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Abstract: The central nervous system is known to act as a unique compartment where the 

human immunodeficiency virus (HIV) can replicate independently from the plasma and as a 

sanctuary in which the virus is largely protected from the host immune system and combination 

antiretroviral therapy. Although combination antiretroviral therapy has dramatically decreased 

the rate of HIV-caused mortality and associated diseases, neurological complications are increas-

ingly common. However, our knowledge of the complicated pathogenesis and clinical symptoms 

of HIV-associated neurocognitive dysfunction is limited by a lack of complete understanding 

of the biology of HIV and its interaction with host cells in the central nervous system. This 

review focuses on the mechanisms of HIV entry and replication in the central nervous system, 

neurotoxicity caused by viral proteins and cytokine/chemokines derived from affected host cells, 

their implications for targeted therapy, and advances in the development of animal models for 

novel therapeutics in the context of combination antiretroviral therapy regimens.

Keywords: HIV, HIV-associated neurocognitive dysfunction, neurotoxin, cytokines, 

 chemokines, animal model

Introduction
Lentiviruses of human immunodeficiency virus type-1 (HIV-1) and HIV-2 are etio-

logic agents of the acquired immunodeficiency syndrome (AIDS).1 HIV infection has 

become pandemic and the World Health Organization reported that approximately 

0.6% of the world’s population was affected by this virus in 2006.2 AIDS caused over 

1.8 million human deaths in 2009 including 260,000 children, which dropped from 

a global peak of 2.1 million in 2004.3 Since its discovery in 2006, AIDS caused the 

loss of 25 million human lives.2 Although treatment with combination antiretroviral 

therapy (cART) has reduced the mortality and morbidity of HIV infection and public 

awareness and preventive measures has been significantly intensified, and despite the 

effects of the natural course of the epidemic, an estimated 2.6 million people were 

newly infected in 2009.3 HIV infects cells in the immune system such as T-helper cells, 

macrophages, and dendritic cells,4 and leads to low levels of cluster of  differentiation-4+ 

(CD4+) T-cells. When the CD4+ T-cell numbers decline below a critical level of 

200 cells/µL, cell-mediated immunity becomes lost, secondary  infections with a 

variety of opportunistic microbes appear, and most untreated HIV-infected people 

eventually develop AIDS.5

HIV infection not only destroys cells in the immune system, chronic viral infection 

also leads to the development of a variety of neurological syndromes.6 HIV invades the 

central nervous system (CNS) shortly following primary infection, most likely soon 
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after seroconversion,7,8 and subsequently induces  progressive 

multiple systems of motor and cognitive dysfunction, 

 psychiatric disturbances, and behavioral changes.9 Although 

the discovery of the neural expression of chemokine  receptors 

as potential cellular binding sites for the virus and viral 

proteins – as well as progresses in neuroinflammation and 

neural stem cell biology – provides massive insights,10–16 

mechanisms contributing to HIV-associated neuropathogen-

esis remain to be completely elucidated.

HIV-associated neurocognitive 
dysfunction (HAND) associated 
with HIV infection
HIV-positive patients develop HAND in the late phase of 

their infection. Pathological features such as neuronal loss, as 

well as cortical and subcortical atrophy, are revealed through 

examination of autopsied brains of HIV-positive individuals.17 

Moreover, neurons in HIV-infected brains show dendritic and 

synaptic damage, and activation of apoptotic pathways ulti-

mately leads to cell death.6,18,19 HAND includes asymptomatic 

neurocognitive impairment, minor neurocognitive impair-

ment, and HIV-associated dementia, and remains among the 

most frequently occurring disorders in HIV-infected people, 

even in an era that cART is widely deployed.20–22 A related 

study published in 2010 by the CHARTER (CNS HIV Anti-

retroviral Therapy Effects Research) group showed that 52% 

of HIV-infected adults exhibited signs of neuropsychological 

impairment.23 On the other hand, although cART has not 

dramatically changed the overall rate of this disease, it may 

alter presentation/severity of HAND from the fact that the 

asymptomatic neurocognitive impairment becomes the most 

common subdiagnosis in persons with HAND.24,25 Before the 

introduction of cART, the majority of severe neurological 

symptoms took place in the late stage of HIV infection, with 

an estimation of the prevalence of HIV-associated dementia 

to be as high as 20%–30% in patients with low CD4+ T-cell 

counts.26 Following the era of cART, the life expectancy of 

HIV-infected people has been extended and the incidence of 

HIV-associated dementia has decreased.23 This is consistent 

with reports of more pronounced impairment of executive 

function and memory/learning in the cART era, compared to 

the pre-cART period.22 For instance, new cases of moderate 

or severe dementia fell from approximately 70% in 1989 to 

only 1% in 2000.23 This leads to the point that the effects 

on the brain caused by HIV infection should be considered 

along with systemic conditions, and that peripheral infec-

tion, induced immune response, and inflammation processes 

can affect all cell types in the CNS.27,28 However, due to the 

poor efficiency of drug penetration into the CNS, as well 

as other as yet unclear mechanisms, cART fails to provide 

protection to HIV-1-infected patients from the development 

of HAND, or to reverse the disease.12,13,29 To develop effective 

therapeutics, a better clarification and understanding of the 

pathogenic mechanisms of HIV-associated neurotoxicity is 

important. For instance, chemokine receptors that mediate 

the HIV infection, such as C-X-C chemokine receptor type-4 

(CXCR4) and C-C chemokine receptor type-5 (CCR5), play 

particularly important roles in neurotoxicity.30,31 CXCR4 

and CCR5 mediate the infection of immunocompetent cells 

through the viral envelope glycoprotein-120 (gp120).32 Even 

though neurons are not infected by the virus, due to the fact 

that they express high levels of chemokine receptors,33,34 

they are subjected to massive apoptotic cell death in the 

presence of HIV proteins.35–37 This has led to a hypothesis 

that the chemokine receptor signaling itself is responsible for 

the neuronal apoptosis and atrophy observed in individuals 

with HAND.6,18,19,38,39

Other HIV-associated neurological 
diseases
In addition to HAND, numerous neurological syndromes 

occur throughout the course of HIV infection that affects the 

CNS and peripheral nervous system. These HIV-associated 

neurological diseases either occur with opportunistic infec-

tions of the nervous system or are caused directly or indirectly 

by the virus itself.40 Some of these disorders are manifested 

early and some occur during the late stage of the infection, 

and the neuropathology includes inflammatory, demyelinat-

ing, and degenerative changes.

Early manifestations of these neurological diseases are 

relatively rare, and may occur following the initial infection, 

even before seroconversion. These early manifestations 

include aseptic meningitis or encephalitis, acute and chronic 

inflammatory demyelinating polyneuropathies, mononeuritis 

multiplex associated with peripheral nerve vasculitis, and 

HIV-associated polymyositis.41 Autoimmune pathogenesis is 

believed to be involved in these diseases, and patients with 

these diseases are typically responsive to immunosuppres-

sive or immunomodulatory therapies in a similar manner to 

HIV-negative patients with the same diseases.42

Besides the early manifestations, neurological morbidity 

and mortality mainly occur following the onset of immuno-

deficiency with significantly lowered CD4+ T-cell count. 

