have also defined TACE refractoriness, such as the 
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Expert Panel Opinion on Interventions in Hepatocellular Carcinoma,4 the European Association for the Study of the 
Liver,5 and the Annual Meeting of Chinese College of Interventionalists.6 Previous studies on TACE refractoriness have 
struggled to form a unified and consistent evaluation,6 and the assessment of refractoriness was made only after two to 
three ineffective TACE treatments, inevitably delaying the transition to and optimization of effective therapies. Rigorous 
scientific research and demonstrations are needed to detect and predict TACE refractoriness promptly, ensuring the best 
possible treatment opportunities.

Currently, various expert consensus clinical judgments are evaluated based on imaging manifestations. With the rapid 
development of artificial intelligence in medical imaging, the evaluation of HCC TACE refractoriness has evolved from 
efficacy evaluations based on clinical data to radiomics studies incorporating extensive tumor information from imaging, 
significantly improving prediction efficiency. Radiomics provides quantitative analysis of tumor heterogeneity and early 
treatment response prediction, overcoming the subjective limitations of conventional imaging.7 This study aimed to 
construct a combined model using MRI radiomics to analyze MRI images of patients with HCC before their initial 
TACE, predict and identify patients with HCC showing TACE refractoriness, and guide timely adjustments to treatment 
plans.

Materials and Methods
Patients
Clinical and imaging data of patients with HCC treated with TACE were collected from the Interventional Department of 
the First Affiliated Hospital of Kunming Medical University from January 1, 2017, to December 31, 2019.

This retrospective study was approved by the Ethics Committee of the First Affiliated Hospital of Kunming Medical 
University (Approval No. 2024-L-105) and adhered to the ethical principles of the Declaration of Helsinki. Given the 
non-interventional retrospective design, the requirement for informed consent was formally waived. All patient data were 
anonymized prior to analysis through the removal of personal identifiers to ensure confidentiality. Inclusion criteria were 
as follows: patients who (1) met the Guidelines for Diagnosis and Treatment of Primary Liver Cancer (2022 Edition),1 

(2) were aged between 18 and 80 years at the first diagnosis, (3) underwent an MRI plain scan and enhancement 1 week 
before the first TACE, (4) received TACE twice consecutively or achieved complete response (CR) after TACE treatment 
despite receiving only one TACE treatment, and (5) received no treatment for HCC before TACE (ie, surgical resection, 
RFA, HAIC, and immuno-targeted therapy). Exclusion criteria were as follows: (1) an interval between the first 
and second TACE exceeding three months, (2) the presence of diffuse liver cancer or other cancers, (3) incomplete 
data (irregular follow-up/lack of clinical imaging data), and (4) unmeasurable lesions (Figure 1).

Follow-Up and Grouping
The assessment included tumor markers, liver function tests, abdominal computed tomography/magnetic resonance 
imaging (MRI) scans, and other necessary laboratory tests. The postoperative efficacy of TACE was evaluated using 
mRECIST criteria. mRECIST evaluates the effectiveness of the entire HCC disease rather than solely the target lesion, 
and in order to increase the imaging phenotype and sample variables in the radiomics evaluation studies. The target 
lesion comprised the middle segments I and IV of the liver as the center. This study adopted the JSH definition of TACE 
refractoriness,3 defined as follows: (1) Despite changing chemotherapy drugs or reevaluating tumor blood supply, MRI 
examination performed 1 to 3 months after two or more consecutive TACE treatments shows more than 50% of active 
lesions remaining in the liver or new lesions appearing; (2) extrahepatic metastasis or vascular invasion; (3) tumor 
markers continuing to rise after TACE. Patients with HCC who met the criteria or were followed up after CR for initial 
postoperative efficacy assessment were categorized into a TACE refractoriness group and a TACE effective group.

Treatment Methods
A 5F YASHIRO catheter (7750070148/5F, 70 cm, Hunan APT Medical Equipment Co., Ltd.) was inserted into the celiac 
artery through the femoral artery using the Seldinger technique to identify the blood supply. If necessary, angiography of 
the superior mesenteric or phrenic artery was conducted. Lipiodol emulsion and chemotherapeutic drugs (oxaliplatin, 
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Sanofi Co., Ltd.; epirubicin, Zhejiang Hisun Pharmaceutical Co., Ltd.) or 50 mg of epirubicin (Zhejiang Hisun 
Pharmaceutical Co., Ltd.) were loaded into 100–300 μm drug-eluting beads (CalliSpheres, Jiangsu Hengrui Medicine 
Co., Ltd.) to form a microsphere suspension. The microsphere suspension was injected into the feeding artery of the 
tumor using a 2.6 F microcatheter (MS-C26G21AS5 Jiangsu Hengrui Medicine Co., Ltd.) until the blood flow was 
significantly reduced. Finally, embolization was performed using polyvinyl alcohol microspheres and gelatin sponge 
particles as required. During this process, attention should be paid to the redistribution of microspheres. Angiography 
was repeated for at least 5 min after embolization to assess its effectiveness. Satisfactory embolization is indicated by the 
disappearance of tumor staining and cessation of blood. Given the varied disease stages in the study, treatment targets 
were determined according to specific conditions, avoiding unnecessary embolization of surrounding normal liver tissue, 
and treatment targets were achieved.8

