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Abstract: Previously described methods for the combined analysis of common and rare  variants 

have disadvantages such as requiring an arbitrary classification of variants or permutation 

testing to assess statistical significance. Here we propose a novel method which implements a 

weighting scheme based on allele frequencies observed in both cases and controls. Because the 

test is unbiased, scores can be analyzed with a standard t-test. To test its validity we applied it 

to data for common, rare, and very rare variants simulated under the null hypothesis. To test its 

power we applied it to simulated data in which association was present, including data using 

the observed allele frequencies of common and rare variants in NOD2 previously reported in 

cases of Crohn’s disease and controls. The method produced results that conformed well to 

those expected under the null hypothesis. It demonstrated more power to detect association 

when rare and common variants were analyzed jointly, the power further increasing when rare 

variants were assigned higher weights. 20,000 analyses of a gene containing 62 variants could 

be performed in 80 minutes on a laptop. This approach shows promise for the analysis of data 

currently emerging from genome wide sequencing studies.
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Introduction
As has previously been pointed out, there are obvious merits for combining informa-

tion from different variants within a gene when considering whether there is in gen-

eral, evidence that the gene influences a particular phenotype. Considering variants 

jointly models the biological reality that a number of different variants may separately 

impact the functioning of a gene. In addition, in the context of whole genome analy-

ses, consideration of variation at the level of a gene reduces the problem of multiple 

testing, from having to deal with hundreds of thousands of variants, to having to deal 

with twenty thousand genes. However, a gene may contain common and rare variants 

that both affect phenotype but need to be dealt with in different ways. The combined 

affects of common variants can be dealt with by approaches that incorporate informa-

tion obtained by analyzing individual variants, for example by utilizing the associated 

P-values.1,2 However, such methods are not applicable to very rare variants or those 

only observed once or twice in a sample. Methods to deal with such rare variants have 

previously been discussed,3,4 and may consist simply of a comparison between the 

combined counts of all rare variants observed in cases and controls.5 This approach 

however, is limited in that difficulty may lie in the classification of a variant as “rare”, 

as common variants cannot be utilized, their much larger allele counts tending to 

swamp the signal from rare variants.
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A more attractive approach is to utilize information 

jointly from both common and rare variants. One method of 

doing this, termed the combined multivariate and collapsing 

method, uses both the above approaches simultaneously to 

provide an overall test for association at the level of a gene.2 

A possible criticism of this approach is that variants with dif-

ferent allele frequencies need to be differentially classified so 

they can be subjected to different methods of analysis. Once 

again, it is not clear what criteria should be used to define a 

variant as “rare.” A previously described method that avoids 

having to treat common and rare variants as qualitatively dif-

ferent involves introducing a weighting scheme that accords 

more weight to rare variants, but which nevertheless incorpo-

rates information from all variants in a unified analysis. One 

can assign a weight to each variant, and for each subject one 

can then produce an overall score consisting of the sum of 

the allele counts for each variant multiplied by its weight.6,9 

Thus, for each variant i the weight, w
i
, is given by:

w n q qi i i i= −( )1 , where q m ni i
U

i
U= + +1 2 2/ .

Here, mi
U  is the number of mutant alleles observed for 

variant i in unaffected subjects, ni
U  is the number of unaffected 

subjects genotyped for variant I, and n
i
 is the total number of 

affected and unaffected subjects genotyped for variant i. We 

define an indicator variable I
ij
 which takes values of zero, one 

or two according to the number of mutant alleles of variant i 

in subject j. The genetic score for subject j is then given by:

 g I wj ij ii

L
=

=∑ /
1

. 

These genetic scores can be compared between cases and 

controls in order to test the hypothesis that the gene is associ-

ated with the disease. As the distribution of these scores under 

the null hypothesis is unknown, the authors recommended 

a permutation test based on the ranks of these scores, and 

have stated that this could be completed for 20,000 genes, 

each with 50 polymorphic loci, in a sample of 1000 cases 

and 1000 controls in 600 hours.

It can be argued, however, that, although attractive in prin-

ciple, the approach as described has a number of drawbacks. 

