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Abstract: Lymphomas are a hematopoietic malignancies that encompass over 90 subtypes. Traditionally, they have been categorized into 
two main groups, non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL). Based on morphology and immunohistochemistry, HL can 
be classified into nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) and classical HL (cHL). NHL represents the most 
common form of lymphoma, including more than 50 subtypes, such as mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal 
zone lymphoma (MZL), and the most common, diffuse large B-cell lymphoma (DLBCL). Medical imaging plays a pivotal role in 
lymphoma management, with positron emission tomography/computed tomography (PET/CT) serving as an indispensable tool. 
2-Deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) PET/CT is extensively utilized in lymphoma management, having demonstrated its 
value in providing crucial data for precise disease burden quantification, treatment response evaluation, and prognostic assessment. 
Radiomics is an innovative approach that entails the computer-aided extraction of quantitative, searchable data from medical images and 
its association with biological and clinical outcomes. The rapid advancement of radiomics research has opened new avenues for cancer 
diagnosis and therapy. Our findings indicate that artificial intelligence based PET/CT radiomics has demonstrated significant potential in 
lymphoma diagnosis, subtyping, staging, treatment selection, and survival prognosis assessment, offering clinicians powerful decision- 
support tools. However, challenges remain, such as the lack of standardized image quality in machine learning applications. 
Keywords: lymphomas, PET/CT, radiomics, imaging, artificial intelligence

Introduction
Lymphoma is a malignancy of the hematopoietic system. Over the past two decades, there has been a significant global 
increase in lymphoma incidence. According to the Global Cancer Statistics approximately 20.0 million new cancer cases 
were diagnosed worldwide in 2022, including 0.08 million cases of HL and 0.5 million cases of NHL. Among the 
9.73 million cancer-related deaths, lymphoma accounted for 0.27 million (2.8%), establishing it as a principal cause of 
cancer mortality.1 Lymphoma biology and clinical manifestations are heterogeneous.2 Lymphoma usually presents as 
painless lymph node enlargement, but it can also occur without obvious symptoms, leading to misdiagnosis. Although 
survival rates for lymphoma patients have improved in recent decades, there are still wide variations in five-year survival 
rates. The high heterogeneity and misdiagnosis rates of lymphoma highlight the urgency of developing non-invasive, 
effective diagnostic tools. Medical imaging research is essential for optimizing lymphoma diagnosis and treatment.

Lymphoma is a highly heterogeneous tumor.3–5 Tumor heterogeneity reflects the characteristics of tumor growth and 
biology.6,7 It serves as a crucial prognostic marker for assessing cancer progression, relapse potential, and treatment 
resistance.8–10 Lymphoma is not limited to the lymphatic system, but extends widely to various parts of the body, including 
solid organs (e.g., liver and lungs), soft tissues, and bone marrow.11,12 In clinical practice, biopsy or lesion resection is usually 
performed on a single lesion site, meaning that insufficient heterogeneity reflects the whole tumor and information can only be 
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acquired from a scant few sites, perhaps even just one.13 Additionally, this approach is highly invasive, non-repeatable,14–16 and 
may cause complications. Recently, several studies have clearly shown that radiomics shows substantial potential for non-invasive 
assessment of tumor heterogeneity.17–20 This methodology employs sophisticated high-dimensional analysis of imaging data to 
effectively characterize tumor heterogeneity,17,18 thereby offering robust reinforcement for the prognosis of clinical outcomes.21 

Its advantage is that it can realize non-invasive, real-time, dynamic, and reproducible monitoring of tumor, which opens up a new 
way for tumor diagnosis and treatment.22 Artificial intelligence (AI) is developing rapidly. Studies increasingly prove that 
integrating AI with MRI,23 pathology,24 and genetic data25 is important for lymphoma diagnosis and treatment. Particularly, PET/ 
CT imaging—a crucial molecular imaging technology—offers important advantages when combined with AI. Based on existing 
lesion morphological features, PET/CT radiomics incorporates first-order, second-order, and higher-order features, alongside the 
characteristic metabolic features of PET, in order to more accurately depict tumor heterogeneity.26–28 This paper aims to 
investigate the role of AI-assisted PET/CT radiomics in lymphoma management, including diagnosis, subtyping, staging, risk 
stratification, treatment selection, and prognosis prediction. Additionally, we discuss key methodological aspects such as radiomic 
feature extraction, model comparative analysis, and advanced deep learning techniques.

Radiomics and Artificial Intelligence
PET/CT radiomics can extract detailed tissue and lesion features from medical images.29–31 These features can be used 
either independently or in conjunction with demographic, histological, genomics, or proteomic data to predict the 
underlying biological properties and tumors’ biological behavior, thereby elucidating the correlation between patients’ 
clinical characteristics and prognosis.32–34 The basic workflow of PET/CT imaging radiomics comprises: acquiring and 
standardizing images, region labeling, segmenting the images, calculating and selecting features, reducing dimension-
ality, constructing the model, and finally, evaluating the model (Figure 1).

Radiomics features (RF) are generally classified into statistical features, encompassing histogram-based feature and texture- 
based features; model-based feature; transform-based feature; and shape-based feature.35 Histogram features (also called first- 
order features) represent the most basic statistical descriptors. Derived from individual pixel or voxel analysis without incorpor-
ating spatial information, these features mainly include mean, maximum, minimum, variance, and percentiles of the gray levels.36 

In PET imaging, the routinely used SUV measurements—SUV max, SUV mean, and SUV peak—all represent first-order 