Demyelinating leukoencephalopathy, which occurs in AIDS 

patients failing cART, is caused by massive infiltration of 

HIV-infected monocytes/macrophages into the brain with 
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extensive white matter destruction. This may be attributable 

to the interaction of antiretrovirals with cerebrovascular 

endothelium, astroglial cells, and white matter, leading to 

cerebral ischemia, increased blood–brain barrier (BBB) 

permeability, and demyelination.43,44 Acute encephalopathy 

associated with the immune reconstitution inflammatory 

syndrome occurs in patients with advanced HIV disease 

with low CD4+ T-cell counts and high viral loads, caused 

by an acute infiltration of CD8+ T-cells into the CNS when 

treated with cART. It is suggested that the rapid immune 

reconstitution induced by cART leads to a redistribution 

of lymphocytes into the peripheral blood, followed by the 

recruitment of CD8+ lymphocytes into the brain, which 

results in diffuse infiltration.45–47 Vacuolar myelopathy is 

the most common chronic myelopathy associated with 

HIV infection, and often occurs in conjunction with AIDS 

dementia complex, peripheral neuropathies, and opportu-

nistic infections or malignancies of the CNS or peripheral 

nervous system, eg, cytomegalovirus, progressive multifocal 

leukoencephalopathy, and lymphoma.48–50 Vacuolar leuko-

encephalopathy occurs during immune recovery following 

cART treatment,51 and the histopathology is similar to that 

of vacuolar  myelopathy.52 In fulminant HIV dementia, symp-

toms progress over days and result in death within 2 months 

from the onset of neurological sysmptoms.53 In this disease, 

the basal ganglia is a common site of involvement for unclear 

reasons,54 and functional imaging and pathologic studies 

demonstrate the presence of basal ganglia abnormalities in 

HIV-infected individuals.55,56

Involvement of the peripheral nervous system is also part 

of AIDS. Like the CNS, the peripheral nervous system is a 

target of both the virus and other infectious agents. Although 

the development of neuropathic symptoms does not occur 

until the patient starts to show symptoms of early AIDS, 

electrophysiological evidence of peripheral nerve involve-

ment is found in many patients with normal or near-normal 

CD4+ T-cell counts. Although pathological involvement of 

peripheral nerves is present virtually in all patients dying of 

AIDS, not all patients with HIV-1 infection develop clinical 

neuropathy, and the peripheral neuropathic symptoms may 

remain unrecognized or unappreciated in the presence of 

additional lesions in the spinal cord or brain in end-stage 

AIDS.57 However, HIV-associated sensory neuropathy 

(HIV-SN) represents major neurological disorder in persons 

with HIV/AIDS, affecting more than 30% of HIV-infected 

individuals globally.9 Painful peripheral neuropathy may 

actually be the most common and main neurological compli-

cation, and is also the most frequent neurological complaint 

observed among HIV-infected individuals in the industrialized 

world.57,58 Significant pain from HIV-SN affects up to 40% of 

HIV-infected individuals treated with cART.  Prevalence of 

HIV-SN has increased despite increased access to and more 

widespread use of cART by infected individuals, and pain-

ful HIV-SN remains a major and expanding health problem 

worldwide.59 HIV-SN includes neuropathy directly related 

to HIV infection, eg, distal symmetrical polyneuropathy, 

and neuropathy associated with use of nucleoside analogs. 

Neuropathy associated with HIV infection alone should be 

distinguished from cART-induced toxic neuropathy, in that 

the latter is likely due to interferences with DNA integrity 

and mitochondrial dysfunction introduced by cART.60,61 

However, cART-associated neuropathy may be caused by 

the synergism between the neurotoxicity of HIV infection 

and the neuropathy associated with cART. Furthermore, in 

all HIV-infected individuals, risk of infections, both oppor-

tunistic and nonopportunistic, increases as absolute CD4+ 

T-cell count falls, especially when fewer than 200 cells/µL, 

and nonopportunistic infections tend to be more common 

and more severe among HIV-infected individuals. HIV 

proteins may interact with the proteins introduced by these 

infections, particularly viral infections, and induce synergis-

tic deleterious effects, which may play critical roles in the 

pathology of diseases, eg, cryptosporidiosis, microsporidi-

osis, and progressive multifocal leukoencephalopathy.62 For 

example, HIV transactivator of transcription (Tat) protein 

can transactivate the John Cunningham virus promoter in 

John Cunningham virus-infected oligodendrocytes, and may 

contribute to the neuropathogenesis of progressive multifocal 

leukoencephalopathy in patients with AIDS.63–67

Another burgeoning field that has attracted increasing 

interest is the interaction between intravenous drug abuse, 

HIV-1 infection, and neurological impairment. Abuse of 

intravenous drugs contributes substantially to the global 

HIV-1 epidemic, with 20% of intravenous drug users 

estimated to be infected with HIV-1. It causes about 30% 

of HIV-1 infections worldwide, except for sub-Saharan 

Africa, and is the third most frequently reported risk factor 

for HIV-1 infection in the United States.68,69 Risk behaviors 

associated with intravenous drug abuse is primarily the 

sharing of syringes. However, aside from providing a route 

of viral transmission, drug abuse also intrinsically affects 

HIV-1 pathogenesis, particularly in the CNS. Abuse of opiate 

drugs, such as heroin and morphine, promotes HIV-1 infec-

tion and the progression to AIDS through the suppression 

of cell-mediated immunity of the host, thus contributing to 

increased susceptibility to HIV infection and the eventual 
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development of AIDS.70,71 In addition, opiate abuse appears 

to increase the frequency and severity of HAND through 

the activation of microglia, breakdown of the BBB, and 

direct neurotoxicity.72–74 Furthermore, recent studies have 

indicated that opiates can exacerbate the  neurodegenerative 

effect of HIV-1 Tat protein and hasten the progression of 

HIV- associated dementia,75–78 possibly through eliciting 

high levels of nicotinamide adenine dinucleotide phosphate-

 dependent reactive oxygen species and significant alterations 

in mitochondrial membrane homeostasis in neurons.79 Opiates 

can enhance the vulnerability of macroglia and macroglial 

precursors to the HIV-1 Tat protein through direct actions on 

glial precursors and/or astroglia. With sustained exposure to 

morphine, HIV-1 Tat protein induces preferential death of 

glial precursors and some astrocytes through processes that 

are mediated by µ-opioid receptors and accompanied by 

the activation of caspase-3.80–82 In addition, opiates enhance 

HIV-1 Tat protein-induced inflammatory effectors that are 

released by glia, and consequently elevate reactive oxygen 

species, increase 3-nitrotyrosine production by microglia, and 

reduce the ability of glia to buffer glutamate.77 In addition to 

opiates, another common drug of abuse in HIV-1-infected 

individuals is methamphetamine, an extremely addictive 

sympathomimetic stimulant that is chemically similar to the 

CNS stimulant amphetamine, and abuse of either drug facili-

tates HIV transmission, promotes HIV infection of target 

cells, and causes more serious neurological impairment.83–86 

Furthermore, although both HIV infection and methamphet-

amine abuse are known to be associated with neurological 

dysfunction in an independent manner, the combined effects 

of HIV infection and chronic methamphetamine use are con-

sistent with a synergistic model and can lead to additional 

neuronal injury and glial activation due to the comorbid 

conditions.56,87–90

Although neurological complications of HIV infection 

are numerous, most current studies have been directed 

to understanding HAND, which is the main focus of this 

review, including HIV invasion and replication in the CNS, 

mechanisms of neurotoxicity, their implications for targeted 

therapy, and advances in development of animal models.

