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Abstract: Type 2 diabetes mellitus (T2DM) is a major risk factor for developing cardiovascular 

disease and represents a serious public health problem, with high rates of mortality and 

morbidity worldwide. T2DM etiology is complex and multifactorial and is associated with 

several complications, including those at myocardium level. Diabetic cardiomyopathy (DCM) 

is viewed as a specific cardiomyopathy and defined as structural and functional changes in the 

myocardium due to metabolic and cellular abnormalities induced by diabetes. T2DM has long 

been classified as an inflammatory disease and recent studies have identified the importance of 

the inflammatory process in the development and progression of heart failure. In this review, the 

authors outline the main mechanisms underlying the potential contribution of the inflammatory 

process in the development and evolution of DCM. In addition, potential therapeutic strategies 

against inflammation of DCM are discussed.
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Introduction
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, affect-

ing 90%–95% of the diabetic population. In recent years, the global prevalence of 

T2DM has increased, so that it has achieved epidemic proportions. Currently, there 

are over 285 million cases of diabetes and it is estimated that cases will increase to 

439 million in 2030.1 This progression is even more alarming when considering that 

over the past 20 years its prevalence has increased dramatically among children and 

adolescents.2

The prevalence of diabetes mellitus (DM) is higher among men, percentage 

wise; however, there are more women with diabetes worldwide. The most important 

demographic change to this increased prevalence of DM is an increase in the world’s 

aging population, which translates into an increase in the population of those aged 

over 65 years.3 Although the prevalence of DM is increasing overall, the prevalence of 

T2DM is increasing more than type 1 DM (T1DM), due to decreased physical activity 

and increasing population levels of obesity, mainly in developed countries, but also in 

developing countries that are becoming increasingly industrialized.4

In addition to the high prevalence rates, chronic complications of diabetes mean 

that the disease has a strong impact on health budgets related to disease treatment 

and hospitalization, as well as with early disability, inability to work, and decreased 

quality of life; thus, it is becoming a serious public health problem. As it is an ongoing 

silent disease, which is frequently diagnosed late, it has emerged as a major cause 
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of morbidity and mortality worldwide. Its development is 

associated with complications at microvascular (retinopathy, 

neuropathy, and nephropathy) and macrovascular (stroke, 

coronary disease, and myocardial infarction) levels, causing 

human suffering and significant costs in the context of the 

economics of global health.5

The frequency, severity, and progression of diabetic 

complications are related to hyperglycemia levels, associated 

metabolic disturbances, duration of disease, and exposure 

to risk factors, as well as to the genetic component. About 

40% of patients diagnosed with diabetes develop late 

complications of the disease in various tissues, which are 

not always detected in time.

T2DM is a major risk factor for the development of 

cardiovascular disease (CVD), which is responsible for 

50%–80% of deaths in people with T2DM, as well as for 

substantial morbidity and loss of quality of life. T2DM 

can lead to cardiovascular (CV) damage in a number of 

ways. As T2DM progresses, the heart and blood vessels 

undergo changes that lead to a number of different 

CV complications.6 Although coronary artery disease 

(CAD) is two to three times more common in diabetic 

patients that in non-diabetic individuals,7 it is not the only 

CV complication. Several experimental, pathological, 

epidemiological, and clinical studies8–11 have shown an 

association between DM and cardiomyopathy, the latter 

being defined as functional and structural changes at the 

myocardium, independent of hypertension, CAD, or any 

other known cardiac disease, leading to heart failure. The 

term “diabetic cardiomyopathy” (DCM) was introduced in 

1972 by Rubler et al12 based on postmortem observations 

of heart failure in diabetic patients free of detectable CAD, 

which was further confirmed in numerous other clinical 

studies.13,14 This fact suggests that diabetes can lead to 

cardiac muscle damage without the coexistence of other 

CV risk factors.

Diabetes is typically associated with multiple metabolic 

and physiologic abnormalities, such as hyperglycemia, 

peripheral insulin resistance, dyslipidemia, hypertension, 

and overweight or obesity, and the activation of multiple 

hormone and cytokine systems – all of which are known risk 

factors for cardiac failure. However, it remains unknown 

which factors are most important to the overall incidence of 

cardiac failure in diabetic patients.

Several cellular and molecular mechanisms have been 

proposed to contribute to the pathogenesis of DCM. In this 

review, the role of inflammation in DCM development and 

progression will be analyzed.

Pathophysiology of DCM
DCM, a distinct clinical entity, is currently viewed as a result 

of complex relationships between metabolic abnormalities 

that accompany diabetes and its cellular consequences, 

resulting in functional and structural changes in the 

myocardium that, in combination with other features, impair 

cardiac performance, ultimately resulting in cardiac failure 

(Figure 1).15,16

Functional changes
In many cases, it has been found that abnormalities of 

diastolic function may advertise the subsequent progressive 

deterioration of cardiac function. The noninvasive assessment 

of diastolic dysfunction mainly relies on Doppler studies of 

diastolic transmitral inflow, flow velocities, flow patterns, 

isovolumic relaxation time, and deceleration time, which are 

the most common criteria used in its evaluation. Numerous 

authors have suggested that the most frequent and earliest 

functional effect observed by echocardiography in type 2 

diabetic hearts is impaired diastolic function.17,18

“Diastolic dysfunction” can be defined as a condition 

in which myocardial relaxation and filling are impaired and 

incomplete. It can manifest as reduced early diastolic filling, 

increased atrial filling, extended isovolumetric relaxation, and 

an increased number of supraventricular premature beats.19 

There is also an increased left ventricular (LV) end-diastolic 

pressure and a decreased LV end-diastolic volume.20

It is important to note that the impairment of diastolic 

performance is nonspecific and frequently observed in many 

diseases, such as hypertension, hypertrophic cardiomyopathy, 

and CAD, while systolic function remains intact. However, 

several investigators have shown that changes in diastolic 

function are common, even in diabetic animals21,22 and 

diabetic patients,23,24 without any clinical manifestations 

of congestive heart failure. Indeed, evidence of diastolic 

dysfunction has been found in patients with impaired glucose 

tolerance,25 with newly diagnosed diabetes or a short duration 

of disease, and free of microvascular complications.23 Thus, 

the detection of diastolic dysfunction may be a useful marker 

for the prognosis of cardiac mortality in diabetic subjects.