Figure 1 The picture depicts the workflow of radiomics. (1) Image acquisition and standardization, (2) Labeling and segmentation, (3) Feature extraction, (4) Feature 
selection, (5) Model construction, (6) Model evaluation.
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features. Texture features, also known as second-order features, characterize the spatial organization and intensity hierarchy of 
voxels, serving as one of the conventional methods for quantifying tumor heterogeneity.37 The most commonly utilized second- 
order features include GLCM, GLRLM, GLSZM, GLDZM, NGTDM, and the NGLDM.38 Model-based features are engineered 
to decode spatial grayscale data, enabling the characterization of objects or shapes.39 Transform-based features analyze gray-level 
patterns in different mathematical spaces through various transformations, including Fourier, Gabor, and Haar wavelet 
transformation.35 Artificial intelligence (AI) has demonstrated rapid advancement in medical imaging applications, showing 
remarkable capabilities in Image segmentation;40–42 Feature extraction;31,43 Feature selection and optimization;44–46 Predictive 
model development.47–49 Machine learning (ML), a branch of artificial intelligence, emerges as a promising auxiliary tool.50 It 
specializes in identifying the intricate relationships between high-dimensional input radiomics features and target variables, 
utilizing training examples to develop predictive models with the utmost accuracy.51 Four commonly used ML methods: 
reinforcement learning, supervised learning, unsupervised learning, semi-supervised learning, can be used to solve different 
tasks. In practical applications, common ML methods include support vector machine (SVM), random forest (RF), decision tree 
(DT) and others. Three common terms in the application of ML are training set, validation set, and test set. The training set is used 
for model training, the validation set for optimizing hyperparameters, and the test set for evaluating the model’s generalization 
ability. Model performance is often assessed using the receiver operating characteristic (ROC) curve and its area under the curve 
(AUC). Deep learning (DL), a pivotal subset of ML,52 forms the foundation of modern AI systems. It harnesses intricate structures 
or multiple layers of processing—composed of a series of nonlinear transformations—to discern data algorithms and delve into 
the inherent patterns and representational depths of sample data.53 Convolutional neural network (CNN) are the most commonly 
used method in DL. Recent advances demonstrate that ML approaches, particularly DL techniques combined with 18F-FDG 
PET/CT radiomic features, provide valuable decision-support capabilities for managing patients. Figure 2 depicts the workflow of 
AI in lymphoma management.

Figure 2 The picture depicts the workflow of AI in lymphoma management.
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Recent Innovations in Radiomics for Lymphoma
Diagnosis, and Differential Diagnosis
Achieving effective management and accurate prognosis of lymphoma depends fundamentally on timely and early 
diagnosis.54,55 Over the past decades, PET/CT radiomics have improved the accuracy of lymphoma diagnosis. The 
impact of PET/CT radiomics on lymphoma diagnosis has dramatically expanded, evolving from the examination of 
isolated features to a comparative analysis of models and the employment of advanced deep learning methodologies. 
Kong et al56 investigated the utilization of shape, first-order, and texture features derived from 18F-FDG-PET imaging to 
distinguish central nervous system lymphoma from glioblastoma (GBM). They pinpointed 13 radiomics features capable 
of effectively discerning lymphoma from GBM, suggesting that lymphoma generally displays higher SUV values across 
most interval segments and is quantitatively more heterogeneous compared to GBM. This study demonstrated that 
radiomics features can effectively distinguish GBM from central nervous system lymphoma (Table 1). A retrospective 
study evaluated the ability of 18F-FDG PET/CT radiomics combined with machine learning to distinguish breast cancer 
from breast lymphoma.57 Six unique classification models were created, each containing a distinct combination of 
clinical and imaging data. The findings indicated that both the PETa model (which merges clinical details with SUV 
measurements and radiomic features) and CTa model (which combines clinical information and radiomic features derived 

Table 1 Application of 18F-FDG PET/CT Radiomic Features in Lymphoma: Diagnosis, Subtyping, Staging, and Risk Stratification

Authors, 
Year

Patients Number Clinical Purpose PET/CT Parameters Area Under 
the Curve 

(AUC Values)

Kong et al 

201956

77 patients (24 with lymphoma 

and 53 with Glioblastoma)

Differential diagnosis between primary 

central nervous system lymphoma and 

glioblastoma

Shape, first-order and texture 

features

0.943–0.998

Ou et al 

202057

44 patients (19 with breast 

lymphoma and 25 with breast 

cancer)

Differential diagnosis between breast 

lymphoma and breast cancer

Clinical, SUV, Radiomic 

features

Training group: 

0.867 

Validation 
group: 0.806

Sibille et al 

202058

629 patients (327 with 

lymphoma and 302 with lung 
cancer)

Differential diagnosis between Lymphoma 

and lung cancer

Deep Convolutional Neural 

Networks

0.98

Cui et al 

202359

51 patients (8 with PCNSL and 

43 with brain metastases)

Differential diagnosis between Primary 

central nervous system lymphoma 
(PCNSL) and brain metastases

Density features and the 

group of multi-class features

0.93

Wang et al 
202460

86 patients (69 with pancreatic 
carcinoma and 17 with 

pancreatic lymphoma)

Differential diagnosis between pancreatic 
lymphoma and pancreatic carcinoma

PET metabolic parameters 
and radiomics features

Training set: 
0.994–0.989 

Validation set: 

0.844–0.909
Zhu et al 

202161

38 patients (18 with renal cell 

carcinoma and 20 with renal 

lymphoma)

Differential diagnosis between renal 

lymphoma and renal cell carcinoma

Synthetic texture parameters 0.725–1.0

Lovinfosse 

et al 202262

420 patients (169 with 

sarcoidosis, 140 with HL, and 

111 with DLBCL)

Lymphoma subtypes classification Tumor-liver radiomics (TLR) TLR: 0.95

Mayerhoefer 

et al 202063

97 patients with MCL Bone marrow infiltration SUVmax, SUVmean, SUVpeak, 

and 16 co-occurring matrix 

texture features

The radiomic 

signature: 0.73

Eertink et al 

202264

317 patients with DLBCL Risk stratification Radiomics(MTV, SUVpeak, 

and Dmaxbulk) and clinical 

features

0.79

Ortega et al 

202365

88 patients with HL Risk stratification 65 radiomic features 0.79
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from CT scans) exhibited exceptional proficiency in distinguishing between the training and validation groups. Notably, 
the PETa model achieved an AUC of 0.867 for the training set and 0.806 for the validation set, whereas the CTa model 
achieved an AUC of 0.891 for the training set and 0.759 for the validation set, showcasing their respective discriminative 
strengths (Table 1). In a large-scale retrospective case study,58 629 patients were enrolled to undergo 18F-FDG PET/CT 
uptake classification utilizing a deep convolutional neural network (CNN) to discriminate between lymphoma and lung 
cancer. In the evaluation of CNN performance for 18F-FDG PET/CT imaging, utilizing five input features, distinct 
results emerged. 18F-FDG PET alone achieved a remarkable AUC of 0.97, highlighting its superior performance. The 
incorporation of 18F-FDG PET and CT, further enhanced the diagnostic capability with an AUC of 0.98 (Table 1). 
Significant to highlight that PET/CT radiomics also plays a crucial role in: discerning lymphoma from metastatic 
tumors;59 differentiating renal lymphoma from renal cell carcinoma;60 and distinguishing pancreatic cancer from 
pancreatic lymphoma (Table 1).61