HIV entry into the CNS
Probably due to its immunological sequestration, CNS is 

believed to remain a viral reservoir throughout the course of 

viral infection.91,92 Due to a significant difference in nucle-

otide sequences and biological properties that are observed 

on HIV-1 isolates from the brain and peripheral blood of 

the same patients, it is suggested that the brain may harbor 

the virus for many years.93 HIV-1 invades lymphoid and 

nervous systems through infecting target cells that contain 

major receptors, either CD4 or CD8, as well as various 

chemokine receptors as coreceptors that are typically found 

on T-cells, blood monocytes, and some dendritic cells. These 

receptors facilitate viral entry into host cells,94 and infected 

CD4+ T-cells and monocytes that circulate in the blood are 

a potential source of CNS infection.95

Of the chemokine receptors that are utilized by HIV-1, 

CXCR4 is found on lymphocytes, and CCR5 is found on 

monocytes, macrophages, and microglia.96 According to their 

use of coreceptors, HIV-1 is designated as R5 or X4 tropic, 

respectively, with some strains being dual tropic due to their 

use of both receptors. Within the CNS, HIV-1 infects mainly 

microglia and monocyte-derived macrophages.97 These cell 

types are the only cells that express both CD4 and CCR5 

and they are the only cells that allow productive HIV-1 infec-

tion within the brain.97,98 In addition to viral receptors, the 

intracellular environment plays an important role in HIV-1 

replication.99 HIV-1-infected cells can be either highly active 

producers of progeny viruses or low/ nonproducers, defined as 

“productive” or “restricted” infection. Productively infected 

cells support production of progeny virus, are engaged in 

transmission of infection as well as in the evolution of the 

viral genome, and die ultimately due to expression of toxic 

viral proteins. On the other hand, restrictedly infected cells are 

permissive to HIV-1 infection but are refractory to efficient 

viral gene expression, and thus do not support virus replication 

but serve as a virus reservoir with replication-competent viral 

genome. Although these cells do not produce viral structural 

proteins, they can express accessory proteins such as regulator 

of virion expression and negative regulatory factor.100,101 The 

restricted infection can be caused by blockage at various stages 

of the HIV-1 life cycle such as nucleocytoplasmic transporta-

tion, translation of viral ribonucleic acids (RNAs), assembly, or 

maturation of progeny virion.102 Restricted infection, however, 

can be reactivated by changes in the intracellular environment, 

such as increased expression of cytokines like tumor necrosis 

factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β.13,103–106

The BBB, or cerebrospinal fluid (CSF)–brain barrier, 

also plays a crucial interactive role during HIV-1 infection 

of the CNS.107 The BBB is selectively permeable and con-

stitutes a barrier for the exchange of cells and substances 

between the brain parenchyma and the bloodstream.95 

In order to get entry into the brain, HIV has to cross the 

BBB through a mechanism (or mechanisms) that is not yet 

completely understood. Current studies support the entry 

of HIV-1 into the CNS either as a free virus, via release 
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of the virus into the brain by infected brain microvascu-

lar endothelial cells (BMVECs), or via infected immune 

cells.108 Although several studies identified HIV-1 structural 

proteins in BMVECs by immunohistochemistry,109–111 the 

study by Bagasra et al primarily identifies HIV-1 DNA and 

messenger RNAs for regulatory factors, but not for struc-

tural proteins,98 leading to the postulation that BMVECs 

are restrictedly infected. On the other hand, although it is 

possible that cell free viruses are able to cross the BBB, 

infected CD4+ T-cells and macrophages are more likely 

sources of initial neuroinvasion,112,113 which is verified by 

histological studies from simian immunodeficiency virus 

(SIV)-infected rhesus macaques and HIV-1-infected humans 

demonstrating that lymphocytes and monocytes are capable 

of infiltrating into the brain.114,115 Whilst pathophysiological 

significance of the CNS-infiltrating lymphocytes in HAND 

is subject to further delineation,115,116 current evidence sug-

gests that cell-free HIV-1 particles may penetrate BMVECs 

through a mitogen-activated protein kinase-dependent 

macropinocytosis,112,117 and this process can be enhanced 

by lipopolysaccharide treatment.118 BMVECs exposed to 

HIV-1 express an elevated amount of intercellular adhesive 

molecules such as intercellular adhesion molecule-1, which 

in turn may facilitate leukocyte migration across the BBB 

and offer access for both cell-free viral particles and infected 

monocytes/macrophages into the CNS.113,119–122 Furthermore, 

proinflammatory cytokines, eg, TNF-α, and oxidative stress 

can increase BBB permeability by activation of guanylate 

cyclase and tyrosine kinase.123,124

Regardless of the potential roles of infected lymphocytes, 

cell-free viruses, and BMVECs, the generally accepted 

model of HIV entry into the CNS, with the most compelling 

evidence, is that HIV enters the brain through infiltration of 

infected T-cells and monocytes, with the latter later differ-

entiating into macrophages. This mechanism is known as the 

“Trojan horse” hypothesis.125,126 According to this hypothesis, 

HIV and other lentiviruses cross the BBB and migrate into 

the CNS by hiding in infected cells trafficking to the brain. 

Besides HIV, other viruses, eg, visna virus, feline immuno-

deficiency viruses (FIV), SIV, and human T-cell leukemia 

virus type-1, have also been reported for being transported 

into the brain by infected monocytes and macrophages.127–129 

Therefore, Trojan horse might represent a common route for 

retroviral and lentiviral penetration into the brain.

HIV-associated neurotoxins
Pathogenic mechanisms behind HIV infection-associated 

CNS dysfunction have not reached a common agreement. 

Whilst it is generally accepted that neurons are not infected 

by HIV, the primary cause/mechanism of neuronal damage 

remains unclear. There are discrepancies between distribu-

tion and number of HIV-infected cells, severity of the clinical 

course, and brain tissue pathology. This may suggest other 

mechanisms than direct viral cytotoxicity as causes of CNS 

damage.130 However, current evidence supports that neu-

ronal damage can be caused by various HIV proteins, such 

as Tat, R protein (Vpr), negative regulatory factor, gp120, 

and gp41.11,12 This has led to two different theories on how 

dysfunction in the CNS is caused, both centering on the 

productive infection of brain macrophages/macroglia. These 

theories are named “direct injury” and “indirect injury,” 

with the latter also called “bystander effect,”12 and they 

are not mutually exclusive. Although the indirect form of 

neurotoxicity seems to predominate,11,131,132 current evidence 

supports a role for both. The direct injury hypothesis sug-

gests that HIV proteins can directly cause neuronal injury 

without effects from intermediary functions of nonneuronal 

cells such as microglia and/or astrocytes, and the indirect 

hypothesis suggests neuronal dysfunction caused through 

immunoactivation of nonneuronal cells by HIV infection or 

shed viral proteins.

Virotoxins from HIV
HIV viral proteins are potentially neurotoxic through either 

direct or indirect mechanisms, or both36,133–136 with more infor-

mation summarized in Table 1. Neurotoxicity caused directly 

by viral proteins is supported by evidence that gp120, which 

is soluble and can be shed from HIV-infected cells, has been 

demonstrated to be toxic to cultured neurons at low concentra-

tions,36,137 and can directly injure neurons in serum-free pri-

mary neuronal cultures and in neuroblastoma cell lines.35,138,139 

Evidence that blocking chemokine receptor signaling can pre-

vent gp120-induced neuronal apoptosis suggests that gp120 

is capable of interacting with several chemokine receptors in 

the absence of CD4, and HIV-induced neuronal injury may 

be directly mediated by distinct chemokine receptor signaling 

pathways.39,140–142 Other evidence that gp120 interacts with the 

N-methyl-D-aspartate-type glutamate receptor (NMDAR) 

suggests another mechanism by which gp120 may directly 

cause neuron injury.143,144 The other cleavage product of gp160, 

gp41, is neurotoxic through induction of nitric oxide.133,145 

Besides the envelope proteins, Tat is secreted by infected cells 

and may also directly induce neuronal apoptosis via a pathway 

involving disruption of the metabolic balance of lipoprotein 

receptor-related protein ligands and direct activation of 

neuronal genes,146 or via an increase in intracellular calcium, 
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Table 1 Virotoxins from HIV proteins

HIV  
proteins

Localization Mode of  
action

Mechanism

gp120 Membrane of infected cell; secreted  
into extracellular milieu

Direct and  
indirect injury

Interfere with N-methyl-D-aspartate receptor; create oxidative 
stress; immunoactivation of monocyte/macrophage, microglia,  
and astrocytes; stimulate release of cytokines

gp41 Membrane of infected cell;  
ectodomain aggregates in the brain

Direct and  
indirect injury

Induction of neurocytokines; production of nitric oxide through  
an inducible nitric oxide synthase

Tat Secreted into extracellular milieu Direct and  
indirect injury

Apoptosis via disruption of the balance of LRP ligands and 
activation of host genes; increases intracellular calcium; production 
of reactive oxygen intermediates; activation of caspase; activation 
of cells of immune system; stimulate release of cytokines

Rev Unknown Direct injury Cause nucleolar ballooning and deformity with aberrant 
accumulation of ribosomal ribonucleic acids

Vpr Detected in CSF of people  
with HAND

Direct injury Form cation-selective ion channels across cell membrane, causing a 
large inward cation current and depolarization of the plasmalemma