There are also studies26,27 that have reported an association 

between diabetes and changes in systolic function. “Systolic 

dysfunction” is defined as the loss of the heart’s ability to 

pump arterial blood in the peripheral circulation and is 

associated with a reduction of the LV ejection fraction, 

fractional shortening, and cardiac output. These alterations 

of systolic function were proven in both human and animal 

models of T1DM and T2DM.28,29 However, Radovits et al 
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suggest that systolic dysfunction may be more pronounced 

in type 1 DCM.30

In DCM, systolic dysfunction occurs late, often when 

patients have already developed signif icant diastolic 

dysfunction. The prognosis in patients with depressed systolic 

dysfunction is poor with an annual mortality of 15%–20%. 

The presence of systolic dysfunction in the early years of dia-

betes is still controversial, while diastolic dysfunction is more 

easily detected by Doppler echocardiography. The controversy 

of the early existence of systolic dysfunction in diabetes is 

probably related to the fact that current techniques used for 

systolic function evaluation are less sensitive than those used 

for diastolic dysfunction assessment. For this reason, more 

sensitive techniques for systolic assessment have been devel-

oped, such as strain, strain rate, and myocardial tissue Doppler 

velocity, which have permitted the detection of preclinical 

systolic abnormalities in diabetic patients.31

Structural changes
A number of studies have shown structural changes in 

diabetic hearts in the absence of hypertension, CAD, and 

valvular heart diseases. One of the most important structural 

hallmarks of DCM is cardiac hypertrophy and this, in turn, 

is a powerful predictor of CV events (Figure 1).

Hypertrophy is a form of growth characterized by an 

increase in the average cell size of the constituting organ 

(in contrast to hyperplasia, in which the number of cells 

increases). Although LV hypertrophy (LVH) is more 

common, the right ventricle can also become enlarged or both 

may be affected. The common factor is that in physiological 

cardiac hypertrophy the intermittent load induces an increase 

in chamber wall thickness, which is compensated for by 

an increase in ventricular volume, thus balancing the wall 

thickness to chamber volume ratio.32 Numerous studies 

have shown that patients with T2DM have an increase in 

LVH independent of other confounding factors, including 

hypertension.33 In T2DM, LVH generally represents a more 

advanced stage of disease and may manifest after a longer 

period. The causes and mechanisms underlying LVH are 

poorly understood, and the predictive contribution of LVH 

to DCM is not entirely clear. Recently, however, clinical 

and animal studies have proposed evidences implicating 

the diabetic milieu of hyperinsulinemia, insulin resistance, 

hyperglycemia, and increased nonesterified fatty acids (FAs) 

in the pathophysiology of LVH in DM patients. For instance, 

insulin may act as a growth factor in the myocardium, which 

is supported by the experimental observation that sustained 

hyperinsulinemia leads to increased myocardial mass and 

decreased cardiac output in rats.34,35 Higher circulating 

levels of the hormone leptin have also been linked to the 

development of LVH in obese diabetic humans.36 The 

consistency of results demonstrates a clear impact of DM per 

se on increased LV mass that encompasses the development 

of diabetes-related LVH.

Another mechanism proposed to explain cardiac 

alterations in DCM is related to the development of myocardial 

Hyperinsulinemia
insulin resistance

Hyperlipidemia
lipotoxicity

Hyperglycemia
glucotoxicity

RAAS
overactivation

InflammationEndothelial
dysfuntion

Oxidative stress

ROS eNOS NF-κB, JNK, p38-MAPK

Inflammatory cytokines
Cell adhesion molecules

Acute phase reactants

Ang II
�

�
�NO

Superoxide

ET

AGEs RAGE
PKC

Polyol and hexosamine

Cardiac dysfunction

Functional changes Structural changes

• LV hypertrophy
• Cardiac fibrosis

• Diastolic dysfunction
• Systolic dysfunction

Diabetic cardiomyopathy

Type 2 diabetes mellitus

�

�
�

�
�

�
�

�
�

�

�
�

Figure 1 Metabolic and cellular abnormalities associated with type 2 diabetes mellitus that underlie the development of diabetic cardiomyopathy.
Abbreviations: AGEs, advanced glycation end products; Ang II, angiotensin II; eNOS, endothelial nitric oxide synthase; ET, endothelin; JNK, c-jun NH2-terminal kinase; 
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fibrosis (Figure 1). Cardiac fibrosis is the accumulation of 

interstitial glycoproteins and increased extracellular collagen 

matrix, leading to increased stiffening and reduced relaxation 

of the ventricles. Interstitial and perivascular fibrosis with 

significant increase in collagen deposition has frequently 

been observed in heart biopsy samples from diabetic patients 

without significant CAD.37 Similar findings have also been 

observed in animal models of DM.38,39

The echocardiographic features of increased LV fibrosis 

appear in the form of impaired relaxation and diastolic 

dysfunction and it has been suggested that collagen is a major 

determinant of ventricular stiffness. Consequently, alterations 

in collagen phenotype may play an important role in the 

impaired LV diastolic filling that is typical of DCM.37 In a 

study with prediabetic Otsuka–Long–Evans–Tokushima Fatty 

rats, there was a correlation between increased extracellular 

collagen content and decrease in early mitral peak flow 

(decreased E/A ratio).38 The accumulation of cardiac fibrosis 

in diabetes is believed to result from decreased degradation 

of glycosylated collagen by matrix metalloproteinases 

and, conversely, from excessive production of collagen by 

fibroblasts due to increased rennin–angiotensin–aldosterone 

system (RAAS) activation.15

In addition, an increased formation of advanced glycation 

end products (AGEs) has also been reported to occur in the 

myocardium of DM patients, as a result of hyperglycemia.40 It 

has been demonstrated that collagen is particularly susceptible 

to AGE cross-linking and this association not only leads 

to myocardial stiffness but also to impairment of collagen 

degradation, leading to further collagen accumulation or 

fibrosis.37,41 Furthermore, the impairment of LV diastolic 

function of patients with diabetes may be secondary to 

alterations in collagen structure, specifically, increased collagen 

cross-linking or AGEs,41 thus contributing to the myocardial 

fibrosis and decreased compliance characteristic of DCM.

