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Abstract: Transforming growth factor β (TGF-β1) is a pleiotropic cytokine with many and 

complex effects in cell and tissue physiology. This is made possible by a very complex and 

interwoven signaling system, whose regulation continues to be the focus of a growing line 

of research. This complex regulation translates to a key role in cardiovascular physiology, 

hemostasis, and the blood–vessel interface. In accordance with this, the TGF-β1 pathway 

appears to be deregulated in related disorders, such as atherosclerotic vascular disease and 

myeloproliferative syndromes. It is expected that the growing amount of experimental and 

clinical research will yield medical advances in the applications of knowledge of the TGF-β1 

pathway to diagnosis and therapeutics.

Keywords: transforming growth factor beta, pathway, Smads, non-Smads, atherosclerosis, 

myeloproliferative syndromes

Introduction
Transforming growth factor β (TGF-β1) is a pleiotropic cytokine, which has been 

demonstrated to regulate a wide array of biological processes. It plays a major role 

in the regulation of vascular function and hemostasis. Therefore, it can be considered 

as a putative therapeutic target in disorders of the blood–vessel interface, such as 

atherosclerosis and myeloproliferative syndromes. The present narrative review 

highlights the most important advances in the knowledge of TGF-β regulation in 

cardiovascular disease. This review has been prepared after a comprehensive search 

through MEDLINE. Search terms were “TGF beta”, “cardiovascular”, “atherosclero-

sis”, “myeloproliferative syndromes”, “pathway”, and “regulation”. A broader coverage 

of research strategy can be found in Gasparyan et al.1

Regulation of TGF-β1 physiology
The canonical TGF-β1 pathway
The regulation of TGF-β1 is shown in Figure 1. Briefly, active TGF-β1 is released 

from its latency-associated peptide by activating proteases. Then, it binds to 

the TGF-β-RII, which acts as a Ser/Thre kinase.2 This Ser/Thre kinase activity 

phosphorylates TGF-β-RI which may be present in several isoforms termed activin-

like kinases (ALKs).3 In general, TGF-β1 stimulates ALK-5 and phosphorylates 

second messenger proteins termed Smads.4 Smad2 or Smad3 form a heterodimer 

with Smad4, and internalize into the nucleus to decrease the proliferation/apoptosis 

ratio,5 increase differentiation,6 and inhibit the expression of inflammatory molecules.7 
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In endothelial cells, TGF-β1 can stimulate ALK-4/5/7 and 

Smad2/3, or stimulate ALK-1 and Smad1/5/8 and increase 

cell proliferation.8 Smad6 and 7 are inhibitory Smads, since 

they bind Smad4 and inhibit its internalization into the 

nucleus.9 Endoglin is an accessory to the TGF-β receptor that 

seems to modulate receptor binding and ALK stimulation.10 

It is mutated in hereditary hemorrhagic telangiectasia 

type 1,11 whereas ALK-1 is mutated in hereditary hemorrhagic 

telangiectasia type 2.12

In addition to this classical Smad-dependent pathway, 

other crosstalks have been described among TGF-β1 and 

several signaling pathways,13 including mitogen-activated 

protein (MAP) kinases14 and small GTPases, such as RhoA.15 

Non-Smad pathways seem to be especially important to 

regulate the TGF-β-mediated fibrotic effect. In particular, 

focal adhesion kinase has been shown to regulate TGF-β-

mediated fibrosis. This is mediated by a TGF-β-mediated 

recruitment of the p85 subunit of PI3K to focal adhesion 

kinase to regulate signal transduction, which is independent of 

tyrosine kinase activation.16 Among MAP kinases, JNK plays 

a necessary role in mediating TGF-β-mediated epithelial-

to-mesenchymal transition in rat peritoneal fibroblasts, in 

cooperation with Smad3.17 In addition, the ERK MAP kinase 

regulates epithelial-to-mesenchymal transition in mesothelial 

cells by involving nuclear factor-κB (NFκB);18 Conversely, 

p38 MAP kinase seems to inhibit this effect in the same cell 

model.19 This antifibrotic effect of TGF-β is also mediated by 

peroxisome proliferator-activated receptor-γ by preventing 

p300 recruitment, subsequent histone H4 hyperacetilation, 

and eventual collagen synthesis.20

New insights in TGF-β1 regulation
In recent years, a growing body of experimental medicine 

suggests an important role of several factors which may act 

(in a real-time manner) as rheostats for the fine tuning of the 

TGF-β1 pathway, and thus adapt cell response of TGF-β1 to 

a given cellular circumstance.