Nef Detected on the surface of infected  
cells; secreted into extracellular milieu

Direct injury Share sequence and structural features with scorpion peptides; 
reversibly increase the total potassium current

Vpu Unknown Direct injury Increase ion channel activity; interact with Fas
Vif Unknown Unknown Unknown
Gag Intracellular expression; assembly  

into virion-like particles
Unknown Unknown

Abbreviations: CSF, cerebral spinal fluid; Fas, tumor necrosis factor receptor superfamily, member 6; Gag, group-specific antigen; gp, glycoprotein; HAND, human 
immunodeficiency virus-associated neurocognitive dysfunction; HIV, human immunodeficiency virus; LRP, lipoprotein receptor-related protein; Nef, negative regulatory 
factor; Rev, regulator of virion expression; Tat, transactivator of transcription; Vif, viral infectivity factor; Vpr, viral protein R; Vpu, viral protein U.

thereby stimulating production of reactive oxygen intermedi-

ates and caspase activation.147 More recent evidence suggests 

that Tat toxicity is dependent upon a polyamine-sensitive site 

on NMDAR.148 In addition, Tat and negative regulatory fac-

tor have been reported to increase production of neurotoxic 

quinolinic acid, a glutamate receptor agonist.149 Vpr is capable 

of causing apoptosis in human neurons (via cytochrome c 

extravasation), protein 53 induction, activation of caspase-9, 

and exerting a depressive effect on whole-cell currents in 

neurons.150 Another study using cultured hippocampal neu-

rons revealed that Vpr causes a large inward cation current 

and depolarization of the plasmalemma, eventually resulting 

in cell death.151

Although several HIV proteins have been reported to 

cause neurotoxicity, further studies are necessary to deter-

mine whether or not the concentrations of these proteins 

required for neurotoxicity in vitro are within the range that 

is present in vivo in an infected brain,108 and findings from 

these in vitro experiments should be interpreted under context 

of the specific conditions of the experimental paradigm,152 

in that most of the results are obtained in the absence of 

nonneuronal cells and therefore predominantly the indirect 

effect is not involved. Moreover, concentrations of the HIV 

proteins employed in these studies are frequently significantly 

higher than the picomolar or lower range that is thought to be 

present in the brain or CSF of patients with HIV-associated 

dementia.152

Besides neuronal injury caused directly by HIV proteins, 

other in vitro evidence suggests that gp120 neurotoxicity may 

occur indirectly and rely on the presence of toxic interme-

diates and activated chemokine receptors on macrophages/

microglia.108 These toxic intermediates include proinflam-

matory cytokines and arachidonic acid metabolites that are 

produced when macrophages/microglia cells are exposed 

to gp120.36,153 Tat is also capable of causing neurotoxicity 

indirectly via stimulation of macrophages to produce matrix 

metalloproteinases that are capable of inducing neuronal 

apoptosis.134,154 Another model proposes that astrocytes may 

be involved in mediating such toxicity,155,156 supported by 

experimental findings that nitric oxide synthase is induced in 

astrocytes exposed to gp120,157,158 and the nitric oxide produc-

tion may impair the ability of astrocytes to protect neurons 

from damage. In vitro, neuronal toxicity and apoptosis has 

been demonstrated through the use of X4 and R5 dual tropic 

envelopes, which is consistent with the finding that CXCR4 

is present in a number of neural cell types.159,160

Toxins from host cells affected  
by HIV
Various cell types in the brain can be infected by HIV and/

or dysregulated by HIV proteins as summarized in Table 2. 

Severity of HIV encephalitis, a pathological correlate of the 

most severe form of HAND, correlates better with glial activa-

tion rather than viral load. It is often characterized by multinu-
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Table 2 Influence on host cells by virotoxins

Cells of origin Source of influence Upregulation Downregulation

Monocytes/macrophages,  
microglia

gp120, gp41,  
Tat, Nef, Vpu

TNF-α, IL-1β, IL-6, PGE2, protein 53, NTox, TGFβ1, 
endothelin-1, CCR5, platelet activating factor, MMP-9

cAMP by Tat

Astrocytes gp120, gp41,  
Tat, Nef, Vpr

iNOS, tyrosine kinase, ICAM-1, CXCL10, endothelin-1, CD23,  
complement factor-3, IL-6, IL-8, IL-10, MMP-1, MMP-2, MCP-1,  
Id-1, GFAP, VCAM-1, PKC, NF-κB, MAPK, JNK

β-adrenergic function, 
glutamate influx, GFAP, 
glutamate transporter EAAT2

BMVECs gp120, gp41,  
Tat, Nef, Vpu

ICAM-1, µ-opioid receptor, PKC, MCP-1, IL-6, IL-8,  
E-selectin, NF-κB, AP-1, FAK, iNOS

Claudin-1, claudin-5, ZO-2

Neurons gp120, gp41,  
Tat, Nef, Vpr

Calcium uptake, CXCR4, oxidative stress, sphingomyelinase,  
protein 53, PKC, NMDAR, JNK, ERK, CXCL10, calcium  
release from IP-3 pool, GSK-3β, MAPK, quinolinic acid

BDNF, neuron specific 
enolase, glutathione, 
neprilysin, LRP ligands

Abbreviations: AP-1, activator protein-1; BDNF, brain-derived neurotrophic factor; BMVECs, brain microvascular endothelial cells; cAMP, cyclic adenosine monophosphate; 
CCR5, C-C chemokine receptor type-5; CD23, cluster of differentiation-23; CXCL10, C-X-C chemokine ligand-10; CXCR4, C-X-C chemokine receptor type-4; EAAT2, 
excitatory amino acid transporter-2; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; GFAP, glial fibrillary acidic protein; gp, glycoprotein; GSK-3β, 
glycogen synthase kinase-3β; ICAM-1, intercellular adhesion molecule-1; Id-1, inhibitor of DNA binding-1; IL, interleukin; iNOS, inducible nitric oxide synthase; IP-3, inositol 
triphosphate; JNK, c-Jun N-terminal kinase; LRP, lipoprotein receptor-related protein; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein-1; 
MMP, matrix metalloproteinase; Nef, negative regulatory factor; NF-κB, nuclear factor-κB; NMDAR, N-methyl-D-aspartate-type glutamate receptor; PGE2, prostaglandin 
E2; PKC, protein kinase C; Tat, transactivator of transcription; TGFβ1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion 
molecule-1; Vpr, viral protein R, Vpu, viral protein U; ZO-2, zona occludins-2.