Distinguishing Between the Lymphoma Subtypes
The significant variations in therapeutic interventions and predicted outcomes for individual lymphoma subtypes 
emphasize the importance of timely pathological subtype classification to guide accurate and tailored treatment plans. 
Notably, lymphoma subtype and patient heterogeneity are major drivers of patient outcome.66 At present, lymphoma 
classification relies on invasive biopsy and pathological analysis. Consequently, the utilization of noninvasive techniques 
for the automated classification of lymphoma subtypes holds significant clinical implications. An increasing number of 
studies demonstrate that PET/CT radiomics plays a pivotal role in distinguishing among diverse lymphoma subtypes. 
Abenavoli EM et al conducted a retrospective review of histopathological diagnoses for mediastinal volume disease. The 
application of machine learning approaches was utilized to assess the diagnostic importance of 18F-FDG PET/CT 
volumetric and textural features for identifying distinct histological subtypes of lymphoma. The findings revealed 
substantial variations in SUV max, SUV mean, MTV, TLG, and various texture features at both first- and second- 
order gray levels across the lymphoma groups. Among machine learning classifiers, tree-based ensemble techniques 
demonstrated the highest efficacy for distinguishing lymphoma histological subtypes.67 Researchers classified patients 
into four major lymphoma subtypes: DLBCL, FL, HL, and MCL. By integrating multiple-instance learning with support 
vector machines (SVMs) and random forest classifiers, they achieved 97.0% sensitivity and 94.1% positive predictive 
value for HL diagnosis, evaluated at both volume-of-interest (VOI) and patient levels.68 Lovinfosse et al integrated 
clinical data, including age, sex, and weight, with radiomic features from both original images and tumor-liver radiomics 
(TLR). They employed seven distinct feature selection methods with four machine learning (ML) classifiers to 
differentiate HL and DLBCL. The TLR lesion-based approach achieved an AUC of 0.95, while the patient-based 
approach (incorporating original radiomics and age) yielded an AUC of 0.86 (Table 1).62 Regarding lymphoma subtype 
classification, PET/CT radiomics has undertaken multiple endeavors. These endeavors consist of the application of the 
Radiomics-Deep Learning (RA-DL) approach for tumor subtype classification;69 as well as the implementation of 
classification methods that are derived from pseudo-spatiotemporal (PST) radiomics features, and the utilization of 
structural recurrent convolutional neural networks for distinguishing different subtypes.70

One challenge in treating lymphoma is accurately identifying cases that have undergone histological transformation (HT). HT 
refers to the process whereby indolent lymphoma transforms into a clinically aggressive form. Despite declining conversion 
rates, the disease remains a substantial threat with poor prognosis.71–73 Richter transformation (RT), initially delineated by 
pathologist Moritz Richter in 1928,74 describes the conversion of chronic lymphocytic leukemia/small lymphocytic lymphoma 
(CLL/SLL) into aggressive B-cell lymphoma or HL.75,76 This transformation occurs in roughly 2–10% of cases.74 Several 
genetic, clinical, and biological factors are linked to elevated RT risk, yet a unified consensus remains elusive.77–79 Prognosis is 
generally poor limited effective treatments.80–82 Previous studies indicate 18F-FDG can identify transformation from indolent to 
aggressive lymphoma.83–85 Among semi-quantitative studies, SUV max has been the most extensively researched.86–88 A meta- 
analysis of 1,593 CLL patients established an optimal SUV max threshold of 5 for detecting RT, demonstrating 86.8% sensitivity 
and 90.5% negative predictive value.89 In addition to SUV max, studies also incorporated other semi-quantitative parameters. 
Significant differences between RT and non-RT patients were observed in PET metrics including: maximum standardized uptake 
value body weight (SUV bw), lean body mass (SUV lbm), body surface area (SUV bsa), lesion-to-liver SUV ratio (L-L SUVR), 
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and lesion-to-blood-pool SUV ratio (L-BP SUVR).87,90 Large-cell transformation represents another common form of HT. The 
predictive value of SUV max for identifying large-cell transformation remains controversial. Previous smaller series suggested 
an association between baseline SUV max and HT,91,92 FDG activity was overall higher in HT patients than in histological 
untransformed patients.93,94 Nonetheless, some research endeavors have revealed that SUV max does not function as a reliable 
indicator for predicting HT.95

Staging, Especially in the Bone Marrow Infiltration (BMI)
Accurate staging plays a crucial role in devising effective therapeutic strategies for both HL and NHL. According to the National 
Comprehensive Cancer Network Working Center (NCCN) and Society of Nuclear Medicine (SNM), FDG-PET/CT is indis-
pensable for lymphoma staging.96 PET/CT implementation has markedly enhanced identification of nodal and extranodal 
manifestations, allowing for either an upgrade or downgrade in staging.97–99 Research has indicated that it alters the staging in 
18% to 45% of FL patients, 3% to 45% of HL patients, and around approximately 5% of DLBCL diagnoses.100–104 Bone marrow 
involvement (BMI) occurs in approximately 50% of patients with NHL and can be seen in up to 15% of HL.105–107 While bone 
marrow biopsy (BMB) remains the gold standard for assessing marrow aggressiveness, its reliance on random sampling 
contributes to high false-negative rates.108,109 Whether 18F-FDG PET/CT radiomics can replace BMB is a current research 
focus. The outcomes of numerous visual18F-FDG-PET investigations evaluating bone marrow infiltration proved unsatisfactory, 
exhibiting either low sensitivity or specificity, particularly with a sensitivity ranging from 12% to 52% in MCL cases.110–113 

