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Abstract: Acylated ghrelin is one of the few peptides known whose isolation and  characterization 

follow the description of its receptor and its basic biological functions. Characterized initially 

for its somatotrophic properties, ghrelin was shown later to exert various effects on other 

important physiological functions in mammals, such as appetite, gastric acid secretion, gut 

motility, insulin sensitivity, adiposity, and energy expenditure. Further, ghrelin influences cardiac 

function, reproduction, and the immune system as well. Here we present an overview of the 

discovery and subsequent development of ghrelin as an important peptide hormone involved 

in the control of energy metabolism in humans and other mammals. Recently reported effects 

of acylated ghrelin on glucose/lipid uptake, de novo lipogenesis, gluconeogenesis, lipid-droplet 

formation, fatty acid transport into mitochondria, and mitochondrial activity are particularly 

emphasized and discussed.
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Introduction
The discovery of ghrelin originated from research by Cyril Bowers and collaborators 

on morphine addiction.1 Indeed, the Met-enkephalin peptide analog Tyr-D-Trp-Gly-

Phe-Met-NH
2
 that they synthesized in 1976 was termed (D-Trp2)-GHRP because it 

displayed a weak growth hormone (GH)-releasing activity in vitro. On the other hand, 

the synthetic peptide was not active in vivo and showed no opiate activity. Through the 

following years, a large number of peptidic and peptidomimetic GH-releasing peptide 

(GHRP) analogs, also designated as growth-hormone secretagogues (GHS) were syn-

thesized and tested. In 1989, Bowers’ group developed an analog, His-D-Trp-Ala-Trp-

D-Phe-Lys-NH
2
 (GHRP-6), that induced the release of GH both in vitro and in vivo, 

and most importantly was also active in man. Meanwhile, the discovery of GH-releasing 

factor (GRF) by Guillemin’s2 and Rivier’s3 groups in 1982  shadowed for a while the 

 recognition of GHRPs as distinct GHS. However, an intensive research program under-

taken by a GHRP believer, Roy Smith and his group at Merck Research Laboratories4 

led in 1992 to the development of a potent, orally active GHRP peptidomimetic analog, 

MK-0677, which was biologically specific and distinct from GRF in its GH-releasing 

activity. Shortly after, in 1996, the same group reported the cloning and characteriza-

tion of a GTP-binding protein (G protein–coupled receptor or GPCR) in swine and 

humans that was shown to be the endogenous target for the GH  secretagogues.5 This 

GPCR, a typical G protein–coupled seven-transmembrane receptor, was named growth 

hormone-secretagogue receptor (GHS-R) and shown to be distinct from the receptor that 

binds GRF. Although it became another orphan GPCR with no identified recognized 
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ligand, GHS-R was shown to be closely related to the motilin 

receptor GPR-386 and the neuromedin U (NMU) receptors 

NMU-R1 and NMU-R2.7 The identification of these related 

receptors for gastrointestinal (GI) peptides led to the postulate 

that the ligand for GHS-R was also a peptide from the GI 

tract. This hypothesis was confirmed with the isolation and 

characterization of ghrelin by Kojima et al in 1999,8 using the 

so-called orphan-receptor strategy.9

Background
Kojima et al isolated ghrelin from rat stomach and determined 

its amino acid sequence. The name ghrelin comes from 

the word “ghre,” which means “grow” in the Proto–Indo– 

European language.8 They found that ghrelin is a 28-amino 

acid peptide with a mass of 3371.9 daltons and that it is 

derived proteolytically from a 117-amino acid precursor. They 

also observed that human ghrelin is identical to rat ghrelin, 

other than two amino acids in positions 11 and 12:

Human GSSFLSPEHQRVQQRKESKKPPAKLQPR

Rat   GSSFLSPEHQKAQQRKESKKPPAKLQPR

Uniquely among all other natural peptides isolated so far 

in animals, Kojima et al showed by electrospray mass spec-

trometry analysis that ghrelin is esterified on the hydroxyl 

group of its Ser3 side chain with an octanoylated fatty acid 

function (acylated ghrelin or AG). They also demonstrated 

that this modification was required for GH-releasing activ-

ity. Later on, they reported that the ghrelin sequence, its 

O-octanoylation, as well as the structure of its receptor GHS-

R1a, had been highly conserved in vertebrates over millions 

of years of evolution.10 It was also found that threonine could 

replace serine in position 3 of ghrelin isolated from other 

species, and that other fatty-acid chains such as decanoic 

acid could substitute for octanoic acid without significant 

change in biological activity.11–13 Ghrelin is predominantly 

secreted from X/A-like cells of the oxyntic mucosa in pre-

prandial condition, but its expression was also detected in 

the gastrointestinal tract, pancreas, the brain, testis, thyroid 

gland, kidney, and placenta.14 The mechanisms underlying the 

stimulation of AG release remain ill defined; however, GH, 

somatostatin, and specific nutrients were shown to inhibit its 

secretion in vitro or in vivo.15–19

More recently, in 2008, Yang et al20 identified the enzyme that 

promotes the formation of an ester bond between octanoic acid 

and the Ser3 hydroxyl group of ghrelin. This O- acyltransferase 

was termed  ghrelin O-acyltransferase (GOAT) and is 

also known as membrane-bound O- acyltransferase 4 

(MBOAT4). It is a membrane-bound enzyme belonging to 

a  family of hydrophobic membrane-bound acyltransferases 

of the endoplasmic reticulum that esterify long-chain fatty 

acids to target proteins. Yang et al demonstrated that GOAT 

is the only member of this family that octanoylates ghrelin 

when coexpressed in cultured endocrine cell lines with 

 preproghrelin.20 The activity of GOAT requires the presence 

of catalytic asparagine and histidine residues, which are 

remarkably conserved in this family. Consistent with its func-

tion, GOAT mRNA is mostly found in stomach and intestine, 

where most ghrelin-secreting tissues are located. It was also 

reported by Kangawa’s group that a nonacylated form of 

ghrelin, termed des-acylated ghrelin (DAG), is also present 

in circulation.21 Although DAG is believed to be the most 

abundant circulating form of ghrelin, it is well established that 

several biological actions of ghrelin, such as GH secretion 

and feeding behavior, require the presence of the acylated 

group on ghrelin. On the other hand, a number of studies 

published during recent years, including ours,22 raise the 

possibility that DAG might also be at the origin of endocrine 

actions distinct from AG and possibly closely associated to 

specific pathological states, as further discussed in the fol-

lowing sections. For instance, we reported earlier that both 

increased AG concentrations and elevated AG/DAG ratios 

are modulated differentially in insulin-sensitive obese versus 

insulin-resistant obese postmenopausal women and might 

be associated with insulin resistance in that population.23 

More recently, we evaluated the direct effects of AG, DAG, 

and other peptides of the ghrelin family on preadipocyte 

proliferation, differentiation, and adipocyte lipid and glucose 

metabolism in 3T3-L1 cells.24 Our results indicate that DAG 

might be acting through the GHS-R125 pathway in adipocytes 

and stimulating adipose-tissue hyperplasia and hypertrophy 

by mechanisms that remain to be elucidated. Altogether, our 

studies provide evidence that AG and DAG might simulta-

neously maintain and exacerbate an obese phenotype. It is 

expected that more endocrine manifestations of DAG will 

be revealed in the coming years.

Biological activities of ghrelin
Ghrelin and GH secretion
Although AG is recognized as a potent mediator of soma-

totroph activity in animal and human models, mice with a 

deletion of the ghrelin gene display no detectable growth 

defects.26 In addition, no difference in ghrelin levels has 

been noted between normal and GH-deficient individuals.27–29 

Interestingly, AG levels were higher in children with poor 

weight gain than in those with short stature or chronic gas-

trointestinal dysfunctions,30 indicating that AG would be 

released in response to an energy deficit rather than being 
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influenced by growth defects per se. Consequently, this either 

suggests that ghrelin is not essential for the regulation of nor-

mal growth functions or that other factors could compensate 

for its deficient secretion.