Image Data Acquisition
All included patients underwent plain and enhanced MRI scans before the initial TACE (Table 1). The collection 
sequences included T2-weighted imaging fat suppression (T2WI-FS), arterial phase (AP), portal vein phase (VP), and 

Table 1 MRI Equipment Parameters

Equipment Imaging Sequence TR (ms) TE (ms) FOV (mm2) Matrix Size

1.5T GE (80 cases) T2WI-FS 6000 81 400 × 400 320 × 190

T1WI-DCE 3.5 1.7 400 × 400 320 × 224

3.0T GE (12 cases) T2WI-FS 8571 93 380 × 380 320 × 320
T1WI-DCE 4.3 1.7 380 × 380 288 × 208

1.5T SIEMENS (25 cases) T2WI-FS 5253 90 400 × 300 320 × 240

T1WI-DCE 4.21 1.9 400 × 300 352 × 190
3.0T Philips (14 cases) T2WI-FS 1250 70 380 × 400 320 × 224

T1WI-DCE 3 1.4 380 × 400 320 × 224

Figure 1 Flow chart of inclusion and exclusion criteria.

Cancer Management and Research 2025:17                                                                                     https://doi.org/10.2147/CMAR.S486561                                                                                                                                                                                                                                                                                                                                                                                                   1443

Dong et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



delayed phase (DP). Enhanced scanning involved injecting Gd-diethylenetriamine pentametric acid (Gd-DTPA) at 
0.2 mmol/kg with a flow rate of 2.0 mL/s into the anterior elbow vein. Imaging collected during the arterial phase 
(15–20 s), portal vein phase (50–60 s), and delayed phase (150–180 s).

Image Acquisition and Segmentation
Abdominal-enhanced MRI images of enrolled patients were exported in DICOM format and processed according to IBSI 
standards.9 Two interventional physicians with over 8 years of experience in liver cancer diagnosis and treatment used 
ITK-SNAP software (Version 4.0.2) to manually delineate the region of interest (ROl) (Figure 2). The segmented ROIs 
were then integrated into a three-dimensional volume of interest (VOl) using software processing. The accuracy of the 
segmentation results was verified by an associate chief physician specializing in abdominal imaging diagnosis. Intraclass 
correlation coefficients (ICC) were calculated based on measurements from 30 randomly selected patients to ensure the 
repeatability and reproducibility of the ICC > 0.8, indicating high consistency.

Feature Extraction and Selection
Before feature extraction, all image sequences were first resampled to a uniform physical spacing of 1 mm × 1 mm × 
1 mm. Subsequently, the images were normalized by subtracting the mean intensity value and dividing by the standard 
deviation. Pyradiomics software (https://pyradiomics.eadthedocs.io/en/latest/features) was used to outline the ROI of the 
MRI image sequence for feature extraction. Overall, 1688 image features were extracted from each ROI, categorized into 
(1) intensity statistical features (a universal measure to quantitatively describe voxel intensity distribution in MRI 
images), (2) shape and size characteristics (reflecting the shape and size of the ROI), (3) texture features (quantifying 
heterogeneity difference using Gray Level Run-Length Matrix and Gray Level Co-occurrence Matrix within the ROI), 
and (4) high-order statistical features (obtained by recalculating the intensity and texture after applying various filters 
such as exponent, logarithm, square, square root, and wavelet transformations).

The patients were randomly assigned in an 8:2 ratio to the training and validation sets. Three methods were employed 
to reduce the dimensionality of the radiomics features to prevent issues such as model overfitting and multicollinearity. 
First, the variance threshold method was used to eliminate features with thresholds < 0.8. Second, nonsignificant features 
(p > 0.05) were removed using univariate selection. Last, the least absolute shrinkage and selection operator (LASSO) 
was used to select the resistance to the most relevant conventional indicators and determine their index weights. 
Following these dimensionality reduction methods, the radiomics score for each patient (T2WI-FS_RadScore, 
AP_RadScore, VP_RadScore, and DP_RadScore) was computed using the radiomics scoring formula and integrated 
into the subsequent model construction.

Figure 2 (A–C) Manual segmentation was conducted to obtain the target tumor ROl: (A) delayed phase; (B) ROl delineation sample; (C) sample of a three-dimensional 
VOl through software processing. The red-shaded areas in the figures represent regions demarcated via manual segmentation on MRI scans.
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Model Construction and Evaluation
Radiomics models were constructed using combinations of multiple sequences and single sequences. This included four 
models of single sequence models (T2WI-FS, AP, VP, and DP) and three combined sequence models (AP + VP, AP + VP 
+ DP, and T2WI-FS + AP + VP + DP). The clinical features of the patients were collected, and significant features were 
selected through univariate and multifactorial analyses. Then based on these features, a clinical model (CLnc) and 
a clinical-radiomics combined model were constructed. Machine learning (ML) methods were used to distinguish HCC 
TACE refractoriness in model construction. Four ML algorithms, namely support vector machine (SVM), random forest 
(RF), logistic regression (LR), and adaptive boosting (AdaBoost), were used to construct the model in the training set. 
Receiver operating characteristic (ROC) curves of area under curve (AUC), accuracy, sensitivity, specificity, and were 
used to evaluate the classification result.