Molecular mechanisms
It is important to highlight some of the key events involved 

in the pathophysiology of T2DM that are the most impor-

tant mechanisms contributing to development of DCM. The 

pathophysiology of T2DM is characterized by peripheral 

insulin resistance, abnormal regulation of hepatic glucose 

production, and decline in β-cell function, leading to the 

eventual failure of these cells.

Initially, there is impaired insulin secretion, which causes a 

decrease in glucose uptake and, in many patients, is associated 

with insulin resistance, leading to hyperglycemia. A relative 

insulin deficiency usually arises due to the actions of insulin 

resistance in muscle, fat, and liver, as well as an inadequate 

response of pancreatic β-cells. Thus, the development of 

a sustained hyperinsulinemia is required to maintain the 

homeostasis of glucose. However, when the pancreatic β-cell 

adaptation, required to maintain hyperinsulinemia, fails, then 

hyperglycemia and DM develop.

Myocardial hyperinsulinemia, insulin resistance,  
and lipotoxicity
Insulin, an anabolic hormone produced by pancreatic 

β-cells, is primarily responsible for regulating blood 

glucose. Impaired insulin action (or insulin resistance) is 

characterized by reduced conventional biological actions 

of insulin to stimulate glucose uptake in peripheral tissues 

and inhibit the lipolysis of the adipose tissue and hepatic 

glucose production, which are major metabolic dysfunctions 

associated with the early stages of T2DM. Elevated plasma 

insulin and lipid levels can lead to numerous metabolic 

and pathophysiological derangements in various tissues, 

including the heart. Moreover, insulin, as a hormone that 

has a broad spectrum of biological actions, may play a role 

in the etiology of various CV complications, in particular 

when these actions are deregulated.

Insulin promotes a great number of metabolic and 

mitogenic responses, through a network of metabolic 

pathways highly and specifically regulated. Insulin receptor 

activation results in the tyrosine phosphorylation of different 

substrates, including insulin receptor substrate (IRS)-1 

and -2.42 These IRS proteins play a key role in insulin signal 

transmission, serving as templates for connecting a variety of 

proteins and lead to adaptation of the signaling cascade. Thus, 

the insulin signaling is initiated by its binding to a specific 

membrane receptor and, therefore, activation of two main 

signaling cascades: the phosphoinositide 3-kinase (PI3K) and 

the extracellular signal-regulated kinase/mitogen-activated 

protein kinase (MAPK) pathways.

The activation of the PI3K pathway increases serine 

phosphorylation of protein kinase B (Akt) and this permits 

the transport of glucose through the translocation of GLUT-4 

protein to the cell membrane. The consequent activation of 

Akt results in translocation of glucose transporter GLUT-4 to 

the membrane, allowing the uptake of glucose by facilitated 

diffusion. GLUT-4 is primarily responsible for glucose uptake 

in humans. Then, the PI3K/Akt pathway plays an important 

role in the metabolic effects of insulin,43 mediates glucose 

uptake and, after activation, is associated with the development 

of physiological hypertrophy, while the extracellular signal-

regulated kinase/MAPK pathway is important in gene 
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expression and cell growth and differentiation, mediating 

the pathological hypertrophy.44

LVH may be associated with insulin resistance. Therefore, 

in case of insulin resistance or chronic hyperinsulinemia, the 

phosphorylation and activation of PI3K is reduced and there is an 

insulin-induced activation of the MAPK pathway, which results 

in cardiac hypertrophy. It is known that activation of PI3K 

pathway results in increased endothelial nitric oxide synthase 

(eNOS) activity and nitric oxide (NO) production and that the 

activation of the MAPK pathway is involved in stimulation 

of a vasoconstrictor endothelin-1. In fact, this represents a 

mechanism associated with insulin resistance, thus contributing 

to endothelial dysfunction and an increase in blood pressure due 

to the impaired vasodilator action of insulin (Figure 1).

As mentioned, the state of insulin resistance involves a 

significant decrease of myocardial glucose uptake due to 

cellular depletion of glucose transporter proteins, GLUT-1 

and GLUT-4. In addition, diabetic cardiomyocyte is also 

characterized by increased myocardial FA uptake and 

triglyceride levels. Free fatty acids (FFA), once inside the 

cell, are converted into acetyl coenzyme A derivatives that 

will activate the isoforms of protein kinase C (PKC), an 

intracellular enzyme with the ability to block the insulin 

signaling pathways which, in turn, will block the entire 

cascade of subsequent reactions preventing insulin action.45 In 

the presence of elevated levels of FFA, there is a competition 

of these with glucose as energy substrate, with a shift in 

energy production from β-oxidation of FFA,46 leading to 

decreased glucose utilization and oxidation, with increased 

glucose levels and release stimulation, increasing the amount 

of insulin and promoting an insulin resistance.47

The increase of FFA and its metabolism leads to 

intracellular accumulation of toxic FA intermediates, such 

as ceramide and diacylglycerol, as well as the formation 

of reactive oxygen species (ROS), which contribute to 

oxidative stress, cardiomyocyte apoptosis, and increased 

myocardial oxygen consumption, resulting in reduced 

myocardial high-energy reserves and impaired contractility, 

promoting mitochondrial uncoupling leading to decreased 

adenosine triphosphate (ATP) availability.48,49 Therefore, all 

these mechanisms may be involved with a reduced cardiac 

performance, thus contributing to the pathogenesis of DCM.