One problem is that the weight accorded to each variant differs 

markedly with different sample sizes. In order to better under-

stand this effect and how it occurs, we can define a measure 

r
q
 as the ratio of the weight, w, accorded to a variant with 

equal allele frequencies (minor allele frequency [MAF] = 0.5) 

relative to the weight for a variant with MAF, q. As the 

analysis will depend on the relative rather than the absolute 

values of weights, r is a useful measure to better understand 

the performance of the method. It also defines the relative 

contribution to the genetic score of each allele observed, with 

the contribution of an allele with MAF = 0.5 being taken to 

be one. If all variants are genotyped in the same number of 

subjects (so that n
i
 is constant), then r is given by:

 r q q= −1 1 2/ ( )/ .

If we define a “very rare” variant as one that is not 

observed at all in controls, then the method as described will 

estimate q as 1/(2nU + 2). For samples with equal numbers of 

cases and controls (so that n
i
 = 2ni

U), then for such very rare 

variants r will equal 7.1 for a sample size of 100 controls, 

22.4 for a sample size of 1000, and 70.7 for a sample size of 

10,000. The fact that the weights assigned are dependent on 

sample sizes would mean that studies of the same gene would 

not be directly comparable across different datasets.

A more critical problem is that there is an intrinsic bias in 

this approach as the estimated frequency of the variant is only 

based on observations in control subjects. The rationale for 

doing this is that one seeks to estimate the frequency of the 

variant in the general population, without artificially inflat-

ing the frequency by taking information from cases in which 

the frequency of a disease causing variant may be higher. In 

practice this inevitably introduces a bias into the procedure. 

This phenomenon has been discussed elsewhere in more 

general terms.7 In the present context, it means that variants 

which occur in cases but not controls will be weighted more 

highly than variants which occur only in controls.  Specifically, 

a variant observed once in cases but not in controls will make 

a contribution to the score that is 2  = 1.41 greater than a 

variant observed once in controls but not in cases. As the 

value for r falls as q increases, and, because q is calculated 

from the number of alleles observed in controls, a variant 

observed twice in cases but not in controls makes a contribu-

tion which is 3  = 1.73 greater than that of a variant observed 

twice in controls but not in cases. This asymmetrical nature 

of the analysis is the prime reason why it is necessary to use 

a permutation test to evaluate the significance of the results.

It might be thought that a simple way to avoid this bias 

would be to base allele frequency estimates on both cases and 

controls rather than just on cases. However, this then creates a 

different problem in that the weight is extremely sensitive to 

the estimated allele frequency. The relative weight assigned 

according to allele frequency is illustrated in Figure 1. This 

shows how the allocated weight falls dramatically as the 

frequency increases from zero. We can envisage a scenario 

whereby a very rare variant occurs only in cases. If we  estimate 
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the MAF as q = m/2n (where m is the allele count in both cases 

and controls and n is the number of cases and controls), then 

obviously if we observe the variant twice amongst cases rather 

than once, we will double the estimate of q. If we use these 

observations to produce a value for w, then the relative weight, 

r, for a variant observed 4 times is approximately half that 

for a variant observed only once. If we consider two variants 

which  are seen only amongst cases then the contribution made 

to the overall genetic score for the sample made by a variant 

that occurs 4 times will only be twice that of the contribution 

of a variant that only occurs once. For a variant occurring 10 

times in cases and never in controls, its overall contribution 

is only 3.2 times that of a variant that only occurs once. This 

loss of information would be expected to reduce the power of 

the analysis to detect the effects of rare variants.

The previously proposed weighting scheme generates 

weights that are sensitive to sample size and that produce 

genetic scores that can only be analyzed using permutation 

testing. Here we propose and evaluate an alternative weight-

ing scheme that can produce score statistics with a known null 

hypothesis distribution. This means that analysis can be very 

rapid relative to permutation testing. Additional advantages of 

the approach we propose include weights that do not vary mark-

edly according to sample size and that the user can readily tune 

the weights which are allocated by using a weighting factor that 

can be adjusted as appropriate for the dataset being analyzed.