The first important factor is receptor endocytosis. Recent 

reports indicate that receptor endocytosis is a key event in 

proper signaling and receptor recycling.21 Moreover, it has 

been clarified that clathrin-coated pits-mediated endocytosis 

enhances TGF-β function,22 and that early endosomes 

behave as signaling organelles to promote TGF-β signaling. 

Conversely, however, the lipid rafts-caveolae endocytic 

system inhibits TGF-β signaling.23 Interestingly, it has been 

described that, given that caveolae localize in cholesterol-

rich membrane domains, cholesterol itself inhibits TGB-β 

signaling in vitro,24 and this might mediate, at least in part, 

atherogenic effects of cholesterol in vivo. In fact, caveolin, 

a protein that is a key component of caveolae, physically 

interacts with TGF-β-R-I to block Smad signaling.25

The second key event is micro-RNA (miRNA) 

regulation.26 This is achieved by noncoding RNA fragments 

which are able to silence gene expression. In particular, 

the miRNA 200 family (miR-200a, miR-200b, miR-200c, 

miR-141, and miR-429) cooperate with TGF-β signaling to 

regulate epithelial-to-mesenchymal transition.27 Interestingly, 

other miRNAs are able to inhibit the antitumor effects of 

TGF-β and thus are accumulated in human tumors, as seen 

with the miRNA 25 cluster (miRNA 106b, miRNA 93, 

and miRNA 25) in gastric cancer,28 neuroblastoma, and 

multiple myeloma; and the miRNA 17-92 cluster (miRNA 

17, miRNA 18a, miRNA 19a, miRNA 20a, miRNA 19b-1, 

miRNA 92a) in diffuse large B cell lymphoma and small-

cell lung cancer.26 MiRNAs miRNA 106b-25 and miR-92 

regulate TGF-β-mediated antiproliferative and apoptotic 

effects.29 In particular, miR-106b and miR-93 inhibit TGF-

β-mediated cell cycle arrest, whereas miR-25 inhibits TGF-

β-mediated apoptosis.26,29 Of note, this crosstalk between 

the TGF-β pathway and miRNA seems to be a bidirectional 

process. Thus, miRNA not only affects the TGF-β pathway, 

but also, miR-21 is directly upregulated by TGF-β1, and plays 

a key role in vascular smooth muscle cell differentiation.30 

It is expected that this TGF-β-mediated effect also takes 

place in many other miRNAs. These effects seem to take 

place postranscriptionally by affecting the Drosha miRNA-

stabilizing machinery.26 Therefore, miRNAs are plausible 

key regulators of the cell response of TGF-β, in a real-time 

and context-dependent manner.
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Figure 1 Summary of the main regulators of the TGF-β pathway. 
Notes: Briefly, TGF-β binds to receptor type 2 and phosphorylates the type 1 receptor, 
whose main isoform is termed ALK-4 (activin-like kinase). This kinase phosphorylates 
and activates Smad2 or Smad3, which forms a heterodimer with Smad4, and internalizes 
into the nucleus to regulate gene expression. TGF-β can also act by means of non-Smad 
mediators, such as p38 MAP kinase and Small GTPases, like RhoA. Cytoskeleton and 
receptor endocytosis are additional mechanisms to regulate the TGF-β signaling. Gene 
expression can also be eventually modified by micro-RNAs.
Abbreviatons: TGF-β, transforming growth factor beta; Smad, second messenger 
protein; ALKs, activin-like kinases.
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A third emerging mechanism to control the complex 

regulation of TGF-β1 signaling is the cytoskeleton. Smads 

are tightly anchored to the cytoskeleton and constantly shuttle 

the cytoplasm and the nucleus in basal cell conditions.31 In 

fact, all Smads are associated to cell microtubules and their 

trafficking is controlled, at least in part, by microtubules-

related proteins, such as kinesin for going to cell membrane 

receptors,32 and dynein when they direct to the nucleus.33 In 

cell culture models, nuclear accumulation of Smads has been 

considered to be a direct marker of TGF-β1 signaling,34,35 

and this could be mediated by nuclear phosphatases, which 

dephosphorylate the C-terminal di-serine motifs Smads.36

Yet again, this link between TGF-β and cytoskeleton acts in 

a bidirectional manner, given that TGF-β regulates actin polym-

erization by the non-Smad-signaling pathways RhoA and p38,37 

and by affecting epithelial-to-mesenchymal transition.