Furthermore, the cardiac lipotoxicity in DCM also involves 

the activation of transcription factors that further affect FA 

uptake and oxidation. Therefore, FFA intracellular deposition 

is responsible for the saturation of the mitochondrial capacity 

of oxidation, thus activating transcription factors, including 

the peroxisome proliferator-activated receptors (PPARs). 

Although PPARs are key regulators of FA metabolism in the 

heart, recent studies have shown that cardiac overexpression 

of PPAR-alpha (PPARα) and PPAR-gamma (PPARγ) causes 

lipotoxic cardiomyopathy and steatotic cardiomyopathy.50,51 

Myocardial steatosis is an important event in the first stages 

of DCM, contributing to the development of myocardial 

apoptosis and subsequent remodeling. Thus, modulation of 

PPARs might have a positive impact on DCM, as further 

discussed in this review.

Hyperglycemia and glucotoxicity
Hyperglycemia has been seen as a major cause of DCM, due 

to activation of several mechanisms leading to an increase in 

oxidative stress, which is defined as an imbalance between the 

production of ROS and antioxidant defense mechanisms.

ROS are chemical compounds that result from the 

activation or reduction of molecular oxygen or derivatives of 

the products of this reduction, such as the superoxide anion 

and hydroxyl radical.52 ROS may have harmful consequences 

for the heart cells, including DNA damage as well as 

apoptosis, which in turn may promote cardiac dysfunction 

leading to structural and functional abnormalities that are 

associated with DCM (Figure 1).

Hyperglycemia induces oxidative stress by several 

pathways, such as increased activation of the polyol and 

hexosamine pathways, increased formation of AGEs, and 

activation of classical isoforms of PKC, which induce 

increased production of mitochondrial ROS, nonenzymatic 

glycation of proteins, and glucose auto-oxidation. Activation 

of these pathways corresponds to an increased glucotoxicity, 

which may cause cellular injury. They are also associated not 

only with the development of diabetic complications but also 

with insulin resistance and pancreatic β-cell dysfunction.

As already noted, the increase of AGEs is highly associated 

with myocardial fibrosis in diabetic hearts by affecting the 

structural components of the extracellular matrix, such as 

collagen, indicating the potential role of AGEs in DCM.53 

AGEs are a heterogeneous group of proteins, lipids, and 

nucleic acids that are formed by nonenzymatic glycosylation. 

They bind to specific cell surface receptors (receptor for 

AGEs [RAGE]) and, in the cascade of intracellular signal 

transduction, form oxygen free radicals and promote the 

activation of gene expression. This receptor ligation increases 

the production of the transcription factor nuclear factor-κB 

(NF-κB), also causing increased oxidative stress.

The RAGE belongs to the immunoglobulin superfamily and 

binds to a wide variety of molecules, especially to ligands that are 

susceptible to aggregation and posttranslational modifications. 
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This receptor is widely expressed in the peripheral and central 

nervous systems. A series of ligands of RAGE, as well as the 

activation of RAGE itself, can induce oxidative stress52 and 

exert direct effects on cardiac remodeling due to adhesive and 

growth-regulating properties.

In diabetes patients, elevated serum and tissue contents 

of AGEs have been found, which then activate RAGE.54,55 

Further, in the heart tissues of diabetic rats, an increased 

expression of RAGE has been found, which seems to be 

associated with connective tissue growth factor.53 Overex-

pression of RAGE in diabetic hearts of animals implies a 

role for this receptor in mediating AGE-induced myocardial 

structural alterations.

In addition to AGE-induced fibrosis, several lines of 

evidence have suggested that AGE accumulation is associ-

ated with impaired calcium homeostasis and mitochondrial 

function and altered expression and function of both the 

ryanodine receptor and sarcoplasmic/endoplasmic reticulum 

Ca2+-ATPase (SERCA), contributing to reduction of calcium 

entry in the myocyte and, consequently, impaired change 

myocardial contractility.56

PKC pathway activation is also correlated with 

biochemical changes underlying the development of DCM. 

These changes include increased vascular permeability and 

lead to blood vessel constriction and changes in blood flow, 

stimulating neovascularization, proliferation and apoptosis of 

endothelial cells, and the activation of several factors, such as 

transforming growth factor-beta, vascular endothelial growth 

factor, and insulin-like growth factor-1.57,58 Moreover, a recent 

study indicated that PKC promotes cardiac hypertrophy by 

activating NF-κB (Figure 1).59

Endothelial dysfunction is also involved in the pathogenesis 

of DCM. The endothelium regulates the vascular tone by the 

releasing of vasodilator and vasoconstrictor substances; when 

released in an unbalanced way, endothelial dysfunction occurs. 

Endothelial dysfunction indicates the malfunction of the vascular 

endothelium and usually reflects a reduced bioavailability of 

NO, which is an important vasodilator. Furthermore, NO also 

has anti-hypertrophic, antiproliferative, and anti-inflammatory 

properties and inhibits leukocyte adhesion, limits adhesion 

and aggregation of platelets, and reduces the expression of 

plasminogen activator inhibitor 1 (PAI-1), a pro-thrombotic 

protein associated with vascular homeostasis. Diabetes is 

associated with decreased expression of eNOS and decreased 

production of NO through the inhibition of the IRS-PI3K-

Akt-eNOS-NO pathway. However, due to increased oxidative 

stress, an excess of NO becomes cytotoxic. Part of its toxicity 

is due to its reaction with superoxide, resulting in peroxynitrite 

formation and loss of NO bioavailability.60 This decreased 

NO bioavailability causes endothelial dysfunction leading to 

impaired vasodilatation. A relationship between the excessive 

cardiac production of ROS and endothelial dysfunction has 

been demonstrated in animal models of type 1 and 2 DM and 

in humans with T2DM.61

RAAS
The RAAS is a hormonal cascade that plays a major role 

in the homeostatic control of arterial pressure by regulating 

blood vessel constriction. Deregulation of RAAS plays 

an important role in pathological origin of renal diseases, 

CVDs, and arterial hypertension and also contributes to the 

development of cardiomyopathy.