The nomogram intuitively and concisely reflects the influence of factors predicting TACE refractoriness in patients 
with HCC, confirming the pivotal role of radiomics characteristics. Calibration curves were used to evaluate the 
consistency between the model prediction of TACE refractoriness in patients with HCC and the actual TACE refractori-
ness to HCC.

Statistical Analysis
Statistical analysis was conducted using R software Version 4.3.2 to process clinical and imaging data. For categorical 
variables, Chi-square tests with continuous corrections were applied. For normally distributed continuous variables, 
univariate analysis of variance was used. Non-normally distributed continuous variables were analyzed using Kruskal– 
Wallis rank sum tests. Python software (Version 3.7.0) was used for radiomics feature extraction (Pyradiomics 3.0.1) and 
feature selection, while the open-source sklearn 1.0.2 library was used for model training and evaluation. ROC curves 
were generated to calculate the AUC of all models and the DeLong method was used for comparison. Model prediction 
efficiency was assessed based on accuracy, sensitivity, specificity and F1-score. A significance level of p < 0.05 was 
considered statistically significant.

Results
Patients’ Characteristics
Between January 1, 2017, and December 31, 2022, a total of 551 hepatocellular carcinoma (HCC) patients receiving 
transarterial chemoembolization (TACE) as initial therapy were screened. After applying inclusion and exclusion criteria 
(Figure 1), 131 eligible patients were enrolled, including 83 TACE-responsive patients and 48 TACE-refractoriness 
patients. These patients were randomly stratified into a training cohort (n=104) and a validation cohort (n=27) at an 8:2 
ratio to ensure balanced group allocation. Baseline characteristics of both cohorts are summarized in Table 2. 
Comparative analysis revealed no statistically significant differences in clinical-imaging parameters between the training 
and validation sets (P>0.05), confirming the homogeneity of the datasets.

Clinical Imaging Features and Construction of the CLnc Model
Univariate and multivariate analyses showed that tumor location (odds ratio [OR] = 2.76, p = 0.04) and initial TACE 
efficacy (OR = 6.73, p < 0.001) were independent risk factors for TACE refractoriness. Four ML algorithms (SVM, RF, 
LR, and AdaBoost) were used to construct and evaluate the CLnc model. The results demonstrated strong predictive 
performance for TACE refractoriness (training set AUC values = 0.876–0.888). The Adaboost algorithm also demon-
strated comparable performance, achieving an AUC of 0.888 (95% confidence interval [CI]: 0.842–0.940) in the training 
set and 0.868 (95% CI: 0.786–0.971) in the validation set. (Tables 3 and 4).

Construction of Radiomics Model
The radiomics model was constructed using four-phase MRI images, combining various sequences: four single-sequence 
models (T2WI-FS, AP, VP, and DP); three combined models of two sequences (AP + VP); three sequences (AP + VP + 
DP); and four sequences (T2WI-FS + AP + VP + DP). Dimensionality reduction methods identified 9, 7, 26, 9 and 13, 
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Table 2 Baseline Characteristics of Enrolled Patients

Clinical-Imaging Features Train (n=104) Validation (n=27) P-value

Gender (Male/female) 85 (81.7)/19 (18.3) 21 (77.8)/6 (22.2) 0.849

Age /(y) 56.44±9.12 55.07±7.63 0.475

Background liver disease (Others/Hepatitis B virus) 20 (19.2)/52 (50.0) 4 (14.8)/16 (59.3) 0.687

AFP/ (ng/mL) (<400/≥400) 65 (62.5)/39 (37.5) 15 (55.6)/12 (44.4) 0.661

AST/ (IU/L) 37.95 [27.98, 52.85] 45.00 [30.20, 54.10] 0.381

ALT/ (IU/L) 31.60 [20.95, 44.50] 34.00 [19.10, 42.90] 0.937

GGT/ (IU/L) 88.35 [49.00, 152.75] 89.00 [53.00, 145.50] 0.905

Albumin (g/dL) 37.04±5.02 37.07±6.18 0.977

Total bilirubin/ (umol/L) 15.15 [11.47, 22.22] 18.60 [14.95, 26.55] 0.064

Creatinine/ (μmol/L) 76.55 [65.53, 89.00] 68.10 [57.10, 85.70] 0.108

Prothrombin time/s 14.40 [13.78, 15.50] 14.60 [13.75, 15.15] 0.659

Platelet count/109/L 123.00 [74.75, 175.00] 100.00 [55.50, 128.50] 0.096

CNLC (Ia/Ib/IIa/IIb/IIIa) 37 (35.6)/17 (16.3)/10 (9.6)/11 (10.6)/29 (27.9) 9 (33.3)/7 (25.9)/3 (11.1)/1 (3.7)/7 (25.9) 0.683