Numerous studies have attempted to differentiate involved and uninvolved bone marrow using quantitative PET/CT metrics, yet 
the findings remain contentious.89,114–116 Researchers sought to pinpoint threshold values capable of distinctly separating the SUV 
max, SUV mean, and SUV peak of affected and unaffected bone marrow. They arrived at the optimal cutoff points for cSUV mean 
(3D partial volume corrected mean standardized uptake value), SUV max, and SUV peak as 1.3, 2.1, and 1.7, correspondingly, 
resulting in unique pairings of sensitivity and specificity 75.0% and 85.7%, 87.5% and 85.7%, and 87.5% and 85.7%, 
separately.116 However, Adams HJ et al included 40 newly diagnosed DLBCL patients in their study and conducted a head-to- 
head comparison against BMB, revealing a substantial intersection in the cSUV mean, SUV max, and SUV peak values between 
the groups.117 Aide and colleagues extracted a range of features from PET scans of 82 DLBCL patients, including histogram, co- 
occurrence matrix, and size region matrix features. Among the histogram features, SkewnessH was identified as the most accurate 
measure for determining BMI, with a sensitivity of 81.8% and a specificity of 81.7%.118 Other studies have incorporated texture 
analysis and radiomics alongside standard PET parameters. The analysis identified two specific radiomic metrics—code similarity 
and long-run emphasis—as having significant predictive value for BMI identification.119 In a separate retrospective study, 
researchers extracted standard uptake value parameters (SUVmax, SUVmean, SUVpeak) and 16 co-occurring matrix texture 
features. Utilizing a multilayer perceptron neural network, compared three distinct combinations to predict BMI. SUVs, the 
radiomic features, and the radiomic features when integrated with laboratory data, showed AUCs reaching up to 0.66, 0.73, and 
0.81 for the assessment of involved versus uninvolved bone marrow. These results indicate that FDG-PET texture features 
augment the predictive power of SUV-based methods for identifying BMI in MCL (Table 1).63 Therefore, PET/CT-based 
radiomics plays a pivotal role in precise lymphoma staging and significantly contributes to clinical decision-making.

Treatment Options Based on Risk Stratification
PET/CT radiomics plays a crucial role in personalized lymphoma treatment management. Risk-adapted treatment 
strategies are essential for optimizing cure rates while minimizing treatment-related toxicity. PET/CT radiomics provides 
clinically significant quantitative data, facilitating both pretreatment risk stratification and treatment response monitoring 
through phenotypic characterization. The capacity to identify patients at elevated relapse risk before treatment enables 
early stratification and potentially improves outcomes.

For the most common type of NHL, DLBCL, current prognostic systems include the International Prognostic Index (IPI),120 

the revised IPI,121 or the National Comprehensive Cancer Network IPI,122 do not effectively discern patients at high risk.123,124 

Consequently, recent studies have shown growing interest in using PET/CT-derived biomarkers for initial risk stratification in 
lymphoma patients to optimize treatment outcomes. Researchers analyzed 152 DLBCL patients, extracting 1245 radiomics 
features from pretreatment PET/CT images, with primary focus on total metabolic tumor volume (TMTV) and metabolic tumor 
volume (MTV). These features, alongside clinical variables, were employed to develop a mixed nomogram. The AUC values for 

https://doi.org/10.2147/CMAR.S529589                                                                                                                                                                                                                                                                                                                                                                                                                                                   Cancer Management and Research 2025:17 1462

Duan et al                                                                                                                                                                    

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



TMTV and MTV were significantly higher than those of the IPI. Decision curve analysis (DCA) demonstrated that the composite 
nomogram provided greater net benefit than the IPI alone. By integrating RF and IPI, the nomogram incorporating MTV and 
TMTV achieved more pronounced risk stratification compared to IPI alone, with more significant differences among subgroups 
and an enhanced risk ratio.125 95 individuals with advanced DLBCL were included in the study. Baseline MTV and radiomics 
features were calculated. Patients exhibiting elevated MTV and Dmax (maximum tumor dissemination) were identified as having 
risk factors for reduced progression-free survival (PFS). Furthermore, these factors correlated with reduced overall survival (OS). 
Combining MTV (> 384 cm³) and Dmax (> 58 cm) established three distinct risk categories. They suggest that integrating MTV 
with parameters reflecting tumor burden spread improves DLBCL staging risk stratification.126 A model integrating metabolic 
heterogeneity (MH) with MTV can early identify patients with refractory DLBCL who could benefit from intensive therapy. 
High-risk patients with a diminished PFS (HR=5.6) and shortened OS (HR=7.6).127 To identify DLBCL patients at high risk of 
disease progression or relapse, baseline lesions were delineated using semi-automated segmentation (SUV≥4.0) and 490 radio-
mics features were extracted.64 The fusion of radiomics and clinical features, particularly the blend of tumor-centric indicators 
(MTV, SUV peak, and D maxbulk) with patient-centric parameters (WHO performance status and age exceeding 60 years), 
yielded the highest performance with an AUC of 0.79 (Table 1). The incorporation of radiomics features into clinical features 
resulted in a 15% elevation in PPV (positive predictive value), thereby increasing the exactness in pinpointing high-risk patients.

Most HL patients have a favorable prognosis.128,129 However, early identification of the minority with refractory or 
recurrent disease, which can be life-threatening, would be clinically invaluable.130,131 A retrospective analysis of 267 stage I– 
II HL patients found that in multivariate Cox regression, a 100-unit increase in total MTVt (HR = 1.14) and a 500-unit increase 
in total TLGt (HR = 1.096) significantly correlated with freedom from progression. This suggests MTV and TLG provide 
quantifiable tumor burden indicators for HL risk stratification.132 In order to precisely detect patients who are at a high risk for 
HL, the authors incorporated a cohort consisting of 258 patients diagnosed with stage I to II, who had undergone baseline PET 
scans and interim PET scans (iPET 2) following the completion of two treatment sessions (doxycycline, bleomycin, 
vinblastine, and dacarbazine).133 Four high-risk categories were defined by TMTV (with a threshold of 147) and interim 
PET 2 (DS score), displaying a 5-year PFS of 95%, 81.6%, 50% and 25%, respectively. Compared to existing staging 
frameworks (EORTC,134 GHSG,135 NCCN)136, TMTV improves initial risk assessment, enabling earlier treatment intensi-
fication and timelier therapeutic decisions.137,138 For predicting HL radiotherapy need, 65 radiomics features and clinical 
parameters were analyzed using binary logistic regression to identify predictors and calculate odds ratios (OR).65 The findings 
revealed that the first-order PET parameter sphericity (OR = 1.9), the CT parameter gray level zone length matrix high gray 
level zone emphasis (GLZLM SZHGE mean, OR = 2), PARAMS spatial resampling (OR = 2.1), and abnormal hemoglobin 
levels served as predictors for the final model, which achieved an AUC of 0.79 (Table 1).