Ghrelin and food intake
It is noteworthy that the first neuroendocrine effects of AG 

were reported using synthetic analogs of enkephalins before 

the genuine isolation and characterization of the endogenous 

peptide were performed.8 In fact, synthetic GHS-R1a ago-

nists, such as the GHRPs developed by Bowers, as well as 

other peptidomimetics such as MK-0677, were all shown to 

display somatotrophic activity.31 Also, intravenous admin-

istration of synthetic AG stimulated ACTH, prolactin, and 

cortisol release in healthy humans,32 and a number of other 

effects of AG on the hypothalamo–pituitary–adrenal axis were 

described. Tschöp and his colleagues were the first to report 

that repeated injections of AG stimulated food intake and 

adiposity in rats.33 Regulation of food intake requires sensing 

energy and modulation of behavior associated with appetite. 

The hypothalamus, the brain stem, and the limbic system are 

sensitive to blood levels of metabolic intermediates such as 

glucose, insulin, and fatty acids that allow the organism to 

attain nutrient and energy homeostasis. The description of 

the orexigenic effects of ghrelin emphasize the relevance of 

considering the peptide as a central and peripheral media-

tor of energy homeostasis. Further, central administration 

of AG was shown to stimulate neuronal activation in brain 

areas known to influence food intake and energy expenditure, 

such as the arcuate nucleus, the ventromedial nucleus, the 

dorsomedial nucleus, the paraventricular nucleus, the lat-

eral hypothalamus, the central nucleus of the amygdala, the 

nucleus of the solitary tract of the brain stem, the ventral teg-

mental area (VTA), and the nucleus accumbens (NAC) of the 

1976 Synthesis of (D-Trp2)-GHRP

1982 Discovery of the GH releasing factor (GRF)  

1989 Synthesis of GHRP-6

1992 Development of the MK-0677 analog

1996 Discovery and characterization of GHS-R1

1999 Isolation and characterization of ghrelin 
2000 Description of the orexigenic and adipogenic effects 

of ghrelin

2008 Identification of ghrelin O-acyltransferase (GOAT)

2011 Description of the effects of ghrelin on adipocyte 
functions

Figure 1 Milestones for ghrelin, from the synthesis of (D-Trp2)-GHRP in 1976 to the recent description of ghrelin’s effects on the regulation of adipocyte functions in 2011.
Abbreviations: GHRP, growth hormone-releasing peptide; GHS-R, growth hormone-secretagogue receptor.
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mesolimbic reward areas.34–43 Injected in the hypothalamus, 

AG increased food intake by stimulating neuropeptide Y and 

agouti-related protein while inhibiting pro-opiomelanocortin 

neurons from the arcuate nucleus.44–46 These orexigenic 

effects of AG could also be mediated through the inhibition 

of fatty-acid sensing in the hypothalamus.47 Interestingly, it 

seems that AG not only affects appetite by promoting hun-

ger but also through the stimulation of the reward system 

in dopaminergic and acetylcholine nicotinic neurons from 

VTA and NAC,48,49 associating these effects with hedonism. 

However, AG could also be involved in the development of 

addictions such as alcoholism and chemical drug abuse.50–53 

Other central effects of AG include an increase in learning 

and memory capacities through the stimulation of serotonin 

reuptake in the dorsal raphe nucleus54–56 and the neuroprotec-

tive effect observed through the restriction of dopaminergic 

neuron loss following the administration of the peptide in the 

substantia nigra.57–59 In both pediatric and adult populations, 

altered AG concentrations have been observed in pathological 

 conditions associated with excessive or restrained feeding, 

such as obesity, Prader–Willi syndrome, diabetes mellitus, 

and anorexia nervosa.60 In contrast to the overfeeding reported 

in children with Prader–Willi syndrome, potential defects in 

GHS-R1 signaling could explain the observation of elevated 

AG levels in patients with anorexia nervosa as well as in 

children with poor weight gain and infants with failure to 

thrive due to reduced appetite scores.61,62 Furthermore, AG is 

currently considered as a clinical target for stimulating food 

intake in patients with cachexia.63

Ghrelin and energy metabolism
Ghrelin and thyroid
The expression of GHS-R1a has been detected in C cells 