cleated giant cells, widespread reactive astrocytosis, activated 

resident microglia, microglial nodules, cytokine/chemokine 

dysregulation, and inf iltration by monocytoid cells 

including mainly blood-derived mono- and multinucleated 

 macrophages, as well as neuronal loss.161 In addition, a vari-

able degree of white matter and deep gray matter pathology 

with evidence of a broad range of myelin damage, and the 

presence of HIV-1 in the CSF, have been reported.162 Degree 

of neurocognitive impairment, however, does not correlate 

well with the presence and amount of HIV-infected cells 

in the brain, the presence of multinucleated giant cells and 

microglial nodules, nor the concentration of viral antigens in 

CNS tissue.163,164 In contrast, pathologic features that are most 

firmly associated with the clinical signs of neurodegeneration 

include increased numbers of microglia,163,165 elevated TNF-α 

messenger RNA in microglia and astrocytes,166–169 evidence 

of excitotoxins,170,171 decreased synaptic and dendritic den-

sity,165,172,173 selective neuronal loss,174,175 and signs of neuronal 

apoptosis.176–178 Furthermore, severity of neuronal apoptosis 

is topographically correlated with structural atrophy, signs of 

microglial activation, and axonal damage, especially within 

the subcortical deep gray structures.179

The number of activated macrophages in the white mat-

ter correlates well with the pathology of HIV dementia.130,180 

Multinucleated giant cells that are derived from HIV infec-

tion-induced fusion of macrophages, microglial nodules, and 

perivascular mononuclear inflammation are hallmarks of 

HIV dementia pathology.181–183 A clear association between 

the amount of circulating activated monocytes and the devel-

opment of HIV dementia has been established,184,185 which 

is likely caused by increased inflammatory mediators from 

these monocytes and/or infected monocytes that are increas-

ingly trafficking into the brain.186

Although brain macrophages and microglia from HIV-

infected individuals may have neuroprotective properties, 

especially in the early phase of the infection,187,188 their 

predominant roles in the pathogenesis of HIV dementia are 

neuroinflammatory and neurotoxic – through the increased 

expression of cytokines such as TNF-α, IL-1, interferon-α, 

and inducible nitric oxide synthase.189–192  Furthermore, 

a number of neurotrophins are normally secreted by 

macrophages,193 eg, brain-derived neurotrophic factor, insu-

lin-like growth factor, β-nerve growth factor, transforming 

growth factor-β, neurotrophin-3, neurotrophin-4/5, and glial-

derived neurotrophic factor.194–202 Expression of these neu-

rotrophins is affected by cytokines and growth factors.203–205 

For instance, acidic fibroblast growth factor induces higher 

IL-4, IL-10, and IL-13 levels, as well as expression of 

nerve growth factor and brain-derived neurotrophic factor 

in transected rat spinal cords.203 Cytokine mixtures derived 

from monocytes/macrophages induce a unique pattern of 

changes in genes for neurotrophins, growth and maturation 

factors, and related receptors through the downregulation 

of an alternatively spliced form of neurotrophin-3 growth 

factor receptor (trkC).204 Consequently, a dysregulation of 

macrophage-derived neurotrophic factors by viral infection or 

immunoactivation occurs during the course of HIV infection, 

which may elicit neuronal damage to considerable extent via 

the production of neurotoxins.186

Cytokines and chemokines, particularly those expressed 

by activated macrophages, appear to play a prominent role 

in the pathogenesis of HAND and other neurological com-
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plications of HIV. Although the relationship is not defini-

tively demonstrated, current evidence shows that elevated 

levels of CSF and serum TNF-α correlate with presence of 

 dementia.186 Although TNF-α may mediate neuroprotection 

under certain circumstances,206–209 it is neurotoxic through 

multiple regulatory roles, eg, promoting formation of reac-

tive oxygen species, inhibiting glutamate uptake by glial 

cells,210,211 increasing the activation of NF-κB,212 expression of 

inducible nitric oxide synthase,212 inducing other chemokines 

and cytokines such as IL-6, IL-8, and CXCL10,213 upregu-

lating expression of endothelial intercellular cell adhesion 

molecules,214,215 increasing the permeability of the BBB and 

subsequently facilitating HIV-infected monocytes entry into 

the brain,216 and promoting HIV replication.217,218

In addition to macrophages/microglia, reactive astrocytes 

are also commonly observed in the brains of HIV-infected 

individuals.219–221 Astrocytes do not possess CD4 receptor, but 

they express CXCR4 and possibly other coreceptors including 

CCR5.101,222,223 In the brain, whilst macrophages and microglia 

are productively infected, astrocytes are involved in restricted 

infection through a CD4-independent pathway and viral 

regulatory proteins are expressed.224,225 Since HIV invasion of 

the CNS occurs early following initial infection, substantial 

infection of astrocytes is therefore likely to take place before 

cART is initiated, and the infected astrocytes can thus serve 

as a significant source of viral proteins that are not affected 

by cART. These toxic viral proteins in turn are capable of 

stimulating the release of other neurotoxic substances from 

affected glial cells and macrophages, or otherwise altering 

glial cell function and leading to the loss of support for 

neurons.77,184,226–230 Furthermore, activated astrocytes them-

selves – induced by HIV Tat and gp120 – are also capable of 

secreting inflammatory mediators such as TNF-α.231

Besides glia, macrophages, and astrocytes, BMVECs may 

play a role in the pathogenesis of HIV in the CNS. Although 

direct infection of endothelial cells with HIV remains uncertain, 

cells exposed to HIV or viral proteins may undergo apopto-

sis232–237 or increase expression of adhesion molecules,238 con-

sequently enhancing monocyte adhesion.239 The mechanisms 

implicated involve the activation of vascular endothelial growth 

factor receptor and phosphatidylinositol 3-kinase,232,235,237 as 

well as the induction of oxidative stress.236,240 Dysfunction of 

BMVECs may also play an important role in regulating the 

penetration of antiretroviral drugs across the BBB.240–243

Implications for targeted therapy
Although the introduction of cART has significantly reduced 

the morbidity and mortality rate of HIV infection, it cannot 

provide complete protection for HIV-infected individuals from 

HAND, largely due to inefficient drug delivery across the 

BBB.244–247 HAND, as well as sensory neuropathies, remain 

common in the cART era, with up to half of HIV-1 patients 

affected.22,248 Although cART regimens may be able to play 

more significant roles in the prevention/treatment of HAND 

with the development of improved delivery systems, the chal-

lenging complexity of the treatment of AIDS patients impedes 

previous approaches to coping with HAND.249,250 Approaches 

tested so far include various antiretroviral compounds, applied 

either alone or in combination, including abacavir, amprenavir, 

atazanavir, darunavir, didanosine, efavirenz, emtricitabine, 

enfuvirtide, etravirine, fosamprenavir, indinavir, lamivudine, 

lopinavir, maraviroc, nelfinavir, nevirapine, raltegravir, rito-

navir, saquinavir, stavudine, tenofovir disoproxil, zalcitabine, 

and zidovudine.251–254 However, due to poor penetration across 

the BBB, effects of most of these drugs are limited. Drugs that 

belong to the nucleoside reverse transcriptase (RT) inhibitor 

group have the advantage of good penetration because of 

low molecular weight and the lowest rates of protein binding; 

among which, zidovudine has the best partition coefficient in 

the brain and cerebral tissue. However, it is not long lasting 

in spite of the beneficial effect it has on crossing the BBB.254 

In the current anti-HIV armamentarium, nevirapine, indina-

vir, lopinavir, amprenavir, abacavir, zidovudine, stavudine, 

emtricitabine, darunavir, and raltegravir are the only ones 

found to have CSF levels that are sufficient to inhibit HIV 

replication.255 This dilemma calls for further development of 

alternative strategies other than antiretroviral drugs for the 

treatment of HIV in the CNS.12 Among these, agents such as 

NMDAR antagonists, cytokines, chemokines, chemokine and 

cytokine receptor antagonists, protein 38 mitogen-activated 

protein kinase inhibitors, caspase inhibitors, and antioxidants 

can be considered.152

Studies have shown that neuronal damages caused either 

indirectly through HIV-infected macrophages or directly by 

the HIV proteins, both in vitro and in vivo, can be attenu-

ated through NMDAR antagonists.256–258 One such agent, 

memantine – which inhibits excessive NMDAR activity while 

maintaining physiological function, is capable of blocking 

the neurotoxicity of HIV-1 gp120 and Tat in vitro,147,259,260 as 

well as improving synaptic transmission in hippocampal brain 

slices in a mouse model of HIV encephalitis and other stud-

ies.260–262 In addition, memantine has proven safe and effective 

in a number of clinical trials for amyotrophic lateral sclerosis, 

Alzheimer’s disease, and vascular dementia.  Furthermore, 

it provides clinical benefits in the functional abilities of 

patients with moderate to severe Alzheimer’s disease.263–268 
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However, it does not induce significant improvement in the 