BCLC (A/B/C) 53 (51.0)/22 (21.2)/29(27.8) 16 (59.3)/4 (14.8)/7 (25.9) 0.745

Child-Pugh Score (5/6/7/8/9) 60 (57.7)/25 (24.0)/10 (9.6)/3 (2.9)/6 (5.8) 15 (55.6)/6(22.2)/0 (0.0)/4 (14.8)/2 (7.4) 0.077

MELD Score 6.00 [4.00, 8.00] 6.00 [4.00, 8.50] 0.954

ALBI Grade (Level 1 / Level 2/Level 3) 36 (34.6)/64 (61.5)/4 (3.8) 8 (29.6)/18 (66.7)/1 (3.7) 0.883

EOCG Score (0/1) 53 (51.0)/51 (49.0) 18 (66.7)/9 (33.3) 0.214

Number (single / 2 ~ 3/≥ 4) 65 (62.5)/19 (18.3)/20 (19.2) 18 (66.7)/6 (22.2)/3 (11.1) 0.595

Size (maximum tumor diameter) 4.70 [2.80, 7.72] 5.20 [2.60, 8.10] 0.936

Location (peripheral/central/both) 64 (61.5)/22 (21.2)/18 (17.3) 22 (81.5)/2 (7.4)/3 (11.1) 0.134

Morphology (quasi-round/irregular/irregular multinodular fusion) 45 (43.3)/33 (31.7)/26 (25.0) 17 (63.0)/6 (22.2)/4 (14.8) 0.185

Vascular invasion1 (no or undetectable or simple vascular fistula/Cheng’sClassificationTypeI/Cheng’sClassification  
TypeII/Cheng’sClassification TypeIII/invasion of hepatic veins)

77 (74.0)/3 (2.9)/14 (13.5)/4 (3.8)/6 (5.8) 20 (74.1)/1 (3.7)/4 (14.8)/1 (3.7)/1 (3.7) 0.993

Enhancement patterns10 (type 1 or 2/type 3/type 4) 20 (19.2)/57 (54.8)/27 (26.0) 4 (14.8)/10 (37.0)/13 (48.1) 0.129

Intratumoral hemorrhage (no / yes) 69 (66.3)/35 (33.7) 17 (63.0)/10 (37.0) 0.918

Intratumoral lipid (no / yes) 76 (73.1)/28 (26.9) 21 (77.8)/6 (22.2) 0.803

Capsule intact (no / yes) 73 (70.2)/31 (29.8) 15 (55.6)/12 (44.4) 0.225

Intratumoral vascular penetration (no / yes) 76 (73.1)/28 (26.9) 20 (74.1)/7 (25.9) 1

Obvious extratumoral blood supply (no/ yes) 56 (53.8)/48 (46.2) 17 (63.0)/10 (37.0) 0.527

Peritumoral enhancement (no / yes) 72 (69.2)/32 (30.8) 22 (81.5)/5 (18.5) 0.308

Number of intrahepatic metastases (no / yes) 82(78.8)/22(21.2) 22(81.5)/5(18.5) 0.504

Six-and-twelve (<6/6-12/≥12) 47 (45.2)/32 (30.8)/25(22.8) 13 (48.1)/8 (29.6)/6(22.3) 0.504

First TACE effect (CR/PR/SD/PD) 22 (21.2)/54 (51.9)/12 (11.5)/16 (15.4) 6 (22.2)/16 (59.3)/1 (3.7)/4 (14.8) 0.669

Two TACE methods (all c-TACE or CR at the first time/all DEB-TACE or CR at the first time/c-TACE  
and DEB-TACE respectively)

44 (42.3)/42 (40.4)/18 (17.3) 12 (44.4)/10 (37.0)/5 (18.5) 0.951
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Table 3 Univariate and Multivariate Analysis of TACE Refractoriness Clinical-Imaging