Predicting Prognosis
Studies have identified multiple prognostic factors associated with lymphoma outcomes. IPI is regarded as a prognostic 
framework that is grounded in the characteristics of various clinical factors, encompassing age, Ann Arbor stage, 
extranodal involvement, serum lactate dehydrogenase (LDH) levels, and performance status.120 However, these conven-
tional parameters primarily function as indirect proxies for tumor burden and fail to fully capture functional and 
metabolic tumor characteristics.139,140 Recent advances in PET/CT imaging have revealed various quantitative biomar-
kers with potential prognostic value. These indicators encompass a spectrum from semi-quantitative metrics to tumor 
volume, and extend to metabolic characteristics (eg, shape and texture).

SUV Indicators Used for Predicting Outcomes
Owing to its stability and reproducibility, SUV max is the most widely used parameter in lymphoma prognostic studies. Multiple 
studies have demonstrated correlations between SUV max and survival outcomes in lymphoma patients.141–145 Researchers have 
proposed SUV max as a key predictor of disease progression in DLBCL. Using a cutoff value of 15, they found that patients with 
SUV max <15 had a 3-year overall survival (OS) of 90%, while those with SUV max ≥15 showed 72% survival. PFS was 90% 
for the low SUV max group and 39% for the high SUV max group.141 A retrospective analysis included 123 elderly patients with 
HL who underwent baseline18F-FDG-PET/CT scans at the onset of treatment and subsequent PET/CT scans at the conclusion of 
therapy. Through semi-quantitative index analysis, they explored whether baseline PET/CT metabolic parameters could be used 
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as prognostic indicators for HL. The results showed that both L-BP SUVR (lesion to blood-pool SUV max ratio) and L-L SUV 
R (lesion to liver SUV max ratio) were significantly associated with PFS and OS.143 In patients diagnosed with extranodal natural 
killer/T-cell lymphoma (NKTCL), a baseline SUV max of 9.65 emerged as an independent predictor of poor prognosis for distant 
relapse-free survival (HR=4.58) and PFS (HR=2.6). The authors suggest that the baseline SUV max could be a useful tool for 
identifying NKTCL patients at heightened risk of disease progression.146 Nevertheless, some studies indicate that the prognostic 
predictive ability of SUV max in lymphoma is limited. One large-scale study indicated that SUV max has negligible predictive 
value for PFS and OS in 258 patients with stage I and II HL.133

SUV max represents the most widely studied PET/CT biomarker in lymphoma prognosis, though its prognostic reliability 
remains debated. This ambiguity may stem from various factors influencing the SUV, including the spatial resolution of the 
scanner, the image acquisition protocols, and the PET reconstruction parameters. Furthermore, clinical study limitations such 
as heterogeneous cohort sizes across disease stages, along with differences in therapeutic regimens and progression-free 
survival (PFS) criteria, collectively contribute to the persistent uncertainty regarding its prognostic utility.147,148

Tumor Burden Metrics for Prognostic Prediction
While SUV max primarily characterizes the most metabolically active tumor regions, it does not fully capture spatial 
heterogeneity within the lesion. Moreover, it overlooks critical prognostic elements, particularly tumor burden informa-
tion. Recently, innovative metrics reflecting aggregate tumor burden, such as MTV and TLG, have been employed to 
predict PFS and OS in lymphoma patients. These indicators have been identified as potential baseline predictors for 
prognosis in different types of lymphoma.149–151

The determination of the SUV threshold plays a pivotal role in delineating the boundary of lymphoma lesions, which 
in turn influences the calculation of the MTV. Commonly used thresholds include 41% of SUV max,152,153 SUV 4,154,155 

and SUV max set at 2.5,156 among others. As depicted in Figure 3, the contour range varies for an example DLBCL 
patient at different thresholds. To a certain degree, the diverse cut-offs utilized could have played a role in the survival 

Figure 3 FDG PET/CT images in a DLBCL patient show three distinct contouring thresholds (red arrows): Green= 41% SUV max; Yellow= 2.5 SUV; Blue= 1.5× liver SUV 
mean (3D Slicer [https://www.slicer.org/]). (A(a–d)) Left supraclavicular lymph node; (B(a–d)) Mediastinal lymph node; (Ca–d) Retroperitoneal lymph node ((A) axial CT (B) 
axial PET; (C) coronal PET; (D) sagittal PET). 
Abbreviation: MIP, Maximum intensity projection.
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differences observed between the groups. Determining the suitable SUV threshold for MTV computation is dependent on 
the specific patient cohort under evaluation.