Methods
The method of analysis we propose utilizes a novel weight-

ing scheme that incorporates a weighting factor, f. Using the 

allele frequency q
i
 derived from the whole sample of cases 

and controls:

  q
m m

n ni
i
U

i
A

i
U

i
A=

+
+2 2

,   

we assign a weight W
i
  according to this formula:

W
i
 = (4f - 4)q

i
2 - (4f - 4)q

i 
+ f.

This is the equation for a parabola with a minimum value 

of 1 at q = 0.5, which intercepts the y-axis at f when q = 0. 

(To make the approach easier to understand, we define W 

so that it increases with rarer variants. This means it can 

be used as a multiplier for contributions to the score rather 

than a divider as w was.) Figure 2 illustrates this weighting 

function for a value of f = 20, showing that allocated weights 

fall more gradually with the parabolic function than for 

the approximately inverse square root function previously 

used. Using different values of f allows the relative weight 

assigned to rare variants to be varied. If f = 1 is used, then all 

variants are weighted equally. This will mean that common 

variants occurring frequently will tend to contribute the most 

information. On the other hand, if a large value is used such 

as f = 1000, rare variants will be accorded far more weight 

and common variants will be relatively ignored. If for some 

reason one wished to ignore contributions from very rare 

variants, then one could set f = 0.

Similar to the previous approach, a genetic score is 

calculated for each subject j, as the sum of the products of the 

allele count for each variant multiplied by its weight, W
i
:

 g W Ij i iji

L
=

=∑ 1
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Figure 1 Plot of the relative weight, r, using the originally proposed weighting scheme 
accorded to each allele of a variant with frequency q for sample size n = 2000. 
Note: For the smallest value of q = 0.0005, r is 22.4. 
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Figure 2 Plot of the weight, W, using the novel weighting scheme accorded to each 
allele of a variant with frequency q and weighting factor f = 20.
Note: The value of W at q = 0.5 is 1. 
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The scores for a set of cases and controls can then be 

 compared with a standard two-sample t-test. The test is 

one-tailed because it tests the hypothesis that the allele with 

a lower frequency at each variant tends to be found more 

commonly amongst cases than controls. This test is expected 

to be valid as there is no asymmetry in the way cases and 

controls are treated, hence the test should be unbiased.

In order to demonstrate the validity of this approach, 

it was applied to simulated datasets containing variants of 

different frequencies: a common variant with MAF = 0.45, 

a rare variant with MAF = 0.01, and a combined set of 

20 very rare variants each with MAF = 0.0005 analyzed 

together. A sample size of 1000 cases and 1000 controls 

was used and 10,000,000 simulations were carried out for 

each dataset. Each type of variant was analyzed separately 

and then all three were analyzed jointly. For the individual 

analyses the weighting was irrelevant, but for the joint 

analysis different weighting factors of 1, 10, 100, and 

1000 were used.

In order to make some assessment of the power of the 

approach it was applied to datasets simulated with different 

values for the MAF in cases and controls. For the common 

variant, values of 0.5 and 0.45 were used, for the rare variant 

0.015 and 0.05, and for the very rare variants 0.00025 and 

0.000025. These values were chosen so that each type of vari-

ant would produce a similar P value if analyzed separately. 

Again, a sample size of 1000 cases and 1000 controls was 

used, with variants analyzed individually and jointly with dif-

ferent weighting factors. For each dataset, 1000 simulations 

were performed. The proportion of simulations achieving 

critical P-values of 10–3, 10–4, 10–5 and 10–6 was measured 

and the average -log(p) was calculated.

The method was also applied to a dataset based on a 

published study of NOD2 (previously named CARD15), in 

which all variants were identified in a sample of 453 subjects 

with Crohn’s disease and 103 controls.8 This study identified 

nine common variants (MAF . 5%) along with 53 rare vari-

ants which were observed in cases, controls, or both. Again, 

1000 simulations were performed to produce sample datasets 

that were generated using the observed allele frequencies. 