and follicular cells of the thyroid gland in rats,64,65 while 

GOAT expression was described in the thyroid gland.66 

In human subjects, it was observed that the  administration 

Stimulates 
lipolysis in skeletal 

muscle 

Stimulates exocrine 
and endocrine 

pancreatic function 

Stimulates cell 
proliferation and 
survival, cardiac 

performances and 
vascular resistance 

Increases 
adiposity  

Stimulates GH, PRL, 
ACTH and cortisol 

production

Increases food 
intake and 
influences 
behavior

Promotes  
gastric acid secretion 

and motility 

Stimulates glucose 
output by primary 

hepatocytes Influences thyroid 
functions 

Figure 2 Description of the different metabolic outcomes mediated by acylated ghrelin (AG) in different tissues and organs. 
Abbreviations: GH, growth hormone; PRL, prolactin; ACTH, adrenocorticotropic hormone.
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of AG induces an increase in free T
4
 while  decreasing 

 thyroid-stimulating hormone (TSH) concentrations, 

although free T
3
 levels were not affected.67 In young patients 

with Graves’ disease, total ghrelin levels were positively 

correlated with TSH, fasting insulin, glucose and homeo-

stasis model assessment, but negatively associated with T
3
 

and T
4
 levels.68 Both DAG and AG levels were found to 

be significantly lower in hyperthyroid patients, and plasma 

concentrations were reestablished after return to a euthyroid 

state.69–72 In the same studies, ghrelin levels were correlated 

with insulin-resistance parameters. Also, the AG-induced 

stimulation of GH was blunted, while ACTH release was 

twofold higher in patients with hyperthyroidism versus 

healthy individuals. These effects were no longer detectable 

after restoration of normal thyroid function.73,74 In contrast, 

higher total ghrelin levels are observed in patients with 

hypothyroidism.70 In rats, central administration of AG daily 

for 5 days was shown to increase the weight of the pituitary 

and to reduce the size of TSH-immunopositive cells in the 

pituitary.75 These effects were associated with a reduction 

of TSH and an increase in T
4
 concentrations in the blood. 

In PC-Cl3 cells, AG stimulates TSH-induced expression 

of thyroglobulin, thyroperoxidase, and sodium-iodine 

symporter.64 Treatment of rat primary pituitary cells with 

T
3
 prevents GHS-R1 mRNA degradation and consequently 

increases its translation.76 Finally, AG treatment stimulates 

TSH-induced proliferation in FRTL-5 thyroid cells.77 

These results indicate that dysregulation of ghrelin levels 

can occur as a consequence of impaired thyroid function. 

In addition, results derived from cellular models indicate 

that, in turn, AG influences thyroid functions. As indicated 

by the divergent information reported in the literature, the 

influence of AG on the regulation of thyroid functions needs 

to be further investigated before determining its potential 

as a clinical target.

Ghrelin and muscle
In healthy humans, total ghrelin levels are negatively associ-

ated with skeletal muscle mass.78 We and others had previ-

ously observed that AG might have a detrimental role on 

insulin sensitivity in human, animal, and cellular models.23,79 

Overall, the influence of AG on skeletal muscle functions 

remains largely uninvestigated. In elderly individuals, 

basal and postprandial levels of ghrelin are negatively cor-

related with fat-free mass and appendicular skeletal muscle 

mass.80 Furthermore, the administration of AG stimulates 

lipolysis in the skeletal muscle and decreases peripheral 

insulin  sensitivity and energy expenditure.79,81,82 Although the 

results from studies of ghrelin on muscular functions are 

relatively consistent in humans, they are more ambiguous in 

rodent models. For instance, in normal young adult rats, the 

administration of AG twice daily for 4 days stimulates the 

phosphorylation of Akt and glycogen synthase kinase (GSK) 