Activation of the RAAS, locally and systemically, is 

strongly associated with the development of insulin resistance 

and the onset of T2DM.62–64 In diabetes, excessive activation 

of the RAAS has been described.65,66 Now that it has been 

shown to be associated with some of the hallmarks of DCM, 

such as increased fibrosis, angiogenesis, oxidative damage, 

and cardiomyocyte and endothelial cell apoptosis and necro-

sis, this over activation has been recognized as an important 

factor in the progression of the disease.15,67

Angiotensin II (Ang II) is the main physiological effector 

molecule of RAAS; its release in the myocardium, due to the 

upregulation of RAAS, has diverse and widespread actions 

that affect cardiac function.68 Animal experiments have also 

shown that Ang II infusion induces insulin resistance69 and 

increased levels of Ang II and Type 1 receptors (AT1-R) 

have been shown in diabetic rats.70–72 Ang II can interfere 

with all intracellular signaling of insulin receptors, 

preventing the glucose receptor translocation, thus being 

one of the pathophysiologic bases of insulin resistance. 

AT1-R mediate most physiological and pathophysiological 

and deleterious effects attributed to Ang II. In the adult 

CV system, Ang II induces its vasoconstrictive effects 

on cardiomyocytes through ligand binding to the AT1-

R.73 The rise of Ang II in diabetic rats has been related to 

cardiomyocyte hypertrophy and apoptosis and it stimulates 

the proliferation of cardiac fibroblast and synthesis of 

collagen, causing myocardium interstitial and perivascular 

fibrosis, ventricular myocardium rigidity, and impaired 

diastolic function, leading to the clinical symptoms of 

DCM (Figure 1).74,75

The role of inflammation in DCM
Chronic low-grade inflammation is commonly associated 

with obesity and T2DM and clear evidence has emerged to 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

64

Nunes et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Interferon, Cytokine and Mediator Research 2012:4

Hyperinsulinemia

NF-κB overactivation

Inflammatory cytokine release
(TNF-α; IL-6, IL-1β; CRP, PAI)

Adhesion molecules release
(VCAM, ICAM)

Macrophage migration inhibitory
factor

Monocyte chemotactic protein-1

Impaired cardiac function

Collagen/fibronectin synthesis

Angiogenesis (VEGF)

Endothelial cell apoptosis

Oxidative damage (ROS)

Cardiomyocyte hypertrophy

Myocardium fibrosis (TGF-β)

Impaired cardiac structure

RAAS overactivation

Cardiac dysfunction

Insulin
resistance

Insulin
signaling

impairment
(PI3k/Akt)

GLUT
translocation

Inflammation

Diabetic cardiomyopathy

Oxidative stressHyperlipidemia

�

�

�

�

�

�

� �

�

�

�

�

�

�

Figure 2 Cellular and molecular pathways that link inflammation with development of diabetic cardiomyopathy through over activation of the NF-κB pathway and renin–
angiotensin–aldosterone system.
Abbreviations: Akt, protein kinase B; CRP, C-reactive-protein; GLUT, glucose transporter proteins; ICAM, intracellular adhesion molecule; IL, interleukin; NF-κB, nuclear 
factor-κB; PAI, plasminogen activator inhibitor; PI3K, phosphoinositide 3-kinase; RAAS, renin–angiotensin–aldosterone system; ROS, reactive oxygen species; TGF-β, 
transforming growth factor-beta; TNF-α, tumor necrosis factor-alpha; vCAM, vascular cell adhesion molecule; vEGF, vascular endothelial growth factor.

suggest that inflammatory process also contributes to the 

pathogenesis of DCM (Figure 2).

The activation of several signaling pathways, such as 

NF-κB, c-jun NH
2
-terminal kinase, or p38-MAPK, could 

mediate a state of inflammation, which is linked to insulin 

resistance, thus playing an important role in diabetic 

complications.76–78 In fact, NF-κB represents one of the 

most important mediators of the inflammatory process. 

Activation of NF-κB is associated with the increased release 

of cytokines such as tumor necrosis factor-alpha (TNF-α), 

which is often involved in cardiac damage and leads to 

NF-κB activation, thus contributing to the intensification of 

adverse effects in the diabetic heart.76 Elevated inflammatory 

mediators cause insulin resistance since they reduce the 

IRS-1 tyrosine phosphorylation, and the activation of PI3K 

and Akt, decreasing insulin signaling.79 Moreover, elevated 

inflammatory markers may exacerbate insulin deficiency 

by impairing β-cell function and inducing cell death, which 

implicate a progressive decline in β-cell mass.80

Elevated inflammatory cytokines, such as TNF-α, 

interleukin (IL)-6, cell adhesion molecules, including vascular 

cell adhesion molecule-1 (VCAM-1) and intracellular adhesion 

molecule-1 (ICAM-1), acute phase reactants, such as C-reactive 

protein (CRP); PAI-1, and other biological markers of 

inflammation, have been found in circulation and in the diabetic 

hearts of T2DM patients.81,82 Accumulating data suggest that 

elevated levels of several inflammatory markers, such as 

IL1-β and TNF-α, are implicated in DCM, increase epicardial 

thickness, and promote myocyte contractile dysfunction, 

thus depressing myocardial function and contributing to 

heart failure.83 Moreover, cardiac overexpression of TNF-α 

has been associated with cardiac hypertrophy and fibrosis, as 

well with LV dysfunction (Figure 2).84,85 IL-6 has also been 

described as an inducer of myocardial damage. Therefore, 

excessive production of IL-6 can promote LV dysfunction and 

cardiac hypertrophy under acute myocardial infarction.86

Although the inflammatory response seems to be linked 

with DCM development, its presence and influence differs 

in the early and the long-standing stages of the disease. 