 neuropsychological tests of patients with moderate-to-severe 

neurocognitive impairment during a 16-week treatment despite 

magnetic resonance spectroscopy demonstrating potential 

neuroprotective effects, as reflected by an improvement of the 

neuronal metabolism in the frontal white matter and parietal 

cortex of treated patients.262 In a subsequent open-label trial, 

long-term use of memantine for up to 60-weeks did not pro-

vide clear evidence of cognitive benefit.269 Besides NMDAR 

antagonists, calcium channel blockers, CCR5 antagonists, TNF 

antagonists, and platelet-activating factor antagonists used in 

small clinical trials suggest some therapeutic benefit but fail 

to show clear cognitive improvement.152,270–277

To combat the effects of excitotoxicity through mini-

mizing the impact of free radicals, antioxidants are tried 

in an attempt to reduce oxidative stress-induced neuronal 

injury due to the toxic interactions between HIV-infected 

macrophages and neurons. One study utilizing OPC-14117, 

a lipophilic antioxidant, shows only a trend toward cognitive 

improvement.278 Two studies using selegiline and transdermal 

selegiline show significant efficacy on HAND,279,280 but in 

larger trials show neither cognitive benefit280,281 nor changes 

in brain metabolism.282 Studies using antiapoptotic drugs 

are also conducted to prevent or delay neural injury, with no 

clear benefit observed in neuropsychological measures.283,284 

However, in one of these studies, neuroimaging reveals a 

decrease in the glutamate/glutamine ratio peak in the frontal 

grey matter, an increase in fractional anisotropy, a decrease 

in mean diffusivity in several brain areas, and changes in 

brain activation patterns, thus suggesting improvement of 

the HIV-associated CNS injury.284

Other chemicals, such as minocycline and valproic acid, 

have also been tested.285,286 Sodium valproate (VPA) functions 

as a mood stabilizer that moderates signal  transduction.287 

Because mood changes to the level of disorders are one 

of the problems associated with HIV-1 disease, VPA 

might be beneficial when incorporated into the therapeutic 

armamentarium for HAND. Studies have shown that VPA 

inhibits the apoptosis-inducing glycogen synthase kinase-

3β,286,288 a multifaceted kinase involved in numerous cell 

processes and known to be present in platelets.289,290 Glycogen 

 synthase kinase-3β is activated by the platelet-activating 

factor,291 an inflammatory instrument that is upregulated 

during HIV-1 infection,292 and is thought to play a role in 

cytoskeletal rearrangement and lamellipodia formation in 

some cell types.293,294 When used at the therapeutic concen-

tration (0.6 mM), VPA significantly increases β-catenin 

protein levels, decreases the level of protein α-kinase C and 

epsilon isozymes,295 and downregulates the myristoylated 

alanine-rich C-kinase substrate through inositol-independent 

mechanisms.287,296,297 However, it is suggested that further 

studies of VPA in advanced HIV infection should cau-

tiously include high doses over prolonged periods of at least 

18 months so that it can be more accurately determined 

whether the posited neuroprotective benefit of VPA still 

occurs or whether it is replaced by toxicity.298

Several lines of evidence have shown that some cytok-

ines, eg, IL-4, IL-5, IL-6, IL-10, IL-11, and interferon-α, may 

be capable of protecting neurons through antiinflammatory 

effects.299–303 These antiinflammatory cytokines may confer 

protection by antagonizing proinflammatory substances 

released from activated macrophages/microglia, or by inhibit-

ing production of the inflammatory cytokines and activation 

of macrophages/microglia.287 In addition, erythropoietin, a 

cytokine that controls erythropoiesis, acts synergistically 

with another cytokine, insulin-like growth factor-1, as neu-

roprotectants by activating the phosphatidylinositol 3-kinase/

protein kinase B pathway.263,304,305 Besides the application of 

an antiinflammatory cytokine, chemokine/cytokine receptors 

may represent potential therapeutic targets against HAND or 

AIDS. For instance, antagonists of CXCR4 and CCR5 may 

be capable of inhibiting HIV entry into cells,12 and expres-

sion of a soluble TNF-α receptor-Fc fusion protein confers 

protection of neuron cells from TNF-α-, HIV-1 Tat-, and 

gp120-mediated neurotoxicity.139 Furthermore, expression 

of these molecules in genetically modified cells, such as 

monocytes and macrophages that possess a natural capabil-

ity of crossing the BBB, and use of the genetically modified 

cells as delivery vehicles into the CNS, may constitute a 

novel gene therapy strategy against the neurological com-

plications of AIDS.306

Certain chemokines appear to be capable of protect-

ing HIV-associated neurotoxicity, despite the fact that 

neurons are not infected by HIV. For example, fractalkine 

and β-chemokines are capable of preventing gp120-

induced neuronal apoptosis in vitro,35,36,76,307,308 and some 

β-chemokines can ameliorate NMDAR-mediated neurotoxic-

ity similarly.307,309

Neurotrophic factors, eg, brain-derived neurotrophic 

factor, glial-derived neurotrophic factor, and neurotrophin-3, 

are constitutively expressed in the CNS.310–313  Dysregulation 

of neurotrophic factors are known to be associated with 

 neurotoxicity and affect pathogenesis of HAND,314 with 

downregulation of neurotrophic factors contributing to 

 neuronal injury and death.314–317 Through binding of their 

cognate receptors, neurotrophins act to limit neurotoxin- and 
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lesion-induced neuropathologic damage and affect individual 

neuronal populations, dendritic length, spine density, syn-

aptic transmission, antiapoptotic signaling, and signaling 

to limit oxidative stress.310,318–324 Moreover, neurotrophins 

confer neuronal protection by preventing apoptosis.325–328

Since caspases are essential in the regulation of the apop-

totic program, their inhibitors may be capable of forestalling 

apoptosis and thwarting neuronal loss.329–331 Similarly, protein 

38 mitogen-activated protein kinase inhibitors have been 

shown to protect neurons from apoptosis that is caused by 

excitotoxicity, HIV/gp120 exposure, or a chemokine (stromal 

cell-derived factor-1)-mediated toxicity.324,332–334

The future development of drugs for the treatment of 

HAND probably needs to focus on solving the challenges 

currently confronting the detection and treatment of HAND. 

First, the optimal cART regimen in terms of preventing and 

curing HAND, whether cART has neurotoxic effects, and 

the causative compounds if cART shows neurotoxicity need 

to be determined. Second, new therapies with minimal or 

no neuronal damage need to be developed. Given that the 

results of clinical trials so far with antiinflammatory and/or 

neuroprotective agents were largely disappointing, newer 

compounds, administered either alone or in combination, in 

large and long-term studies are necessary. Third, biomarkers 

to differentiate patients developing HAND and those develop-

ing other neurodegenerative diseases and to detect changes 

in clinical settings need to be identified.  Overcoming these 

challenges would be of great significance for the development 

of new therapeutics against HAND.

Application of animal models
Finding an appropriate animal model for HIV has proven dif-

ficult. HIV naturally infects human beings and can only infect 

a small number of nonhuman primate species.335 This has 

severely limited the development of animal models for the 

study of HIV infection and HAND. An ideal animal model 

would be one that maintains the virological, immunological, 

and pathological aspects of human HIV infection and disease. 

However, such an animal model remains to be developed. It 

is important to acknowledge that each of the currently avail-

able animal models has its limitations. Accordingly, ongoing 

comparison of results obtained in animal models with those 

observed in human studies is necessary for the validation of 

the various models and for further improvement.336

Currently, although infection with several lentiviruses 

of certain farm animals results in slowly progressive degen-

erative diseases, these viruses infect only macrophages/

monocytes and not CD4+ T-helper cells. Consequently, they 

do not cause immunosuppression in the infected hosts, thus 

their relevance as a model for HIV immunopathogenesis is 

limited,337 and models that have been used for HIV study are 

mainly based on mouse/rats, felines, and nonhuman primates. 

Table 3 provides a summary of the advantages and disadvan-

tages of the animal models used for HIV study.