as well as glucose transporter type 4 (GLUT4) mRNA expres-

sion in the soleus muscle, but not in the gastrocnemius.83 The 

same treatment also prevents triglyceride accumulation in 

the muscle of rats submitted to a high-fat diet by reducing 

protein levels of inflammatory markers NF-κB and tumor 

necrosis factor (TNF)-α, while increasing the activity of 

mitochondrial enzymes cytochrome C oxidase and citrate 

synthase as well as peroxysome proliferator–activated recep-

tor γ (PPAR-γ) expression in the gastrocnemius (mainly 

glycolytic) muscle.84,85 Interestingly, GHS-R1 expression 

increases in slow-twitch muscle fibers but not in the gas-

trocnemius muscle of rats submitted to food restriction 

versus rats fed ad libitum.86 Further, treatment of extensor 

digitorum longus (EDL) muscle with AG reduces gCl and 

gK conductance in rats.87 This effect is mediated through 

the protein kinase C pathway and abolished by cotreatment 

with (D-Lys3)-GHRP-6, an antagonist of GHS-R. In addition, 

lower ghrelin levels are observed in the circulation and in the 

soleus in trained versus untrained rats.88 In nephrectomized 

rats, AG increases cytochrome C oxidase, citrate synthase, 

PGC-1α, and PGC-1β activity or mRNA levels, and therefore 

prevents muscle wasting through a mechanism that involves 

the stimulation of Akt phosphorylation.89 Furthermore, in 

rats submitted to severe burns, the administration of DAG 

for 24 hours increases EDL muscle mass and reduces TNF-α 

expression, and in combination with interferon (IFN)-γ 

reduces protein synthesis in the gastrocnemius as well as 

in C2C12 myotubes.90,91 These effects of DAG are medi-

ated through the activation of PI3K and mammalian target 

of rapamycin pathways. DAG was also shown to restore 

Akt, GSK-3β, 4E-binding protein (BP)1, and forkhead box 

protein O1 phosphorylation while reducing muscle atrophy 

signals such as phospho-NF-κB levels as well as muscle 

atrophy F-box and muscle ring finger 1 mRNA expression 

after treatment with TNF-α and IFN-γ. Treatment with AG 

also stimulates myoblast differentiation and myotube forma-

tion in vitro.92,93 Taken together, the contrasting results that 

have been reported until now in human and rodent models, 

as well as in different types of muscle fibers (ie, glycolytic 

and oxidative), substantiate the need for further studies in 

which the degradation of AG into DAG, its half-life in the 

circulation, and its potential indirect neuroendocrine effects 

are also taken into consideration.
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Ghrelin and adipose tissue
Soon after the discovery of ghrelin, Tschöp et al were the 