Therefore, according to Ares-Carrasco et al,87 using 

normotensive and spontaneously hypertensive rats (SHR) 

with T1DM induced by streptozotocin, myocardial fibrosis 

and apoptosis are features of myocardial damage secondary 

to long-term experimental diabetes, but inflammation 

was modulated by the expression of anti-inflammatory 

molecules, in particular IL-10, and antioxidants. The authors 

also found interesting effects when diabetes coexisted with 

hypertension. DCM and hypertensive cardiomyopathy share 

some typical features, including functional and structural 

changes that contribute to cardiac tissue impairment. 

Further, according to the proteomics studies of Ares-

Carrasco et al in SHR and SHR/DM1 rats,88 when diabetes 

and hypertension coexist, hearts present with impaired 

expression of metabolic, hypertrophic, and apoptotic 

proteins, in contrast with the early stages of injury, in 

which fibrotic and inflammatory rates are not additive. 
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Furthermore, they suggest that in such a stage of diabetes and 

hypertension, PPARα activation, as a compensatory response 

to the metabolic, apoptotic, and hypertrophic impairment, 

could reduce cardiac hypertrophy. In this sense, therapeutics 

with PPARα agonists could have beneficial anti-hypertrophic 

effects on the hypertensive DCM. These interesting recent 

findings, using SHR rats without DM1 versus those with 

DM1, reinforce and expand previous suggestions in DM 

patients, in which the presence of hypertension increased the 

myocardial and vascular cell changes observed in the diabetic 

patients.89 Therefore, when diabetes and hypertension 

coexist, the DM-induced changes in the myocardial cells 

and capillaries lead to myocardial cell injury, interstitial 

fibrosis, and impairment of ventricular systolic and diastolic 

function. The additive effects of diabetes and hypertension 

might explain the beneficial effects of antihypertensive 

drugs – such as irbesartan, an angiotensin type 1 receptor 

antagonist – in a mouse model of streptozotocin-induced 

DCM.90 The use of irbesartan was able to attenuate cardiac 

failure due to reduction of inflammation and normalization 

of cardiac fibrosis.

As mentioned, hyperglycemia-induced oxidative stress 

is strongly correlated with the development of DCM. In 

fact, hyperglycemia has been shown to activate various 

oxidative stress-responsive/pro-inflammatory transcription 

factors, including NF-κB, to induce collagen and fibronectin 

synthesis, as well as to stimulate the production of 

inflammatory cytokines.

A recent study suggests that hyperglycemia-induced 

cardiomyocyte apoptosis is mediated by the production of 

monocyte chemotactic protein-1, providing a molecular link 

between hyperglycemia, inflammation, and DCM.91 Yu et al 

indicated that hyperglycemia-induced diastolic dysfunc-

tion may be mediated partly by the macrophage migration 

inhibitory factor, suggesting that the NF-κB pathway may 

be involved in this process.81 In addition, in this same study, 

the authors demonstrated the macrophage migration inhibi-

tory factor effects in abnormal upregulation of G protein-

coupled receptor kinase 2, which may be associated with a 

constant activation of beta1-adrenergic receptor and heart 

failure development. Another factor that plays an important 

role in modulation of inflammation in DCM concerns the 

RAAS activation. Ang II not only induces vasoconstric-

tion, cell growth, and oxidative stress but also stimulates 

inflammation. Ang II is able to induce cytokine release,92 also 

stimulating the production of PAI-1 and pro-inflammatory 

transcription factors, such as NF-κB,93 which in turn regulate 

adhesion molecules (VCAM-1 and ICAM-1) and the expres-

sion of several cytokines, as already mentioned.

Potential for anti-inflammatory 
therapeutics against DCM
Although specific therapy for the treatment or prevention of 

DCM is still lacking, some therapeutic strategies may present 

potential benefits.

Physical exercise
Improvement of glycemic control is the most basic and 

important target for preventing diabetic heart disease, 

thus lifestyle and dietary modifications are very important 

in this regard. Increased regular physical activity has been 

shown to benefit glycemic control and improve insulin 

sensitivity, increase the metabolism of glucose and FAs in 

heart muscle and may improve LV function, thus attenuating 

diabetes-induced cardiac alterations. Physical exercise also 

has anti-inflammatory effects, as it decreases the release 

of inflammatory cytokines from the skeletal muscles, 

endothelial cells, and immune system and increases anti-

inflammatory cytokines, such as adiponectin.94 Using an 

animal model of T2DM, the Zucker Diabetic Fatty rat, our 

group has demonstrated that regular aerobic exercise not only 

improves glycemic control and attenuates dyslipidemia but 

also, as mentioned, promotes an anti-inflammatory effect 

by reducing pro-inflammatory cytokines, such as TNF-α 

and CRP, and increasing adiponectin levels.95–97 This effect 

occurs independently of weight loss and is not observed if an 

acute extenuating exercise is used.98 However, weight loss is 

also associated with a reduction of inflammatory mediators, 

including some cytokines and CRP.99,100

Antidiabetic agents
Insulin-sensitizing agents
Insulin resistance is a hallmark of T2DM and plays an impor-

tant role in the pathogenesis of DCM. Thus, agents used to 

ameliorate insulin resistance might be useful for the treat-

ment or prevention of DCM. Many studies have indicated 

that insulin may be cardioprotective and one of the reasons 

that could contribute to this effect may be related to the anti-

inflammatory action of insulin itself. Several studies have 

shown a reduction of adhesion molecules, such as ICAM-1 

and E-selectin, circulating CRP, IL-6, and PAI-1 due to 

insulin-sensitizing therapy.101,102

Metformin is one of the most commonly prescribed 

antidiabetic drugs and is known as an insulin-sensitizing 
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agent. Metformin improves peripheral sensitivity to insulin and 

promotes intensive glucose control.103 Besides these properties, 

some studies have demonstrated the cardioprotective actions 

of metformin, since it can improve cardiac function and inhibit 

cardiac hypertrophy by stimulating adenosine monophosphate-

activated protein kinase activity and preventing the structural 

and functional derangements in DCM.103–105 Metformin 

may also exert anti-inflammatory actions since it inhibits 

the cytokine-induced expression of pro-inflammatory and 

adhesion molecule genes by reducing NF-κB activity and 

increasing Akt activation.106 However, the risk of lactic acidosis 

caused by metformin may be a contraindication for its use in 

diabetic patients with heart failure.