The simulations were carried out conditional on the observed 

allele frequencies and assuming independence between the 

loci. The new method was applied to each common variant 

individually, all common variants jointly, all rare variants 

jointly, and finally all variants in a combined analysis with 

a range of weighting factors.

In order to gain an assessment of how long the method 

would take to perform on genome wide data, 20,000  analyses 

were performed on the combined set of all 62 NOD2 

variants.

Results
The Q-Q plots for the expected versus observed values for 

-log(p) are shown in Figure 3 for the common and rare 

variants considered independently and very rare variants 

analyzed together. These plots show that the method is valid 

and conforms fairly well with the expected distribution. The 

method is mildly anticonservative for small P-values when 

applied to the common variant. This may reflect the discrete 

nature of the data, as each subject will have a relative score 

of 0, 1, or 2 rather than a continuously distributed trait as 

expected by the t-test. The test is somewhat conservative for 

small P-values when applied to rare variants, which is likely 

due to the small total number of variant alleles. This means 

that the datasets are somewhat under-powered to achieve 

highly significant results. Figure 4 shows the Q-Q plots when 

applied to combined analyses of all loci with different values 

for the weighting factor, f. These show that when variants 

with different weights contribute to the scores, then the 

method conforms well to the expected distribution.

The power for the test to produce critical P-values is 

shown in Table 1 along with the mean values for -log(p). 

This shows that the common, rare, and very rare variants 

when considered separately produce average -log(p) values 

of 3.28, 3.28, and 3.04, respectively. If they are included in 

a combined analysis with a weighting factor of 1, so that 

allele counts of all variants are simply added together, an 

average -log(p) of 4.74 is obtained with a power of 0.22 to 

achieve a P-value of 10–6. However, if the weighting factor 

is increased to 10, then the average -log(p) increases to 

7.08 and the power to achieve a P-value of 10–6 increases to 

0.69. Larger values for the weighting factor of 100 or 1000 

resulted in reduced power although still exceeding that for 

the unweighted analysis. Figure 5 shows the graph of aver-

age -log(p) against different values for the weighting factor. 

It can be seen that the maximum power occurs with weight-

ing factors somewhat less than 10. In fact, the maximum 

average -log(p) of 7.29 is obtained with f = 6.3.

The P-values obtained when the method is applied to 

real data are shown in Table 2. Six of the nine common 

variants each produced evidence in favor of association with 

average -log(p) values ranging from 2.19 to 4.36. When all 

common variants were analyzed together they produced an 

average -log(p) of 4.84. The 53 rare variants produced only 

modest evidence for association and when analyzed together 

produced an average -log(p) of 2.20. When the common and 
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rare variants were all included in an unweighted analysis 

they produced a stronger evidence for association with an 

average -log(p) of 5.78. Changing the weighting factor, f, 

to 10 resulted in a higher average -log(p) of 6.37. Using 

this weighting factor produced some increase in power at all 

P-values, and the power to obtain a P-value of 10–6 increased 

from 0.42 to 0.57. Using higher values for the weighting 

factor resulted in diminished power, similar to that for the 

unweighted analysis. Figure 6 shows the graph of average 

-log(p) against different values for the weighting factor and 

shows that the maximum average -log(p) of 7.01 is obtained 

with f = 2.5.

The time taken to carry out 20,000 analyses of repeated 

simulations from the real data incorporating all 62 variants 

was 80 minutes on a Windows laptop with a 2.4 GHz Intel 

Core i7 processor.

Discussion
The proposed method of analysis applies a standard two-

sample t-test to genetic scores obtained from allele counts of 

variants weighted according to their observed frequency in 

both cases and controls. This avoids the need for permutation 

testing and allows for rapid analysis. Simulation studies con-

firm that the method is valid and demonstrate that combining 

information from both common and rare variants can, in at 

least some situations, provide more power than considering 

each separately. Furthermore, it confirms that weighting the 

scores from different variants can further increase power. 

The use of a smooth weighting function means that all types 

of variants are subjected to the same method of analysis. 

A weighting factor allows the user to choose a weighting 

scheme appropriate for the type of trait being studied.