first to report on its orexigenic and adipogenic properties.33 In 

obese individuals, total ghrelin levels were shown to be lower 

in fasting conditions and were less reduced (or not reduced 

at all) in postprandial as compared to normal subjects.94 

Interestingly, in women with metabolic disturbances, AG 

concentrations are higher in individuals with morbid obesity 

than simple obesity. However, both fasting and postprandial 

reduction in total ghrelin and AG levels are greater in healthy 

lean women.95 Higher AG and lower DAG concentrations 

are also observed in obese individuals with or without type 2 

diabetes. It is presently debated whether higher or lower 

GHS-R1 expression is detected in human omental adipose 

tissues of obese individuals.96,97 Meanwhile, the incubation of 

primary human omental primary adipocytes with either AG 

or DAG was shown to stimulate PPAR-γ, SREBP-1, acetyl-

coenzyme A (CoA) carboxylase (ACC), fatty-acid synthase 

(FAS), lipoprotein lipase (LPL), and perilipin expression as 

well as triglyceride accumulation in lipid droplets.96 Also, it 

was reported that treatment of ex vivo human adipose tissue 

extracts with DAG decreases glycerol release from adipo-

cytes as well as hormone-sensitive lipase expression, while 

either AG or DAG can increase LPL expression.98

For practical reasons, in vivo and in vitro models have 

so far provided the most important evidence of the influence 

of ghrelin on adipocyte functions. On the other hand, trans-

genic animals represent interesting tools to understand the 

physiological effects of ghrelin. In fact, the inactivation of the 

GHS-R1 gene reduces adiposity in mice.99 This could be medi-

ated through decreased glucose/lipid uptake, de novo lipogen-

esis, increased insulin sensitivity and thermogenesis in brown 

adipocytes (expression of uncoupling protein 1 [UCP-1]), and 

improvement of lipid profiles. Treatment of adipocytes with 

AG decreases UCP-1 expression, and this effect is reversed by 

a GHS-R1 antagonist. Like mice, rats with an inactive form 

of GHS-R1 display increased brown adipose tissue weight, 

UCP-1 expression, O
2
 consumption, CO

2
 production, rectal 

temperature, and dark-period locomotor activity as well as 

lower visceral adiposity.100 Also, AG administration reduces 

noradrenaline release in brown adipocytes from wild-type but 

not from GHS-R1–deficient rats. Both in wild-type and GH-

deficient rats, central administration of AG for 8 days increases 

food intake, body weight, energy efficiency, and percent 

omental and visceral adiposity.101 With regard to the response 

to chronic central AG administration, there is no difference 

between wild-type and GH-deficient rats in adipose tissue. 

In addition, mRNA/protein expression as well as enzymatic 

 activities of ACCα and phosphorylated ACCα, LPL, FAS, 

stearoyl-CoA desaturase (SCD-1), malonyl-CoA decarboxylase, 

glucose-6-phosphate dehydrogenase and  6-phosphogluconate 

dehydrogenase (6PGDH) are increased in response to 

acute or chronic central administrations of AG in rats.101,102 

However, an increase in carnitine palmitoyltransferase 1 m 

(CPT-1 m), combined with a decrease in malonyl-CoA levels, is 

observed only in wild-type rats, and the increased protein levels 

of AMP-activated protein kinase α1 (AMPKα1) are detected 

exclusively in GH-deficient rats.102 Central infusion of AG in 

rats reduces the expression of UCP-1 and UCP-3 in brown 

adipocytes.102 Moreover, in rats submitted to a high-fat diet or 

overfeeding, decreased ghrelin levels are observed in response 

to liposuction.103 Also, in mouse pups submitted to the same 

treatment, increased GHS-R1 mRNA expression is observed 

while AG plasma levels are reduced.104 In this last report, white 

adipose tissue weight as well as protein content or phospho-

rylation of Akt, PI3K, AMPK, GLUT4 and CPT-1 increased 

while reduced peroxysome proliferator–activated receptor-γ 

expression was also observed in overfed mouse pups.

The effects of peptides of the ghrelin family (ie, AG, DAG, 

GHRP-6, and obestatin) were recently investigated in pre- and 

mature adipocytes. We97 and others105 observed that both AG 

and DAG stimulated adipocyte differentiation. In mature adi-

pocytes, DAG stimulates fatty-acid uptake in 3T3-L1 cells in a 

more potent manner than AG. These effects are antagonized by 

a GHS-R1 antagonist and by inhibitors of phospholipase C and 

PI3K. Also, DAG significantly decreases lipolysis (ie, glycerol 

and nonesterified fatty-acid release) in primary adipocytes and 

3T3-L1 cells.97,105 These results indicate that ghrelin influences 

preadipocyte proliferation and differentiation, as well as mature 

adipocyte functions. Although it is difficult to differentiate the 

specific effects of AG versus DAG in vivo, in vitro models 

provide a useful alternative. In fact, results indicate that DAG 

might influence the regulation of adipocyte functions more 

potently than AG per se. This highlights the relevance of tak-

ing into consideration the role of DAG on energy expenditure. 