Thiazolidinediones (TZDs) and PPAR agonists are other 

insulin-sensitizing agents used in T2DM treatment, with proven 

ability to improve insulin sensitivity and glycemic control and 

to decrease FFA concentration. The possible beneficial effects 

of TZDs on the myocardium have been demonstrated in sev-

eral studies. In animal models, TZDs may improve diabetic 

cardiac function by raising myocardial glucose uptake and 

reducing delivery of FAs to the myocardium. Kim et al107 have 

suggested that pioglitazone can prevent diastolic dysfunction 

in the hearts of rats with advanced diabetes by improving 

myocardial FA metabolism, while Tsuji et al108 have confirmed 

that pioglitazone improves LV diastolic function in prediabetic 

rats. The improvement of myocardial diastolic function was 

also observed in T2DM patients treated with rosiglitazone.109 

In that study, the effect of rosiglitazone on cardiac function was 

associated with a decrease in oxidative stress and inflammation 

in these patients. Additionally, other factors have been noted as 

being involved in the improved cardiac function with the use 

of TZDs, including decreased collagen accumulation108 and 

consequent decreased fibrosis,110 as well as inhibition of cardio-

myocyte hypertrophy.111 In contrast, some clinical and echocar-

diographic studies have shown that the use of TZDs does not 

appear to exert any beneficial or deleterious effect on the cardiac 

structure and function in patients with T2DM.112,113

Pioglitazone and rosiglitazone stimulate PPAR-γ, which 

regulates important genes for the metabolism of glucose and 

fat. Both agents enhance insulin sensitivity in skeletal muscle 

and adipose tissue via the activation of PPARγ.114 However, 

activation of PPARγ in the myocardium may also have anti-

inflammatory effects. Takano et al115 demonstrated that PPAR 

activators inhibit TNF-α expression at the transcription level 

in part by attenuating NF-κB activity in cardiomyocytes. 

This finding was corroborated by Yamamoto et al in rat 

cardiac myocytes.111 However, the effects of this therapy on 

cardiac function in patients with T2DM have not yet been 

fully elucidated and there is increasing discussion about 

the application of these compounds due to their propensity 

for fluid retention and increasing the risk of congestive heart 

failure in susceptible patients.116,117

PPARα is the most abundant isoform in the heart. Under 

ligand stimulation by FFA, PPARα recruits specific co-activators, 

including, among other transcription factors, the peroxisome 

proliferator-activated receptor-α co-activator-1α PGC1α, which 

regulates the genes involved in fuel homeostasis, as well as 

others.118 As cardiac overexpression of PPARs induces cardiac 

lipotoxicity and steatotic cardiomyopathy, which contributes 

to the development of myocardial apoptosis and hypertrophy/

remodeling,119–121 modulation of PPARs has been seen as a 

therapeutic opportunity for DCM management. In experimental 

DCM, a PPARα agonist treatment ameliorated induced cardiac 

apoptosis and dysfunction.122,123 Ares-Carrasco et al88 evaluated 

the potential beneficial role of PPARα activation in the associated 

hypertrophy in a rat model of chronic diabetes and hypertension. 

According to their findings, PPARα could be activated for 

different responses to FFA degradation in stages when diabetes 

and hypertension coexists, attenuating the hypertrophy. Thus, 

PPARα-agonist therapy may prove a valid anti-hypertrophic 

measure; however, more research is required to fully understand 

the role of PPARα agonists, as well as TZDs, in DCM.

Incretin modulators
The glucagon-like peptide-1 (GLP-1) is an incretin hormone 

rapidly released after food intake that exerts several actions 

that are important in maintaining glucose homeostasis, stimu-

lating postprandial insulin secretion, and improving insulin 

sensitivity. It is noteworthy that in patients with obesity or 

T2DM, the postprandial levels of intact GLP-1 are signifi-

cantly reduced compared with those in normal subjects.

The GLP-1 receptor has been described in extra-

pancreatic tissue, including the heart, which encouraged 

studies concerning its role in cardiac physiology, as well as the 

putative benefits of GLP-1 agonists in cardiac disorders.124,125 

Experimental and clinical studies126–128 have suggested that 

GLP-1 agonists may have a considerable cardioprotective role 

in the myocardium, although the mechanisms through which 

GLP-1 acts have not yet been elucidated. GLP-1 attenuated 

myocardial ischemia-reperfusion injury in the in vitro rat 

heart and showed cardioprotective and inotropic effects in 

another study using isolated rat hearts.129,130 Furthermore, 

it has been shown that mice with the genetic deletion of 

the GLP-1 receptor display reduced heart rate, elevated LV 
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end-diastolic pressure, and impaired LV contractility and 

diastolic function after insulin administration. In addition, 

infusion of GLP-1 resulted in improved LV function, 

hemodynamic status, and efficiency, indicating a direct role 

of GLP-1 in cardiac physiology.131

The pharmacologic use of GLP-1 receptor agonists has 

been shown to reduce body weight and systolic blood pressure 

and significantly improve glycemic control and lipid profile. 

Some studies132,133 have reported that GLP-1 and its agonists 

have antioxidant, vasoprotective, and antihypertensive effects 

as well as anti-inflammatory properties. One of these studies 

showed that the GLP-1 liraglutide exerts an anti-inflammatory 

effect on vascular endothelial cells through increased NO 

production and suppression of NF-κB activation, which 

is at least partly mediated via adenosine monophosphate-

activated protein kinase activation.134 In a recent study using 

the same GLP-1 analog, cardiac hypertrophy was ameliorated 

in mice.135 However, further research is advised to better 

understand the complete benefits of GLP-1 agonists in the 

treatment of DCM.