Of course, as pointed out previously,6 a variety of differ-

ent functions could be used to generate weights. We have 

chosen a parabolic function that can easily be adjusted and 

that produces weights relative to a value of one for variants 

with MAF = 0.5. It is possible, however, that more or less 

sharply curved functions or sigmoid functions might offer 

some advantages. Most importantly, we are of the opinion 

that cases and controls should be treated equally to avoid the 

need for simulation, and that the function should not fall off 

too sharply with very small values of MAF.

It is easy to speculate that different values for the weight-

ing factor might be appropriate for different situations. A high 

value, which gave more weight to very rare variants, might 

be helpful for a disease that appeared often to result from 

mutations with large effect size, typically a rare disease with 

Mendelian inheritance. Conversely, one might speculate that 
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Figure 3 Q-Q plot of -log(α) against -log(β). (A) Common variant (MAF = 0.45). 
(B) Rare variant (MAF = 0.01). (C) 20 very rare variants analyzed together (each 
with MAF = 0.0005). 
Abbreviations: MAF, minor allele frequency; α, target P-value; β, the proportion 
of simulations achieving α.
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a common syndrome that might be expected to arise from 

the cumulative effects of common variants could be more 

appropriately analyzed with a relatively low value, although of 

course rare variants might still exert important effects. As the 

analyses are quick to perform, it might be reasonable to analyze 

datasets using a number of different values for the weighting 

factor, provided that appropriate corrections are then made for 

multiple testing. The different results obtained using different 

weighting factors might then allow one to make some infer-

ences about the nature of the effects influencing susceptibility 

to the trait in terms of the relative contribution of common and 

rare variants in the gene under consideration.

The method described clearly assumes some kind of 

additive contribution from different variants; however, it is 

unclear how well it would perform with variants with reces-

sive effects. It might be possible, in principle, to devise some 

kind of alternative weighting scheme aimed specifically to 

detect associations using a recessive model.

In contrast to some approaches, no special treatment 

is required to deal with linkage disequilibrium (LD) 

Figure 4 Q-Q plot of -log(α) against -log(β). (A) Weighting factor f = 1. (B) Weighting factor f = 10. (C) Weighting factor f = 100. (D) Weighting factor f = 1000. 
Abbreviations: α, target P-value; β, the proportion of simulations achieving α for combined analyses including all variants using a range of values for the weighting factor, f.
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to the score might tend to overshadow contributions from 

individual variants. In such situations, it might be beneficial 

to identify this and in some way scale down the weights of 

variants belonging to such LD groups.

As was also noted for the previously described method,6 

this implementation implicitly assumes that it is the rare allele 

of each variant that may be associated with the disease. This 

allows the effects of different variants to be combined within 

an individual and also implies that significance testing can 

be one-sided. This assumption may be reasonable for rare 

variants when the phenotype being studied reduces fitness. 

However, the method as it stands could not be applied to a 

quantitative trait in which there was no a priori assumption 

as to the direction of effect of each allele.

There are both biological and statistical arguments in 

favor of considering the alternative hypothesis to be that in 

general it is the rarer allele of each variant that is associated 

with disease. The biological argument is that if one begins 

with the reference sequence and then generates a variant at 

random, then one is more likely to produce a disease than 

to prevent one. Additionally, if a randomly generated vari-

ant should happen to be beneficial and to confer a survival 

advantage, then, over time, selection pressures will increase 

its frequency until it ultimately becomes common. Thus, one 

may expect that, on average, rare variants will be more likely 

to be associated with deleterious phenotypes. There is also 

a statistical argument for basing the test on the assumption 

that rare variants will be more likely to show association 

with a rare phenotype, even if it is nondeleterious or even 

advantageous. To begin with an example, suppose that a 

particular phenotype has prevalence 0.01 and that a variant 

with allele frequency 0.001 in the population produces a 

ten-fold increase in risk of manifesting this rare phenotype. 