Clinical-Imaging Features Univariate Analysis Multivariate Analysis

OR 95% CI P-value OR 95% CI P-value

Gender (Male/female) 0.97 0.93–1.01 0.12

Age /(y) 0.37 0.12–0.99 0.06

Background liver disease (Others/Hepatitis B virus 1.38 0.82–2.36 0.23

AFP/ (ng/mL) (<400/≥400) 2.74 1.32–5.79 0.01 1.79 0.56–5.72 0.33

AST/ (IU/L) 1.01 1.00–1.02 0.08

ALT/ (IU/L) 1.01 1.00–1.02 0.11

GGT/ (IU/L) 1.00 1.00–1.01 0.12

Albumin (g/dL) 1.02 0.95–1.09 0.66

Total bilirubin/ (umol/L) 0.99 0.96–1.02 0.59

Creatinine/ (μmol/L) 1.01 0.99–1.03 0.37

Prothrombin time/s 0.85 0.68–1.04 0.14

Platelet count/109/L 1.01 1.00–1.02 0.01 1.00 0.99–1.01 0.96

CNLC (Ia/Ib/IIa/IIb/IIIa) 1.61 1.28–2.05 <0.001 0.88 0.30–2.59 0.82

BCLC (A/B/C) 2.06 1.38–3.15 <0.001 1.01 0.22–4.58 0.98

Child-Pugh Score (5/6/7/8/9) 0.70 0.47–0.98 0.04 1.08 0.30–2.59 0.82

MELD Score 0.99 0.91–1.09 0.86

ALBI Grade (Level 1 / Level 2/Level 3) 0.92 0.47–1.80 0.81

EOCG Score (0/1) 1.14 0.56–2.34 0.71

Number (single / 2 ~ 3/≥ 4) 2.27 1.42–3.70 0.01 3.84 0.67–21.88 0.13

Size (maximum tumor diameter) 1.20 1.08–1.34 0.01 1.03 0.72–1.47 0.88

Location (peripheral/central/both) 2.86 1.48–5.90 0.01 2.76 1.02–7.46 0.04

Morphology(quasi-round/irregular/irregular multinodular fusion) 2.72 1.70–4.49 <0.001 0.94 0.37–2.37 0.90

Vascular invasion[1] (no or undetectable or simple vascular 1.63 1.20–2.28 0.01 1.31 0.58–2.98 0.52

Fistula/Cheng’sClassificationTypeI/Cheng’sClassification TypeII/Cheng’sClassification TypeIII/ 
invasion of hepatic veins)

Enhancement patterns[10] (type 1or 2/type 3/type 4) 1.58 0.95–2.71 0.08

Intratumoral hemorrhage (no / yes) 1.24 0.59–2.61 0.56

Intratumoral lipid(no / yes) 1.81 0.81–4.02 0.15

Capsule intact(no / yes) 0.07 0.02–0.22 <0.001 0.36 0.06–2.12 0.26

Intratumoral vascular penetration(no / yes) 2.33 1.06–5.18 0.04 1.84 0.43–7.85 0.41

Obvious extratumoral blood supply(no/ yes) 3.78 1.81–8.14 <0.001 2.46 0.56–10.76 0.23

Peritumoral enhancement(no / yes) 4.53 2.05–10.38 <0.001 2.87 0.76–10.76 0.12

Number of intrahepatic metastases(no / yes) 2.56 1.52–4.60 0.01 0.57 0.11–2.91 0.50

Six-and-twelve (<6/6-12/≥12) 2.70 1.69–4.45 <0.001 0.49 0.10–2.35 0.37

First TACE effect (CR/PR/SD/PD) 6.35 3.45–13.82 <0.001 6.73 2.72–16.65 <0.001

Two TACE methods (all c-TACE or CR at the first time/all DEB-TACE or CR at the first 
time/c-TACE and DEB-TACE respectively)

1.54 0.95–2.53 0.08

Table 4 Prediction Performance of Each Model in Training Set and Validation Set

Model Type Train Validation

Accuracy Sensitivity Specificity AUC(95% CI) F1-score Accuracy Sensitivity Specificity AUC(95% CI) F1-score

Adaboost T2WI-FS 0.731 0.789 0.697 0.807(0.738–0.864) 0.682 0.704 0.700 0.706 0.738(0.602–0.861) 0.636

AP 0.731 0.684 0.758 0.772(0.699–0.835) 0.650 0.741 0.600 0.824 0.715(0.693–0.827) 0.632

VP 0.788 0.658 0.864 0.861(0.804–0.914) 0.694 0.815 0.800 0.824 0.797(0.664–0.929) 0.762

DP 0.702 0.789 0.652 0.750(0.682–0.819) 0.659 0.593 0.600 0.588 0.603(0.489–0.720) 0.522

AP+VP 0.760 0.579 0.864 0.837(0.769–0.895) 0.638 0.741 0.800 0.706 0.809(0.671–0.938) 0.696

AP+VP+DP 0.788 0.763 0.803 0.856(0.791–0.914) 0.725 0.778 0.600 0.882 0.803(0.702–0.908) 0.667

AP+VP+DP+T2WI-FS 0.808 0.895 0.758 0.890(0.843–0.936) 0.773 0.778 0.900 0.706 0.835(0.733–0.934) 0.750

CLnc model 0.837 0.789 0.864 0.888(0.842–0.940) 0.779 0.815 0.600 0.941 0.868(0.786–0.971) 0.706

Combined model 0.875 0.763 0.939 0.939(0.908–0.974) 0.817 0.815 0.800 0.824 0.891(0.821–0.952) 0.762

(Continued)
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17, and 20 characteristics associated with TACE refractoriness, respectively. Four ML algorithms were used to construct 
four prediction models, resulting in a total of 28 radiomics models. The Logistic Regression (LR) algorithm demon-
strated the best performance in constructing the T2WI-FS + AP + VP + DP combined model, achieving AUC values of 
0.905 (95% confidence interval [CI]: 0.853–0.949) in the training set and 0.876 (95% CI: 0.773–0.976) in the validation 
set. It also showed optimal performance in the single-sequence VP model, with AUC values reaching 0.896 (95% CI: 
0.843–0.941) in the training set and 0.853 (95% CI: 0.727–0.965) in the validation set (Table 4 and Figure 3).