Dipeptidyl peptidase 4 (DPP-4) inhibitors, such as 

sitagliptin, vildagliptin, and saxagliptin, are able to increase 

the endogenous contents of incretins such as GLP-1. Besides 

their effect on glycemic control, DPP-4 inhibitors, or gliptins, 

have been shown to have cyto-protective actions on other 

tissues, including on that of the heart,136,137 which might be 

due to anti-inflammatory and antioxidant properties. Our 

group has already shown in the Zucker Diabetic Fatty rat 

that sitagliptin treatment for 6 weeks, even at a low dose, 

is able to promote anti-inflammatory as well antioxidant 

effects.138,139

DPP-4 inhibitors have the advantage of being available 

for oral administration and do not raise the supra-

physiological concentration of GLP-1; however, they do 

impede the formation of unspecific proteins (neuronal) and 

GLP-1 degradation products, which have been shown to have 

beneficial roles in the CV system.

Further research is needed to elucidate the importance of 

both these incretin modulators, DPP-IV inhibitors and GLP-1 

analogs, in DCM therapy.

Other non-antidiabetic agents
Statins
The effectiveness of statin therapy in DCM has not yet been fully 

clarified, although there is some evidence of decreased mortality 

and lowered risk of CV events in diabetic patients treated 

with statins.140 Statins are primarily inhibitors of cholesterol 

biosynthesis; however, although the key benefits of statins 

were initially attributed to their lipid-lowering effects, it is now 

known that they act directly through other cellular mechanisms 

and these actions are known as “pleiotropic effects.”141,142 

These effects are related to the improvement of endothelial 

function by mechanisms both dependent and independent 

of cholesterol. By the increased expression and activation of 

eNOS, producing an increase in the bioavailability of NO, they 

are also involved in reducing blood thrombogenicity, oxidative 

stress, and cell proliferation.

Statins may also exert anti-inflammatory effects by sev-

eral pathways,143 including reduced activity of VCAM-1 and 

ICAM-1, decreased function and levels of monocyte chemot-

actic protein-1, and decreased CRP. Statins have been shown 

to inhibit pro-inflammatory pathways by reducing the levels 

and activities of transcription factors involved in inflamma-

tion. Some studies144,145 have shown that atorvastatin, for 

example, improves LV function, reduces fibrosis, and pre-

vents cardiac hypertrophy. In addition, the protective effects 

of atorvastatin on cardiac remodeling were associated with 

the anti-inflammatory actions that atorvastatin can exert.146,147 

However, further studies are required to better evaluate the 

possible beneficial effects of statins in DCM.

RAAS inhibitors
As already discussed, the activation of the RAAS and Ang II 

release are two important factors that contribute to the devel-

opment of DCM. Thus, the inhibition of the RAAS seems to 

have beneficial cardioprotective effects.

Angiotensin-converting enzyme (ACE) inhibitors and 

angiotensin receptor blockers (ARBs) are the drugs most 

commonly used to block the RAAS and there is much evidence 

to suggest that these antihypertensive agents reduce CV mortality 

in diabetic patients. Indeed, it has been suggested that treatment 

with ACE inhibitors and ARBs could ameliorate diabetes-

induced cardiac dysfunction and improve the outcome of heart 

failure in diabetic patients.148 Improved cardiac fibrosis, reduced 

collagen synthesis and deposition, reduced cardiomyocyte 

apoptosis, as well as prevention of cardiac hypertrophy, are some 

of the beneficial consequences at cardiac level resulting from 

treatment with ACE inhibitors and ARBs.15,149 It is known that 

aldosterone antagonists may also have similar beneficial effects 

on myocardial hypertrophy and fibrosis.150

Experimental and clinical studies also suggest that, beyond 

their function of reducing blood pressure, these drugs may 

contribute to the prevention of T2DM by improving insulin 

sensitivity, enhancing glucose uptake, improving pancreatic 

and skeletal muscle blood flow, and stimulating proliferation 

and differentiation of adipocytes.151,152
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Ang II is a pro-inflammatory peptide and the inhibition 

of its production or action, using ACE inhibitors and ARBs, 

respectively, could result in an anti-inflammatory action. 

Several studies154,155 with ACE inhibitors and ARBs have 

showed decreases in various pro-inflammatory cytokines and 

oxidative stress, independent of their effects on blood pres-

sure.153,155 For instance, ramipril, an ACE inhibitor, decreases 

the expression of TNF-α, IL-6, and IFN-γ, as evident in 

LV biopsies, in unstable angina patients;156 the effect was 

similar when patients were treated with valsartan, an ARB. 

In contrast, Gullestad et al157 demonstrated that high-dose 

ACE inhibitor therapy – in this case, enalapril – is selective to 

reduction of IL-6 levels in circulation, which might be associ-

ated with the reduction of ventricular hypertrophy in patients 

with chronic heart failure. Candesartan, another ARB, also 

decreases plasma levels of TNF-α, IL-6, and VCAM-1 in 

patients with heart failure.158 However, the studies, which 

included the anti-inflammatory effects of these drugs, were 

not conclusive and had controversial results. The effects 

depend on the type of inhibitor used, as well as the dosage 

levels and durations of the pharmacological treatment, thus 

further research is needed.

Conclusion and future perspectives
DCM is a specific cardiomyopathy that develops in dia-

betes patients, which is due to structural and functional 

abnormalities in the myocardium. Several lines of evi-

dence suggest an important role for inflammation in the 

pathophysiology of DCM. Therefore, better understanding 

of the mechanisms underlying the inflammatory process will 

bring new opportunities for the prevention and/or treatment 

of DM and of its serious complications, including DCM. 

Currently, both non-pharmacological – such as physical 

exercise – and pharmacological measures, which include 

some antidiabetic agents, as well as other drugs, seem to 

have beneficial actions against the inflammation underlying 

DCM, but further research is advised to improve diagnosis, 

prevention, and treatment of this disorder.
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