It is simple to calculate that in samples of cases with this 

phenotype and of controls, we would expect allele frequen-

cies of 0.0099 and 0.00091, respectively. With a sample size 

Table 1 Power of score analysis to detect association using different datasets and weighting factors

Variants used MAF Power to achieve target P-value Mean -log(p)

Controls Cases P , 0.001 P , 0.0001 P , 0.00001 P , 0.000001

Common 0.45 0.5 0.54 0.30 0.14 0.06 3.28
Rare 0.005 0.015 0.54 0.30 0.12 0.04 3.28
20 very rare variants 0.000025 0.00025 0.50 0.11 0.01 0.00 3.04
Combined, f = 1 0.83 0.63 0.40 0.22 4.74

Combined, f = 10 0.99 0.94 0.83 0.69 7.08

Combined, f = 100 0.92 0.77 0.57 0.36 5.40

Combined, f = 1000 0.9 0.73 0.52 0.30 5.15

Note: Sample size consists of 1000 cases and 1000 controls. 
Abbreviations: MAF, minor allele frequency; f, weighting factor.
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Figure 5 Plot of the mean -log(p) value obtained for different values of the weighting 
factor, f, when applied to combined analysis of all variants in simulated datasets of 
1000 cases and 1000 controls.

between variants. If this is present it is not expected to affect 

the  validity of the test. In essence this is because all informa-

tion is combined at the level of the individual subject before 

being entered into the analysis. Hence, if there is nonindepen-

dence of genotypes within a subject, the fact that observations 

for different subjects are independent of each other is not 

affected. And so, the total scores are still expected to follow 

a random distribution under the null hypothesis. To illustrate 

this, we could consider the situation in which two variants are 

in complete LD with each other. This would be equivalent 

to having information from just one variant, but counting it 

twice for each subject, which would have exactly the same 

effect as assigning twice the weight to that variant. Thus, 

LD relationships can be seen as having equivalent effects to 

varying the weights assigned to variants. As such, they would 

not influence the validity of the analysis in the sense that they 

would not impact on the number of statistically significant 

results expected to occur by chance. They might, however, 

have an effect on power. If a large number of common vari-

ants were in LD with each other, then their contributions 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

7

Combined analysis of common and rare variants

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2012:5

of 500 of each we might expect to observe the variant in ten 

cases and one control. Now, suppose that we have a different 

variant also with frequency 0.001 but which is “protective” 

so that it produces a relative risk (RR) of 0.1 rather than ten. 

In this situation, we calculate the expected allele frequencies 

in cases and controls to be 0.0001 and 0.001. With the same 

sample size we might observe the variant once amongst the 

controls and not at all in the cases. Thus, the excess of the 

rare variant associated with the rare phenotype amongst 

subjects with the rare phenotype, is larger than the excess 

of the rare variant associated with the common phenotype 

observed amongst subjects with the common phenotype. If 

we were to count up both variants together we would still 

expect to find an overall excess of rare alleles amongst sub-

jects with the rare phenotype in spite of the fact that both 

variants produce an equal and opposite effect on risk. This 

particular example represents just one instance of a general 

phenomenon, which is that if one assumes an equal and oppo-

site effect on risk of a pair of variants with equal frequency, 

then there will be more enrichment of the “risk” variant 

amongst “cases” than there is enrichment of the “protective” 

variant amongst “controls.” This statistical effect continues 

to be active as the MAF of the variants increases. At higher 

values for the MAF, an additional complication occurs: the 

rarer allele becomes so enriched amongst cases that when the 

frequency is jointly estimated from cases and controls, this 

allele actually becomes designated as the “common” allele, 

in spite of the fact that in the population as a whole it is rarer. 