Construction of the Combined Model
The combined model was constructed by integrating four algorithms using the optimal radiomics label and clinical image 
features. The results demonstrated superior prediction performance compared to other models (training set AUC range = 
0.939–0.955). The LR algorithm demonstrated superior performance, achieving AUC values of 0.955 (95% CI: 
0.918–0.984) in the training set and 0.941 (95% CI: 0.880–0.991) in the validation set, both fully meeting the criteria 
for robust predictive capability (Table 4 and Figure 4). Comparative analysis of classifier algorithms based on the 
combined model revealed no statistically significant differences between classifiers (P>0.05). Furthermore, longitudinal 
comparison between the LR combined model (demonstrating superior validation set performance) and other LR models 
showed statistically significant differences in outcomes (P<0.05)(Table 5).

Establishment and Verification of the Nomogram Model
The nomogram model was established by integrating the above-determined radiomics labels and clinical image features 
(Figure 5). The results indicated strong associations between radscores, initial TACE efficacy, and tumor location with 
TACE refractoriness in patients with HCC. Calibration curves demonstrated high consistency between model prediction 

Table 4 (Continued). 

Model Type Train Validation

Accuracy Sensitivity Specificity AUC(95% CI) F1-score Accuracy Sensitivity Specificity AUC(95% CI) F1-score

RF T2WI-FS 0.779 0.684 0.833 0.838(0.771–0.893) 0.693 0.778 0.600 0.882 0.744(0.611–0.871) 0.667

AP 0.712 0.553 0.803 0.785(0.703–0.851) 0.583 0.667 0.600 0.706 0.715(0.696–0.821) 0.571

VP 0.779 0.500 0.939 0.855(0.782–0.914) 0.623 0.778 0.500 0.941 0.812(0.679–0.949) 0.625

DP 0.750 0.632 0.818 0.801(0.727–0.870) 0.649 0.741 0.400 0.941 0.712(0.581–0.839) 0.533

AP+VP 0.817 0.684 0.894 0.863(0.797–0.920) 0.732 0.667 0.600 0.706 0.829(0.721–0.929) 0.571

AP+VP+DP 0.740 0.553 0.848 0.825(0.752–0.882) 0.609 0.667 0.600 0.706 0.788(0.684–0.881) 0.571

AP+VP+DP+T2WI-FS 0.817 0.895 0.773 0.889(0.842–0.932) 0.782 0.741 0.700 0.765 0.835(0.727–0.938) 0.667

CLnc model 0.808 0.605 0.924 0.876(0.828–0.931) 0.697 0.815 0.500 1.000 0.856(0.774–0.966) 0.667

Combined model 0.865 0.684 0.970 0.951(0.915–0.977) 0.788 0.778 0.400 1.000 0.871(0.810–0.933) 0.667

LR T2WI-FS 0.702 0.763 0.667 0.808(0.736–0.873) 0.652 0.778 0.700 0.824 0.794(0.662–0.929) 0.700

AP 0.644 0.711 0.606 0.761(0.687–0.838) 0.593 0.630 0.800 0.529 0.724(0.705–0.829) 0.615

VP 0.779 0.921 0.697 0.896(0.843–0.941) 0.753 0.741 0.800 0.706 0.853(0.727–0.965) 0.696

DP 0.692 0.737 0.667 0.765(0.689–0.845) 0.636 0.778 0.800 0.765 0.735(0.617–0.850) 0.727

AP+VP 0.750 0.842 0.697 0.823(0.764–0.881) 0.711 0.741 0.900 0.647 0.847(0.737–0.953) 0.720

AP+VP+DP 0.760 0.763 0.758 0.850(0.791–0.905) 0.699 0.704 0.700 0.706 0.847(0.737–0.954) 0.636

AP+VP+DP+T2WI-FS 0.817 0.895 0.773 0.905(0.853–0.949) 0.782 0.778 0.700 0.824 0.876(0.773–0.976) 0.700

CLnc model 0.837 0.789 0.864 0.885(0.835–0.940) 0.779 0.815 0.600 0.941 0.868(0.786–0.971) 0.706

Combined model 0.885 0.921 0.864 0.955(0.918–0.984) 0.854 0.852 0.900 0.824 0.941(0.880–0.991) 0.818

SVM T2WI-FS 0.788 0.526 0.939 0.871(0.806–0.921) 0.645 0.704 0.500 0.824 0.812(0.691–0.938) 0.556

AP 0.788 0.632 0.879 0.858(0.792–0.918) 0.686 0.630 0.900 0.471 0.735(0.623–0.846) 0.643

VP 0.740 0.421 0.924 0.863(0.802–0.919) 0.542 0.852 0.800 0.882 0.859(0.734–0.979) 0.800

DP 0.721 0.500 0.848 0.820(0.758–0.884) 0.567 0.593 0.500 0.647 0.759(0.625–0.889) 0.476

AP+VP 0.788 0.658 0.864 0.894(0.839–0.942) 0.694 0.704 0.900 0.588 0.859(0.743–0.968) 0.692

AP+VP+DP 0.779 0.500 0.939 0.853(0.798–0.914) 0.623 0.667 0.700 0.647 0.841(0.733–0.955) 0.609

AP+VP+DP+T2WI-FS 0.769 0.526 0.909 0.892(0.837–0.938) 0.625 0.741 0.700 0.765 0.865(0.762–0.960) 0.667

CLnc model 0.837 0.789 0.864 0.877(0.826–0.932) 0.779 0.815 0.600 0.941 0.868(0.786–0.971) 0.706

Combined model 0.856 0.816 0.879 0.939(0.901–0.973) 0.805 0.815 0.800 0.824 0.891(0.879–0.917) 0.778
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and actual outcomes in both the training and validation sets, indicating their clinical reliability (Figure 6). Decision 
curves showed that the integrated model was superior to the radiomics and CLnc models (Figure 7).