Mouse/rat models
A mouse model is attractive for HIV-1 research because it 

can be maintained in inbred strains, can be easily geneti-

cally engineered, and their immune system is extensively 

Table 3 Advantages and disadvantages of animal models used for human immunodeficiency virus/human immunodeficiency virus-
associated neurocognitive dysfunction study

Model Advantages Disadvantages

General  
mouse/rat

Availability of inbred and genetically engineered strains; well- 
known immune system; inexpensive for housing; fast reproduction

Species barrier for natural productive HIV infection

Transgenic  
mouse/rat

Presents good pathogenic manifestations of chronic  
HIV-1 diseases

No active HIV infection and replication; not all HIV genes 
included in a single animal

Mouse/rat with  
chimeric virus

Active virus infection and replication in vivo, with various  
hallmark features of HIV-1 infection and some brain pathology

gp160, a key neurotoxic HIV protein, is disabled; virus does 
not replicate as actively as natural HIV infection of human cells

SCID/human  
mouse model

HIV infection in human cells; different HIV strains can be used;  
genetically identical animal is possible with cells from the same  
donor; less overall cost of use and need less drugs

Lack of macrophages and robust anti-HIV immunity; technically 
challenging and time consuming; different physiology from 
humans and no real natural HIV infection; limited life span

FIV models Natural infection in cats with an AIDS-like syndrome following a  
long incubation time; requires relatively low expense; present HIV/ 
AIDS hallmark of CD4+ T lymphocyte depletion; many similarities  
of RTs of FIV and HIV

Most HIV nonnucleoside RT inhibitors and protease 
inhibitors are not active against FIV; FIV does not use the 
CD4 receptor, and infects not only CD4+ T lymphocytes 
but also CD8+ T lymphocytes and B lymphocytes

SIV models Nonhuman primates are phylogenetically the closest to humans  
with similar immunology and physiology, viral pathogenesis,  
and antiviral immune response; long-term viral persistence

HIV cannot be directly used, requiring use of SIV or SHIV 
instead; expensive and very limited availability; large size requires 
more drugs; significant genetic differences between HIV and SIV

Abbreviations: AIDS, acquired immunodeficiency virus; CD, cluster of differentiation; Gp160, glycoprotein-160; FIV, feline immunodeficiency virus; HIV, human 
immunodeficiency virus; HIV-1, human immunodeficiency virus type-1; RT, reverse transcriptase; SCID, severe combined immunodeficiency; SHIV, simian human 
immunodeficiency virus; SIV, simian immunodeficiency virus.
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known. Other advantages of using a mouse model include 

its  relatively low cost and its ability to be housed in large 

numbers in a relatively small facility and reproduce quickly. 

Indeed, mouse AIDS models with distantly related oncovi-

ruses (eg, murine leukemia virus) have been used in some 

early drug studies and have demonstrated efficacy of zido-

vudine and acyclic nucleoside phosphonates.338,339 However, 

mouse cells do not allow productive HIV infection, and HIV 

replication in mouse cells is generally disappointing. Blocks 

at viral entry340 and postentry341,342 are identified, and the HIV 

regulator of virion expression and Tat proteins are found to 

be less functional in mouse cells.343,344 Although engineered 

rats with human CD4, CCR5, and cyclin T1 support some 

HIV expression, additional obstacles for efficient viral rep-

lication and dissemination remain.345,346 For these reasons, 

transgenic rodents with specific HIV genes are produced to 

model select pathogenic manifestations of chronic HIV-1 

diseases.  Expression of the HIV gp120 protein in the CNS of 

a mouse model by astrocytes is the first model of its kind,347 

and a genetic knockout mouse model of the two major HIV 

 coreceptors, CXCR4 and CCR5, is created,348 with the latter 

model providing an in vivo system for further understanding 

of the CCR5-mediated pathway. A critical role of CCR5 is 

found for gp120-induced neuropathogenesis, which supports 

the indirect toxicity of HIV or viral proteins on neurons and 

corroborates other studies in linking neuropathogenic effects 

of HIV to chemokines and their receptors.31,349,350 Another 

transgenic mouse model with the HIV-1 Tat protein has been 

developed.351 Studies using this model have demonstrated that 

Tat expression in the absence of HIV-1 infection is sufficient 

to cause neuropathologies similar to most of those noted 

in the CNS of AIDS patients. It provides the first evidence 

in the context of a whole organism to support a critical role 

of the Tat protein in HIV-1 neuropathogenesis, and suggests 

that the doxycycline-inducible, brain-targeted Tat transgenic 

mice may offer an in vivo model for delineating the molecular 

mechanisms of Tat neurotoxicity and for developing novel 

therapeutic strategies for treating HAND. Another newer 

transgenic mouse model, in which the HIV Vpr protein 

is expressed in myeloid cells including those in the CNS 

and peripheral nervous system, has been developed.59,150 

A transgenic mouse of this model manifests both  structural 

and functional CNS abnormalities, as well as signs of periph-

eral neuropathy, and it links the peripheral  neuropathy to 

effects on mitochondria.352 More importantly, studies using 

this model have examined the role of coinfection with hepa-

titis C virus – common in HIV-infected individuals including 

those with neurological complications of AIDS – through 

direct CNS injection of hepatitis C viral proteins, and 

revealed additional neuronal damage.

A transgenic rat model, with a group-specific antigen–

polymerase-deleted HIV-1 genome expressed in many tissues 

including the CNS,353 is created and used to examine the 

interactions with drugs of abuse, specifically opiates.354 Study 

using this model have identified a wide range of interactions 

between the virus, host response, and the morphine recep-

tor and its ligands in a preferred behavioral model for drug 

abuse.355 Besides transgenic models, direct injection of viral 

proteins into the brain has been studied.356 Except for the 

injection of the HIV Tat protein as the main model, effects 

of an additional injection of neuroprotective molecules, use 

of transgenic models and chemical inhibitors for mechanistic 

studies, and the monocyte migration into the brain under the 

influence of cocaine have been investigated.357

To circumvent the species barrier to HIV in rodents, 

two rodent models using a chimeric virus are developed. 

The chimeric HIV virus is constructed through the use of a 

murine retrovirus envelope, which enables the infection of 

mouse cells including in vivo infection.358,359 This model is 

used to examine the antiviral immune response, by examining 

resistance to reinfection both peripherally and in the CNS, 

and shows the role of CD8+ T-cells in transferring immunity, 

indicating the potential utility of this model in studying host 

response and protective factors.

Moreover, nontransgenic models, eg, severe combined 

immunodef iciency (SCID)/human mouse, have been 

 created. These models are produced through transplanting 

human transplants of thymus, fetal liver, or peripheral blood 

mononuclear cell into SCID mice.360,361 Although immune 

cells in the implanted human tissues allow reconstitution of 

the immune system of the SCID mice, most of these models 

have a limited repertoire of human cell types and limited 

distribution of the immune cells outside of the implant.336 

Another similar model with humanized bone marrow/

liver/thymus has better systemic reconstitution of all major 

human hematopoietic lineages, including T/B-lymphocytes, 

monocytes/macrophages, dendritic cells, and natural killer 

cells.362 Furthermore, a Trimera mouse model, by engrafting 

human peripheral blood lymphocytes in normal strains of 

mice, is used to study human immune responses and may 

be used for HIV infection as well. In this model, the normal 

hematopoietic system of the mouse is radiated by split-dose 

total body irradiation, with the immune system subsequently 

reconstituted by transplantation of murine SCID bone 

 marrow, converting the normal hematopoietic system into 

a SCID-like system. The mice are subsequently converted 
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to Trimera by intraperitoneal injection of human  peripheral 

blood lymphocytes.363,364 These models of a human 

immune system within an immunodeficient mouse host has 

enabled HIV infection and the study of many virus/host cell 

interactions.365 Furthermore, inclusion of myeloid cells in 

HIV neuropathogenesis studies has provided key findings 

in the effects of HIV on the brain and the science behind 

them.366,367 HIV-infected humanized mice brains are studied 

through noninvasive imaging studies to examine not only 

effects of HIV on the brain structure but also key metabolic 

effects that significantly impact neuronal and overall brain 

function.368 This makes longitudinal analyses for leukocyte 

migration and brain virus distribution possible,369 which 

are especially important in the current cART era of HIV 

infection.