Researchers conducted a retrospective analysis of 169 patients with stage II–III DLBCL. The boundary of the target lesion 
was delineated employing a SUV threshold of 2.5, and MTV was subsequently quantified. ROC analysis identified 220 cm³ as 
the optimal MTV cutoff value. Patients with a lower MTV (<220 cm³) demonstrated significantly prolonged PFS and OS in 
comparison to those with a higher MTV (≥220 cm³)157 (Table 2). In another study, margin values were determined using lesion 
SUV max thresholds of 25%, 50%, and 75%, which correspondingly yielded TLG values of TLG25, TLG50, and TLG75. High 
TLG50 values (> 415.5) were linked to decreased survival rates in comparison to low TLG 50 values (≤415.5) (73% versus 92% 
for 2-year PFS; 2-year OS 81% versus 93%). A high IPI score significantly diminished the OS (2-year OS: 79% vs 90%). Ann 
Arbor Phase III/IV had an adverse effect on the PFS (P=0.013). However, neither higher IPI scores nor stage III/V alone 
significantly impacted PFS. High TLG50 values independently predicted survival outcomes, with hazard ratios (HR) of 4.4 for 

Table 2 Summary of Included Prognostic Studies by Lymphoma Type

Type Authors Patients 

Number

Study Type Multi- 

Centre

Treatment Features Definition of 

Prognostic 

Factor Provide

Median Follow- 

Up Time

NHL DLBCL Song et al157 169 Retrospective 

study

No R-CHOP MTV PFS 

OS

36 months

DLBCL Kim et al158 140 Retrospective 

study

No R-CHOP SUVmax 

TLG

2-year PFS 

OS

28.5 months

DLBCL Kostakoglu et al160 1418 Retrospective 

study

Yes R-CHOP TMTV, 

TLG,

OS 

PFS

48 months

DLBCL Capobianco et al163 301 Retrospective 

study

Yes R-CHOP TMTVPARS 

TMTVREF

PFS 

OS

5 years

FL Meignan et al167 185 Retrospective 

study

Yes R-CHOP 

R-CVP 

R-FM

TMTV 5-year PFS 

OS

64 months

DLBCL Cottereau et al170 290 Retrospective 

study

Yes R-CHOP D max 

SD max 

MTV

4-year PFS 

OS

5 years

DLBCL Cottereau et al126 95 Retrospective 

study

Yes R-CHOP 

R-ACVBP

MTV 

Dmax

4-year PFS 

OS

44 months

Mediastinal B-cell 

lymphoma

Ceriani et al171 103 Clinical trial Yes R-CHOP 

R-CHOP-like

MH 

TLG 

MTV

5-year PFS 62 months

DLBCL Ceriani et al127 254 Retrospective 

study

Yes R-CHOP MTV 

MH

5-year PFS 

OS

Testing set: 64 

months 

Validation set: 36 

months

DLBCL Aide et al172 132 Retrospective 

study

No R-CHOP 

R-ACVBP

MTV 

Radiomic 

features

2y-EFS 27 months

DLBCL Ritter et al173 85 Retrospective 

study

Yes R-CHOP Radiomic 

features

2y- EFS /

DLBCL Frood et al174 229 Retrospective 

study

No R-CHOP Radiomic 

features

2-EFS /

HL HL Kanoun et al159 59 Retrospective 

study

No Chemotherapy TMTV 4-year PFS 50 months

cHL Voorhees et al166 27 Clinical trial No CD30.CAR-T MTV PFS 9.5 months

HL Gallamini et al175 783 Clinical trial Yes ABVD D max 

TMTV

3-year PFS 40.6 months

cHL Frood et al176 289 Retrospective 

study

No ABVD 

AVD

Radiomic 

features

2-EFS /

HL Milgrom et al177 251 Retrospective 

study

No ABVD MTV 

TLG 

Radiomic 

features

/ /
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PFS and 3.1 for OS158 (Table 2). To assess baseline metabolic tumor volume (TMTV 0) in HL patients, TMTV 0 was quantified 
was quantified using a semi-automated technique with an SUVmax threshold of 41%. Both TMTV0 (225mL) and tumor volume 
(10 cm) were found to be indicators of PFS at the 4-year mark, with survival rates of 42% versus 85% and 44% versus 79%, 
respectively. Multivariate analysis confirmed TMTV0 (relative risk [RR] = 4.4) as an independent PFS predictor, demonstrating 
stronger prognostic value than tumor volume in HL patients159 (Table 2). Investigator findings from Phase III of the GOYA study 
indicated that elevated TMTV (366cm³) and TLG (3004g) were associated with inferior PFS in patients with DLBCL160 

(Table 2). This study is based on the III GOYA study, and the prospective, standardized PET procedure and a large number of 
PET-CT scan samples at baseline enhance the confidence in the data conclusions and further confirm the prognostic value of 
baseline quantitative PET indicators in lymphoma. To date, no consensus exists on standard techniques for contouring MTV and 
TLG, despite numerous proposed limitations to define metabolically active tumors.158,161,162 In PET/CT scans of 301 DLBCL 
patients, three-dimensional (3D) regions of interest (ROIs) were identified using an automated whole-body high-uptake 
segmentation algorithm and processed with a convolutional neural network (CNN) to calculate TMTVPARS. These results 
were compared with TMTVREF (measured by two experienced experts utilizing independent semi-automated software). The 
analysis showed strong agreement between TMTVPARS and TMTVREF, with both demonstrating significant predictive value 
for PFS and OS in DLBCL patients163 (Table 2). In relapsed/refractory (R/R) cHL, high MTV at relapse and prior to AutoSCT 
(Autologous Stem Cell Transplantation) predicted more severe PFS.164,165 Researchers are developing CD30-targeted chimeric 
antigen receptor T (CAR-T) cells for R/R HL treatment. Preliminary results from patients treated with CAR T cells suggest that 
high MTV (60mL) before lymphocyte depletion is associated with PFS at one year. The 1-year PFS rates were 14% versus 58% 
for high and low MTV groups, respectively166 (Table 2). Similar to DLBCL and HL, MTV independently predicts outcomes in 
FL patients167,168 (Table 2). In 185 FL patients receiving chemoimmunotherapy, the optimal MTV cutoff was 510 cm³. Patients 
with elevated MTV had significantly reduced survival rates (5-year PFS: 33%, HR=2.90; 5-year OS: 85%, HR=3.45).167 A meta- 
analysis of 27 studies demonstrated MTV’s prognostic value, with a pooled HR of 3.05 for PFS.169 In summary, MTV and TLG 
cut-off values were customized for particular patient groups, and the SUV thresholds applied require careful consideration when 
contrasting findings from distinct studies.