Comparative Performance of Machine Learning Models for Treatment Response 
Prediction
Table 4 presents the results from the four algorithms. Among which the AUC is better: the SVM algorithm constructed 
four models (T2WI-FS, AP, DP, and AP + VP) with AUC ranges of 0.820–0.939 for the training set and 0.759–0.891 for 

Figure 3 (A–C) The LASSO algorithm was used to select characteristic process maps from the MRI-AP + VP + DP + T2WI-FS four-sequence images. (A) In the LASSO 
regression model, 10-fold cross-validation was used to choose the best tuning parameter, −log(α) = 1.45; (B) λ yielded 20 non-zero coefficient radiomics features; (C) The 
characteristic coefficient diagram shows 20 radiologic features and their corresponding LASSO coefficients.
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the validation set, Two models (CLnc and AP + VP + DP) were constructed using the AdaBoost algorithm, with AUC 
ranges of 0.750–0.939 for the training set and 0.603–0.891 for the validation set, The LR algorithm produced three 
models (VP, AP + VP + DP + T2WI-FS, combined) with AUC ranges of 0.761–0.955 for the training set and 
0.724–0.941 for the validation set. The combined sequence outperformed the CLnc model in predictive performance. 
The AP + VP + DP + T2WI-FS model had the best performance in the radiomics model, with the radscore violin plot 
depicted in Figure 8. The combined model had the highest diagnostic efficiency, with the LR algorithm achieving the best 
performance, boasting AUC values of 0.955 for the training set and 0.941 for the validation set.

Discussion
The definition of TACE refractoriness varies across countries. The latest expert consensus in China suggests focusing 
only on the TACE target lesion rather than considering the entire disease comprehensively. This approach aims to 
enhance the understanding of the efficacy of local TACE target lesions and mitigate subjective factors that could diminish 
the therapeutic effects. However, HCC is increasingly recognized as a systemic disease, underscoring the importance of 
a comprehensive evaluation for prognosis. Therefore, despite these considerations, the traditional concept of TACE 
refractoriness3 remains the prevailing research standard in this field.

In this study, we collected and extracted radiomics and clinical imaging features from four MRI scan sequences. Nine 
sets of radiomics features were formed separately and combined. After dimensionality reduction, we constructed 36 
radiomics models by integrating four ML algorithms and compared their predictive efficacy for TACE refractoriness by 
calculating the AUC from ROC curves. The best-performing model selected for the final screening combined clinical 

Figure 4 Construction of the ROC curve of the combined model using the LR algorithm.

Table 5 Contrasted Results of Combined Models

Model Comparison P-value

Train Validation

Combined_LR model vs Combined_RF model 0.928 0.843

Combined_LR model vs Combined_SVM model 0.273 0.623

Combined_LR model vs Combined _ADA model 0.520 0.363
Combined _LR model vs AP+VP+DP+T2WI-FS_LR model 0.013 0.043

Combined_LR model vs AP+VP+DP_LR model 0.001 0.027

Combined_LR model vs AP+VP_LR model <0.001 0.048
Combined_LR model vs VP_LR model 0.021 0.041

Combined_LR model vs Clnc_LR model 0.005 0.047
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imaging and radiomics features. The AUC values of the training and validation sets were 0.955 and 0.941, respectively, 
indicating strong predictive efficiency. This model demonstrates superior efficacy compared to previous studies on TACE 
refractoriness prediction models.11–13 It provides crucial support for precision medicine in the early identification of 
TACE refractoriness, suggesting timely treatment optimization to prevent poor prognosis and liver function damage due 
to repeated TACE treatment. The calibration curve was used to verify the prediction consistency of the model prediction 
results with the actual outcomes, indicating that the prediction performance of the combined model was reliable. 
Conversely, the decision curves demonstrated superiority over the radiomics and CLnc models.

Figure 5 Nomogram model for predicting HCC TACE refractoriness.

Figure 6 (A and B) Calibration curve of the prediction model. (A) Training; (B) Validation.
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TACE treatment is widely used in patients with HCC across different stages, but tumor heterogeneity results in 
significant variations in prognosis after TACE treatment. Radiomics extracts texture parameters from the entire target 
tumor image, providing a quantitative evaluation of tumor growth, metastasis, efficacy, and potential heterogeneity. This 
method is superior to traditional invasive and limited biopsy techniques.14 The VP model developed using LR demon-
strated robust predictive performance for HCC TACE refractoriness, with AUCs of 0.896 (training cohort) and 0.853 
(validation cohort). This may be attributed to the clearer internal structure caused by contrast agent clearance in portal 
vein-stage tumors. Relevant studies have confirmed that an earlier clearance time yields a worse degree of tumor 
differentiation and that TACE often yields suboptimal results for poorly differentiated liver cancer.15 Currently, there is 
no correlation between TACE refractoriness and portal vein clearance. Several studies have shown that the portal vein- 

Figure 7 (A and B) Decision curves of each model for the training and validation sets. (A) Training; (B) Validation.