That is, the allele that is rarer in the population becomes the 

allele that is more common in the case control sample. Even 

taking this phenomenon into account, for pairs of variants 

with RR equal to 10 or 0.1, one still expects to observe an 

excess of more rare alleles amongst cases with true values of 

MAF up to 0.24. For values of RR of 2 and 0.5, one expects 

an overall excess of rare alleles for all values of MAF up to 

0.42; and for values of RR of 1.5 and 0.7, one expects this 

up to values of MAF of 0.45. Thus, when variants within a 

gene affect risk there is a consistent phenomenon that means 

that, over a wide a range of genetic models, one expects to 

observe an overall excess of rare alleles amongst subjects 

Table 2 Power of score analysis to detect association using different datasets and weighting factors using variant counts generated 
from those observed in NOD28

Variants used MAF Power to achieve target P-value Mean -log(p)

Controls Cases P , 0.001 P , 0.0001 P , 0.00001 P , 0.000001

Common variants
 5′ UTR-33 g→T 0.330 0.419 0.21 0.08 0.02 0.01 2.19

 534 C→g 0.383 0.309 0 0 0 0 0.04

 802 C→T 0.277 0.414 0.73 0.48 0.28 0.12 4.09

 1377 C→T 0.286 0.418 0.67 0.41 0.20 0.09 3.80

 1761 T→g 0.403 0.332 0 0 0 0 0.05

 2104 C→T 0.044 0.108 0.39 0.11 0.01 0 2.76

 2722 g→C 0.010 0.061 0.47 0.06 0 0 2.94

 2863 g→A 0.102 0.070 0 0 0 0 0.08
 3020insC 0.019 0.106 0.92 0.62 0.25 0.06 4.36
Nine common variants 0.86 0.65 0.43 0.25 4.84
53 rare variants 0.20 0.04 0 0 2.20
Combined, f = 1 0.94 0.83 0.64 0.42 5.78

Combined, f = 10 0.98 0.91 0.77 0.57 6.37

Combined, f = 100 0.96 0.85 0.67 0.44 5.77

Combined, f = 1000 0.96 0.84 0.65 0.41 5.69

Note: Sample size consists of 453 cases and 103 controls.
Abbreviations: MAF, minor allele frequency; f, weighting factor.
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Figure 6 Plot of the mean -log(p) value obtained for different values of the weighting 
factor, f, when applied to combined analysis using variant counts generated from 
those observed in NOD2. 
Note: Sample size consists of 453 cases and 103 controls.
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having a rare phenotype. This statistical effect applies even 

before one considers the biological argument that one expects 

rare variants, a priori, to be deleterious.

It was also noted previously6,9 that weighting could be 

based not on allele frequency, but on the presumed effect of 

the variant on gene function. This could be equally incorpo-

rated into the score test as we describe it, the only additional 

feature being that we would suggest that the t-test be used 

for significance testing rather than permutation, provided 

that cases and controls were treated symmetrically. A further 

possibility would be to produce a combined weight based 

on both allele frequency and presumed effect. One simple 

approach would be to simply multiply the weight based on 

effect by the weight derived from frequency. Such techniques 

could mean that for example, a rare variant producing a 

nonsynonymous coding change would be assigned a higher 

weight than either a common nonsynonymous variant or a 

rare synonymous variant.

Tests such as these can be applied at the level of a single 

gene, a region within a gene, or a set of genes comprising a 

pathway. It is up to the user to define the region of interest and 

to make decisions about such matters as to whether or not to 

include intergenic variants and intronic variants, whether to 

focus on a particular transcript or particular exon, and what 

assumptions to make about how to define regulatory regions. 

Sometimes the same variant will be defined to be included 

in the analysis of two or more different genes but this does 

not pose any particular problem for the method.

Which functions and/or weighting schemes in fact pro-

duce the best performance when applied to real data can only 

be properly assessed when more such data becomes available 

for analysis. As such data emerges over the next few years 

it will be helpful to undertake a formal comparison of dif-

ferent approaches. For now, it seems reasonable to suggest 

that a weighting factor of around 10 might be appropriate 

for analyses of diseases in which it is suspected that both 

common and rare variants might contribute to risk.

Conclusion
We demonstrate that it is possible to implement a test for 

which association can combine information from both 

common and rare variants that has a known distribution 

under the null hypothesis. It is simple to implement, quick 

to perform, and could readily be applied to genome-wide 

sequence data.

Availability
A program implementing the procedure,  named 

 SCOREASSOC, is available as part of the GCPROG  package 

at http://www.mds.qmul.ac.uk/dcurtis/software.html. 

C source code and a Windows executable are provided.
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