Parameters That Quantify Tumor Spread Predict Prognosis
Although metabolic tumor volume (MTV) provides volumetric assessment, it fails to account for the spatial complexity of 
multifocal lymphoma manifestations. Typically, lymphoma involves numerous scattered nodal areas that can be connected to 
sites outside the nodes, often resulting in mutation-related heterogeneity that influences clinical outcome.126 Maximum tumor 
dissemination (D max) serves as a novel radiological indicator, representing the maximum distance between the two farthest 
lesions.178 Some studies have employed standardized D max (SD max), which adjusts the peak dose according to body surface 
area.170,179 This geometric parameter offers unique advantages: (1) Simplified computation requiring minimal contour 
dependency; (2) Enhanced reproducibility across imaging platforms and operators; (3) Strong prognostic correlation in 
lymphoid malignancies. Clinical validation studies confirm Dmax’s independent predictive value for PFS and OS in both HL 
and DLBCL170,175 (Table 2). In HL patients treated with ABVD, Dmax correlated with 3-year PFS. The most precise 
threshold for forecasting treatment outcomes was determined to be 16.2cm, with an AUC of 0.62175 (Table 2). Another 
retrospective study found Dmax significantly predicted PFS (HR=4.3) and OS (HR=3.7) in advanced HL126 (Table 2).

Parameters of Metabolic Heterogeneity in Predicting Prognosis
Metabolic heterogeneity (MH) serves as a marker for the diverse patterns of 18F-FDG uptake seen in tumors, distinct 
from the traditional evaluation of tumor volume and structure. MH encompasses a complex set of factors—including 
cellular metabolism, growth kinetics, vascular dynamics, and oxygen deprivation—that collectively capture the clinical 
and molecular complexities of the disease. MH quantification in the dominant lesion (largest MTV) employed the area 
under the cumulative SUV—volume histogram (AUC-CSH) curve180—a method well-documented in solid tumors and 
lymphoid malignancies.181–183 A prospective study of 103 primary mediastinal B-cell lymphoma (PMBCL) patients 
found no significant correlation between MH values and other baseline quantitative PET parameters (SUV max, MTV, 
and TLG), regardless of methodology. In the stepwise Cox model, elevated MH (HR=12.8) independently predicted 
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substantially reduced PFS171 (Table 2). Similarly, among DLBCL patients receiving standard immunotherapy (R-CHOP 
regimen), elevated MH predicted a significantly worse prognosis in the patient group with higher MTV127 (Table 2).

Structural and Texture Analysis Predicts the Prognosis
Radiomics enables high-throughput extraction of quantitative imaging features through computational analysis of 
subvisual patterns in medical imaging data.184 In DLBCL prognosis research, the study demonstrated that integrated 
assessment of MTV with second-order texture parameters (homogeneity, contrast, correlation, dissimilarity) and higher- 
order features (LZE, LZLGE, LZHGE, GLNU, ZP) significantly predicts 2-year event-free survival (2y-EFS). 
Multivariate analysis identified LZHGE as an independent prognostic marker (HR=7.47)172 (Table 2). Researchers 
conducted a retrospective analysis of PET/CT-derived radiomic features and clinical parameters to predict 2y-EFS in 
DLBCL patients. The analysis identified five key predictors: Maximum diameter, NGTDM busyness, TLG, TMTV, and 
NGTDM coarseness173 (Table 2). Another study analyzed baseline PET/CT scans from 229 DLBCL patients treated with 
R-CHOP174 (Table 2). Logistic regression models incorporating MTV and six machine learning classifiers were trained 
and optimized using 4-fold cross-validation. The model that achieved the greatest mean validation AUC combined 
clinical and radiomic features using a ridge regression approach. It achieved a mean training AUC of 0.77±0.02, and 
a test AUC of 0.73, outperforming the model that utilized MTV features alone, which yielded an AUC of 0.67. These 
results demonstrate the clinical utility of radiomic-based predictive modeling for DLBCL outcomes.

Similarly, multiple studies have investigated HL. Researchers evaluated PET/CT radiomic parameters in 251 stage I–II HL 
patients treated at a tertiary cancer center. The model was crafted and validated through a machine learning algorithm, which 
resulted in an impressive AUC of 95.2% for the five most predictive features. These features include the first-order feature 
SUV max and volume, as well as the second-order features: information measure Corr 1, information measure Corr 2, and the 
mean variance derived from GLCM 2.5. These findings suggest PET/CT radiomic features may predict refractory disease in 
early-stage HL177 (Table 2). Another study analyzed 289 cHL patients. The PET/CT data were segmented employing 1.5 × 
mean liver SUV and a fixed SUV threshold of 4.0, while radiomics features were derived employing PyRadiomics with 
ComBat harmonization. The ridge regression model (1.5 × mean liver SUV segmentation) showed optimal performance, with 
validation AUC of 0.79 ± 0.01. The model incorporated age alongside four radiomic features: PET flatness, the length of the 
PET major axis, GLSZM, GLCM, and the PET lbp-3D-m2. This study confirms that machine learning models based on pre- 
treatment FDG PET/CT scans can predict outcomes in cHL patients176 (Table 2).

In conclusion, SUV max represents the most metabolically active region of the tumor and is characterized by high 
stability and excellent reproducibility. Although widely used in lymphoma prognostic studies, SUV max has limited 
predictive value for clinical outcomes. MTV and TLG provide better prognostic assessment by quantifying overall tumor 
burden and heterogeneity. However, clinical application faces a key challenge: standardization of SUV threshold 
definitions. Dmax—the interlesional distance between two farthest lesions—shows high reproducibility and promising 
prognostic value in lymphoma. Unfortunately, in actual clinical practice, Dmax tends to be neglected. Metabolic 
heterogeneity (MH) reflects complex tumor biology (cellular metabolism, proliferation kinetics, vascularity, and hypoxia) 
and strongly correlates with lymphoma aggressiveness. Furthermore, the integration of structural and texture analysis 
with AI has significantly enhanced PET/CT’s predictive capability in lymphoma prognosis (Table 3).