Whilst these rodent models are useful as initial in vivo 

screening methods for antiviral strategies, their disadvan-

tages are that they remain technically challenging and time-

consuming, they do not recapitulate the full spectrum of 

immunopathological events that occur during natural HIV 

infection, and their physiology remains quite different from 

that of humans.336

FIV models
FIV is another lentivirus that infects domestic cats and 

develops an AIDS-like syndrome following a long incubation 

period.370 This has several advantages for modeling HIV-

associated diseases including that it is a natural infection 

model, it requires relatively low expense, and cats experience 

a CD4+ T-cell depletion during the course of pathogenesis 

which is a hallmark of HIV/AIDS. Additionally, RTs of 

FIV and HIV have many similarities in sequence, function, 

and in vitro sensitivity to nucleoside RT inhibitors such as 

zidovudine, lamivudine, didanosine and the nucleotide RT 

inhibitor adefovir,371–376 except that most nonnucleoside RT 

inhibitors and protease inhibitors are not active against FIV.377 

 Following primary infection, the relatively long asymptom-

atic period before the onset of disease makes FIV an attractive 

model for the study of effects of chronic  infection. Using a 

synthetic ligand of a neurotrophin receptor, neuroprotection 

is demonstrated in vitro in an FIV/feline neural culture sys-

tem.314 However, despite the advantages of the FIV model 

as an early screening method, several  factors have made it 

less popular than the nonhuman primate  models. These fac-

tors include FIV not using the CD4 receptor and infecting 

not only CD4+ T-cells but also CD8+ T-cells and B-cells.378 

In addition, the long incubation period is a  disadvantage in 

screening the efficacy of drugs.

SIV models
Whilst the rodent and feline models have their advantages for 

initial screening, further testing/confirmation is best done in 

nonhuman primate models that are closer to the HIV infec-

tion of humans, which allows a more reliable extrapolation 

of the results. Nonhuman primates are phylogenetically 

the closest to humans, and have similar immunology and 

 physiology. However, direct use of HIV-1 is limited by vari-

ous factors. Although chimpanzees are susceptible to infec-

tion with HIV-1, they are limited by the low availability, high 

price, ethical issues, and the observation that disease rarely 

develops following infection.379–381 Whilst HIV-1 infection 

can be induced in young pigtailed macaques, virus replica-

tion cannot last a long time and no disease was observed.382 

Substitution of the viral infectivity factor protein with viral 

infectivity factor from pathogenic SIV enables replication 

of HIV-1 in pig-tailed macaque T-cells in vitro and results in 

acute viremia that approaches the levels observed in HIV-1-

infected humans, significantly extending persistent infec-

tion for several months in vivo.383,384 However, additional 

adaptation of the virus may still be necessary to enhance 

viral replication.383 HIV-2 infection models have been 

developed with Hamadryas baboons and several macaque 

species. Depending on the HIV-2 isolates, the outcome 

varies from an AIDS-like disease with CD4+ T-cell decline 

to no disease.385–387

Other than HIV, many nonhuman primate species in 

Africa are naturally infected with SIV strains, such as 

 African green monkeys and sooty mangabeys. These viruses 

are closely related to HIV-2. However, probably because 

viral infections lead to little activation of the immune cells, 

these hosts rarely develop disease in spite of persistent 

high-level virus replication.388–390 In contrast, SIV infection 

of nonnatural hosts, such as Asian monkeys like rhesus and 

pigtailed macaques, tends to follow a similar disease course 

as human AIDS in many aspects,391,392 including cell tropism, 

 generalized immune activation, CD4+ T-cell  depletion, 

opportunistic infections, weight loss, and wasting.393,394 

Furthermore, similar to the HIV-1 infection in humans, the 

same clinical and laboratory markers, eg, viral RNA levels 

in plasma and CD4+ T-cell counts, can be used to monitor 

and predict disease progression.395–397

On the other hand, although SIV is closely related to 

HIV-1, significant genetic differences between them exist, 

resulting in distinct adaptive strengths, weaknesses, and 

peculiarities, as well as functional consequences. These 

differences make it difficult to study their effects on patho-

genesis or their targeting by drugs.398 In order to overcome 
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these limitations, various SIV/HIV chimeric viruses (SHIVs) 

that more closely represent HIV-1 have been constructed 

and used in many macaque experiments. The first SHIV 

is an SIV
MAC

 chimera containing the tat, rev, vpu, and env 

genes from HIV-1.399 This virus replicates and causes disease 

in animals,400–402 and many versions of this type of SHIV 

have been made thereafter. Although the most extensively 

studied SHIVs are made from X4-tropic HIV-1,401,403 SHIVs 

with incorporation of the R5-tropic HIV-1 envelopes have 

been developed.404–406 Because most primary HIV-1 isolates 

are R5 tropic, these SHIVs are more valuable to studies of 

early HIV-1 infection and pathogenesis, as well as mucosal 

transmission.407–409 Because many HIV-1 RT inhibitors do not 

inhibit SIV RT,410,411 SIV RT is replaced with the HIV-1 RT 

and used for in vivo drug studies.410–412 For similar reasons, 

another SHIV with HIV-1-derived protease is constructed,413 

making it a useful tool for in vivo efficacy tests of protease 

inhibitors. Animal models based on these SHIVs have greatly 

advanced HIV-1 research and are useful adjuncts to the SIV 

model.

Despite limitations of the SIV-macaque models, the 

similarities in virus, host, and disease pathogenesis have 

made them currently the premier animal model in HIV 

research, with many therapeutic agents and functions able 

to be assessed in monkeys using experimental protocols that 

cannot be done in humans. A rapid model of the neurological 

complications of AIDS in rhesus macaques is developed by 

depletion of CD8+ T-cells via antibody treatment at the time 

of infection with SIV,414,415 leading to altered neurological 

conditions with a high proportion of animals developing 

SIV encephalitis. This model is applicable for studying 

monocyte/macrophage imaging, trafficking, turnover, and 

linked biomarkers of disease, as well as understanding the 

key mechanisms of neuropathogenesis and its potential 

prevention and treatment through the application of experi-

mental and therapeutic modalities. SIV-infected pigtailed 

macaques are used to study the effects of cocaine abuse 

on HIV pathogenesis,416 but few differences attributable to 

cocaine administration have been found, despite extensive 

studies being performed on virological, neuroinflammatory, 

and behavioral parameters. This suggests that cocaine has 

no distinct effect on SIV in the brain. Furthermore, charac-

terization of the brain transcriptome in SIV-infected rhesus 

monkeys can be studied through the use of bioinformatics, 

with altered pathways found at different stages of infection,417 

and a subset of altered messenger RNAs and microRNAs 

have been commonly identified in studies comparing SIV 

and HIV encephalitis.418

Conclusion
The HIV infection pandemic has proved a unique and difficult 

challenge. Infection by HIV causes neuronal dysfunction and 

loss of numerous interplaying mechanisms. It has become 

clear that HAND results from a complex interaction of effects 

caused by viral proteins and host inflammatory mediators. 

This article is a summary of current evidence that supports 

either the direct or indirect mechanisms by which neuronal 

death may occur during HIV infection. From the literature 

and ongoing studies, it is clear that a considerable amount 

of further investigations are still necessary to elucidate the 

mechanisms of HIV neurotoxicity and the pathogenesis of 

HAND. Understanding these mechanisms is tantamount 

to the development of therapeutics that would attenuate or 

prevent the neuronal degeneration associated with late-stage 

HIV infection.

Although cART has markedly reduced the morbidity and 

mortality of HIV-caused neurological diseases and the severe 

cognitive and motor dysfunctions of HAND, as well as the 

sensory neuropathies, HAND remains common in the cART 

era, with up to half of HIV-1 patients affected.22,248 Part of the 

reason that current cART regimens are inadequate in provid-

ing complete protection from developing these neurological 

complications or eradication of HIV in the CNS is due to 

poor penetration of these drugs. With future development of 

improved systems for the delivery of drugs, or drugs with 

improved capability of penetrating BBB, cART regimens 

may play a more significant role in the treatment of HIV 

infection and its progression to neurological disease.

Since the discovery of HIV, despite many initial obsta-

cles, the development of animal models for HIV infection 

has evolved dramatically. However, each of the available 

models has its intrinsic limitations and advantages. In spite 

of their limitations, these models have provided unique and 

valuable tools for studies addressing specific issues. Further 

development of novel models and refinement of the current 

ones to more accurately reflect the biological properties and 

physiological conditions of HIV infection of humans are 

required for the effective management of therapeutic strate-

gies and the development of novel anti-HIV therapeutics.
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