It also suggests that further evaluation of the mechanisms 

responsible for AG des-acylation following its administration 

in humans and animals is warranted.106 This last section sug-

gests the significance of considering DAG as a mediator of 

pre-, differentiating, and mature adipocyte functions. Results 

obtained in vitro need to be confirmed in vivo in animal and 

human models, while future studies could also characterize 

long-term effects of DAG treatment on subcutaneous and vis-

ceral adipocyte physiology. This in turn could provide valuable 

clinical information regarding the mechanisms underlying the 

regulation of obesity and its related dysfunctions.
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Ghrelin and liver
Liver functions are important for the maintenance of glucose, 

lipid, and cholesterol homeostasis. Furthermore, nonalco-

holic fatty liver disease (NAFLD) is closely associated with 

the development of metabolic dysfunctions such as insulin 

resistance, type 2 diabetes, and dyslipidemia.107 In obese 

individuals, severe lipid accumulation in the liver is related 

to lower circulating ghrelin levels.108 However, in patients 

with NAFLD and hepatitis C, DAG and AG plasma levels are 

shown to be higher than in normal individuals.109,110 In addi-

tion, in humans, it was suggested that ghrelin levels should be 

reduced in response to the development of insulin resistance 

rather than being influenced by liver damage per se.111,112

In vivo, peripheral infusion of AG inhibits insulin-induced 

suppression of hepatic glucose production while stimulat-

ing overall glucose uptake in mice.113 These results were 

confirmed with observation of an AG stimulatory effect 

on hepatic glucose release and its inhibition in response to 

a cotreatment with DAG in porcine primary hepatocytes 

in vitro.114 In another study, peripheral administration of AG 

induced a lipogenic and glucogenic response in the liver, 

and this was mediated through reductions in AMPK activity 

as well as Akt and GSK phosphorylation.83,84 Furthermore, 

hepatic mitochondrial activity was decreased by 44% follow-

ing the administration of AG; however, this effect was not 

observed after treating primary hepatocytes with AG.115 This 

suggests the influence of the des-acylated form of ghrelin – 

DAG. In response to the central administration of AG,  protein/

mRNA expression or enzymatic activity was increased for 

SCD-1, ACCα, pACCα, AMPKα1, AMPKα2, FAS, G6PDH, 

and 6PGDH, while the opposite effect was observed for 

CTP-1 and malonyl-CoA in wild-type rats.101 Interestingly, 

all these effects are also shown to occur in wild-type and 

GH-deficient rats. However, the authors suggest that this 

decrease in CPT-1 expression and in malonyl-CoA concen-

trations could be GH-specific, since it could not be detected 

in GH-deficient rats. Studies on liver functions report that 

AG or DAG could increase de novo lipogenesis and fatty-

acid desaturation while inhibiting mitochondrial transport. 

Although it remains speculative, this suggests a potential role 

of ghrelin in the regulation of lipid infiltration in the liver and 

could consequently lead to clinical applications.

Conclusion
Other than stimulating GH release, ghrelin has also been 

shown to influence appetite, energy expenditure, adipocytes, 

myocytes, and hepatocytes as well as the reproductive and 

immune systems.116,117 Nonetheless, important questions 

remain regarding the tissue-specific activity of AG and 

its des-acylated counterpart DAG. For instance, convinc-

ing evidence indicates that although devoid of orexigenic 

activity, DAG rather than AG could modulate adipocyte 

functions such as preadipocyte proliferation, differentiation, 

energetic substrate uptake, lipogenesis, triglyceride synthesis, 

fatty-acid transport into mitochondria, and mitochondrial 

activity. The existence of such an array of ghrelin-supported 

phenomena highlights, for instance, the importance of evalu-

ating the contribution of AG degradation to DAG following 

its administration in clinical and animal models. Also, the 

potential interaction between DAG and a receptor displaying 

a high degree of homology with GHS-R1, such as GPR38, 

deserves to be investigated.118 Overall, although ghrelin was 

discovered less than 15 years ago, it has shed light on several 

key mechanisms that support its role in endocrine and neu-

roendocrine regulation of major metabolic functions.
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