Table 3 Application of 18F-FDG PET/CT Radiomic Features in Predicting Lymphoma Prognosis

Parameters Meaning of Parameter in Lymphoma Clinical Application Characteristics

SUVmax Reflects the most active part of the lymphoma High stability and repeatability
MTV and TLG Reflects tumor burden information Strong predictive factors

Maximum tumor dissemination (Dmax) Reflects the dispersibility of lymphoma lesions Easy to calculate; a novel imaging features

Metabolic heterogeneity (MH) Encompasses complex factors such as cell metabolism, 
growth kinetics, vascular dynamics, and hypoxia

Related to invasive biology

Structural, Texture analysis Radiomic features Significantly enhanced the predictive 

capability
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The application of AI in PET/CT clinical trials for lymphoma has significantly enhanced diagnostic accuracy and 
treatment efficacy assessment efficiency. Deep learning-based automatic lesion segmentation and quantitative analysis 
have reduced human bias while improving result reproducibility. Research has shown that AI models, when combined 
with radiomics features, can predict treatment responses and prognoses more accurately and earlier. However, challenges 
remain regarding multicenter data standardization, algorithm interpretability, and clinical translation pathways. Future 
research should focus on large-scale prospective validation and developing AI-driven clinical trial designs to advance 
precision medicine in lymphoma management.

PET/CT Parameters and CAR-T Therapy
In lymphoma treatment, immunotherapy and chemoimmunotherapy have emerged as increasingly prominent therapeutic 
approaches, complementing conventional chemotherapy. CAR-T cell therapy, also known as chimeric antigen receptor 
T cell therapy, is a new approach in the field of immunotherapy for NHL. Studies have shown that 18F-FDG PET/CT 
radiomics parameters play a key role in monitoring treatment response, evaluating the efficacy of immunotherapy, 
assessing treatment-related toxicity, and predicting prognosis in CAR-T therapy. Baseline SUV max can predict PFS 
following CAR-T treatment, and the baseline volume parameters (MTV and TLG) are potential prognostic indicators of 
CAR-T treatment affecting PFS and OS.185 The two most prevalent adverse effects of CAR-T cell therapy are cytokine 
release syndrome (CRS) and neurotoxicity. CRS is characterized by a systemic inflammatory response caused by the 
rapid release of cytokines from activated CAR-T cells, while neurotoxicity manifests as neurological symptoms such as 
seizures and disorientation. Multiple PET/CT parameters (SUV max, SUV avg, MTV, TLG) may help predict and assess 
the severity of these toxicities in CAR-T recipients.186 Thus, 18F-FDG PET/CT parameters offer a comprehensive 
strategy for managing CAR-T therapy patients, facilitating timely clinical interventions and serving as crucial prognostic 
tools for lymphoma patients undergoing this treatment.

Limitations and Challenges
Despite the rapid development of PET/CT radiomics in lymphoma, several challenges remain. The primary challenge 
involves image quality control, as high-quality imaging data constitute a prerequisite for radiomics analyses. One study 
examined data heterogeneity arising from variations in acquisition parameters, such as scan duration, iteration and subset 
numbers, reconstruction type and algorithm, and spatial resolution, as well as image processing methodologies, including 
segmentation techniques and gray level discretization.176 Among these factors, spatial resolution variations demonstrated 
the most pronounced impact, with a coefficient of variation reaching 3.63. A series of guidelines and standards have been 
progressively implemented including the Radiomics Quality Score (RQS), the Image Biomarker Standardization 
Initiative (IBSI), the AI in Medical Imaging Checklist (CLAIM), and the Quantitative Imaging Biomarkers Alliance 
(QIBA), among others.36,187,188 These aim to establish unified imaging protocols and analytical standardization. Second, 
most current lymphoma radiomics studies adopt retrospective designs. Given lymphoma’s heterogeneity and subtype 
transformation potential, obtaining pathological information from a single or limited sites poses challenges in ensuring 
that each lesion under investigation has corresponding pathological results. This limitation may introduce selection bias 
in region-of-interest (ROI) delineation and case inclusion. Consequently, large-scale prospective multicenter studies 
featuring independent external validation through multi-institutional collaborations are required to enhance clinical data 
granularity, optimize model robustness, and ensure broad applicability.51

Artificial intelligence (AI) has demonstrated versatile applications in medical imaging, including refined attenuation 
correction, artifact-free image reconstruction, and automated annotation enhancements. As a core component of AI, deep 
learning has revolutionized medical imaging workflows, powering key tasks such as automated segmentation, multi-
modal registration, image fusion, feature engineering, feature extraction, computer-aided diagnosis, and prognostic 
analysis. These advancements significantly improve the precision and dependability of imaging radiomics classification 
and predictive analytics. Thus, the incorporation of deep learning into the multifaceted stages of imaging radiomics to 
offset its inadequacies is expected to shape the forthcoming developmental path for imaging radiomics technology.

In addition, clinicians increasingly aware that single lymphoma biopsy samples inadequately reflect patient genomic 
profiles. Radiomics can be combined with genomic data (circulating tumor DNA, MYC rearrangement rearrangements) 
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to provide more accurate biological information for lymphoma patients.189 This aids in monitoring the progression of 
lymphoma at the molecular level. Research has revealed a correlation between lymphoma imaging phenotypes and gene 
expression patterns, which is particularly appealing in the management of lymphoma patients.Thus, the authors hold the 
belief that the integration of PET/CT imaging, radiomics, and genomic data presents significant potential for exploration 
and application in the clinical management of lymphoma patients.

While our manuscript demonstrates the significant application value of FDG PET/CT imaging radiomics in the 
comprehensive management of lymphoma, we acknowledge several limitations. These include, but are not limited to, the 
lack of: lymphoma subtype-specific classification, qualitative properties analysis, histopathological heterogeneity evalua-
tion, and comprehensive overview of treatment and baseline characteristics as cited in the literature.

Conclusions
By correlating imaging features with the biological, pathological, and metabolic profiles of lymphoma, AI-assisted PET/ 
CT radiomics enhances the clinical differential diagnosis of lymphoma, aids in the early risk stratification and prognostic 
prediction, and offers a foundation for the formulation of personalized lymphoma treatment strategies. This technology 
establishes a transformative link between medical imaging and precision oncology, driving the evolution of lymphoma 
management from macroscopic evaluations to microscopic characterizations, and from empirical approaches to biomar-
ker-driven paradigms. We firmly believe that AI-assisted PET/CT radiomics will make accurate diagnosis and treatment 
of lymphoma possible in the future.
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