Figure 8 Radscore distribution.
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stage prediction model is highly effective in predicting outcomes in patients with HCC following ablation, surgery, and 
TACE.7,16,17 However, the LR algorithm or Cox proportional hazards were used only in all cases, and the study results 
may be biased. Furthermore, a combined analysis of single sequences indicated that the T2WI-FS + AP + VP + DP four- 
sequence model provided the most accurate prediction performance. Constructing multisequence combinatorial radio-
mics models is commonly used to enhance the efficiency of current radiomics research. Recent studies have proven that 
the construction of the CT + MRI + CLnc model outperforms the single clinical model, the single CT model, the single 
MRI model, or the combined CT + MRI model and can effectively predict PFS (progression-free survival) and OS 
(overall survival) after HCC surgery.18 This suggests that combining multiple sequences can offer more abundant tumor 
information for predicting treatment outcomes.

In this study, clinical imaging features, including the efficacy of the initial TACE and tumor location, were integrated 
into the CLnc prediction model. The performance of the TACE refractoriness prediction model was not inferior to that of 
the existing domestic TACE refractoriness prediction model. Based on the training set of the four ML algorithms, the 
AUC exceeded 0.8. Considering the clinical imaging features, more emphasis was placed on the imaging features rich in 
tumor information than on previous prediction models. Precision TACE19 has been widely adopted in clinical practice, 
effectively reducing false TACE refractoriness caused by technical issues. Therefore, TACE remains the primary 
treatment choice for unresectable HCC. mRECIST is a standard method for postoperative imaging evaluation of 
TACE efficacy.20 Additionally, it was found that tumors located in the central location were more resistant to TACE 
than peripheral locations. Previous studies have shown that lesion location impacts TACE efficacy, with liver segments 
I and IV (central locations) demonstrating poorer outcomes, likely due to the difficulty of TACE superselection resulting 
from the abundant and slender anastomosis branches and vascular variation between the left and right lobes of the 
liver.21,22 Other studies have suggested that the distance between the tumor and portal vein bifurcation partially affects 
TACE efficacy.23

This study also found that single-sequence and multisequence optimal models were constructed using the LR 
algorithm. Previous studies have established LR as the most widely used ML algorithm in HCC radiomics, capable of 
predicting postoperative efficacy and survival7 and HCC TACE refractoriness. In conclusion, LR was used to construct 
a combined radiomics prediction model of tumor location combined with initial treatment and the therapeutic effect of 
the first TACE treatment, which can effectively identify patients with HCC TACE refractoriness early and 
noninvasively.

Four different MRI scanners were used in this study, and the MRI radiomics model studied will have extensive 
applicability and more accurately reflect the real clinical world. Images were standardized before feature extraction to 
reduce bias in the experimental results. This study not only increased the proportion of image features that better reflect 
tumor information in preoperative observation indicators but also expanded upon previous studies by comparing multiple 
ML algorithms and sequence models. In other words, multiple ML algorithms across MRI multisequences were used to 
construct radiomics models of multiple single sequences and multiple combinations of multiple sequences. This study 
achieved the best results in predicting HCC TACE refractoriness, with the combined model demonstrating broader 
applicability (AUC > 0.9). Calibration and decision curve analyses showed that the model predicted TACE refractoriness 
with high relevance to the actual outcomes. The combined radiomics model had the best predictive efficiency, which was 
significant for the radiomics biological phenotype. This finding has practical clinical implications for the early identifica-
tion of TACE refractoriness in patients with HCC, facilitating the optimization of treatment plans in advance and the 
prevention of disease progression and liver function damage due to ineffective therapy. Identifying patients with a good 
therapeutic response to TACE can enhance its therapeutic effects and benefits.

Several limitations were observed in our study. First, this single-center retrospective study lacked external validation 
and prospective studies. We plan to address these limitations in future studies by conducting multicenter external 
validation experiments to further evaluate the generalibility and robustness of our radiomics model. Second, the 
standardization of the radiomics features could not mitigate bias from various scanning devices and manual segmentation 
of the target tumor regions. Finally, interpreting the complex relationship between imaging features and tumor hetero-
geneity based on big data extraction presents a significant challenge. Further research addressing HCC TACE refractori-
ness should focus on exploring the biological mechanisms of target tumors using radiomics features.
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Conclusion
In this study, the prediction performance of multiple radiomics models for HCC TACE refractoriness was as follows: 
the VP of single sequence model was better than that of single sequence model, and the combination of T2WI-FS + AP 
+ VP + DP was the best. The joint radiomics model constructed based on the best multisequence combination of 
radiomics features and clinical imaging features achieved optimal performance among the four algorithms, among 
which the LR algorithm performed best and is expected to be an effective tool for predicting HCC TACE 
refractoriness.
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