In recent years, several mathematical models have been 

developed that will predict the cell response of TGF-β1 in 

a given circumstance in silico, and thus help to design 

target-designed novel molecules, in order to modulate the 

important roles exerted by TGF-β1 signaling in health 

and disease.38 These models are based on a network of 

molecular components. In order to describe how a given 

parameter changes with time, systems of ordinary differential 

equations were incorporated to build a kinetic model, since 

these could express molecular changes (concentrations and 

biochemical modifications) over time, and relate these data 

to empirical ones.38

TGF-β1 in cardiovascular disease
TGF-β1 in vascular and hemostasis 
physiology
In general, TGF-β1 is considered as an anti-inflammatory 

cytokine in the vessel wall.39 In normal vessels, 

TGF-β1 inhibits endothelial40 and vascular smooth muscle41 

cell proliferation. It also increases apoptosis to avoid 

excessive cellular accumulation,42 and stimulates vascular cell 

differentiation,43 with a parallel decrease of the expression 

of inflammatory molecules.44 In the blood–vessel interface, 

TGF-β1 decreases expression of cell adhesion molecules 

in vascular cells.45 In addition, in leukocytes, it decreases 

the activation of integrins46 and stimulates the function of 

endothelial progenitor cells, which may help to restore the 

denuded vessel wall.47 In hemostasis, TGF-β1 seems to 

behave as an antifibrinolytic factor48 and stimulates platelet-

induced vascular repair.49 TGF-β1 is a normal component of 

platelet alpha granules.50 In fact, the vast majority of serum 

TGF-β1 comes from platelet degranulation.51

TGF-β1 in atherosclerosis
In atherosclerosis, TGF-β1 is considered to be an antiathero-

genic factor, especially in the early stages of the disease, 

according to what has been termed the protective cytokine 

hypothesis.52 Thus, TGF-β1 inhibits excessive vascular smooth 

muscle cell accumulation in the neointima,53 and avoids plaque 

rupture by means of its stimulation of extracellular matrix 

synthesis and tissue repair.54 In addition, it controls local 

inflammation by stimulating Th3 function and regulatory T 

cells (CD3+/CD25+ cells).55 Therefore, it avoids the excessive 

immune attack (from both innate and acquired immunity 

mechanisms) that characterizes atherosclerotic vascular dis-

ease.56 In the clinical arena, decreased serum levels of  TGF-β1 

have been correlated to clinical atherosclerosis.51 However, 

this parameter has remained an elusive atherosclerosis marker, 

given that these levels may vary according to the time course 

of the disease and age.57 The majority of serum TGF-β lev-

els originate from platelets and thus are markers of platelet 

activation in atherosclerosis2 and rheumatoid arthritis.58 

TGF-β levels can be calculated as an active or total (active 

and acid-activatable) form. In systemic lupus erythematous 

patients, a lower serum activation index has been associated 

with increased lymphocyte apoptosis, irreversible organ dam-

age, disease duration, low-density lipoprotein, and increased 

carotid intima-media thickness.59 Endoglin is an accessory 

TGF-β receptor and soluble endoglin may interfere with 

TGF-β interaction with membrane-bound receptors and 

thus decrease TGF-β signaling.60 Increased levels of soluble 

endoglin have been related to atherosclerosis,61 as well as 

preeclampsia. 62

However, in late stages of the disease, TGF-β1 seems to 

behave as a proatherogenic factor by increasing excessive 

extracellular matrix,63 promotion of in-stent restenosis,64 and 

induction of pathologic vascular remodeling.65 In fact, it has 

been demonstrated that end-organ damage in hypertension 

has been related to increased levels of TGF-β1 in serum 

and urine.66 Moreover, in atherosclerotic vascular disease, 

it has been demonstrated that cells become insensitive to 

TGF-β1 signaling by means of decreased TGF-β1 activation,67 

decreased receptor2,68 and Smad downregulation,2,69 altered 

endocytosis and intracellular trafficking pattern,21 or alteration 

of any of the other multiple cellular pathways that crosstalk 

with the TGF-β1 signaling pathway.2 Interestingly, many of 

these factors may be altered at the genetic level by means 

of congenital atherosclerotic-related plymorphisms70–72 and 

genetic determinants of aortic aneurysms.73 Moreover, even 

acquired mutations have been postulated to modulate these 

facts.74
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TGF-β1 in myeloproliferative syndromes
Philadelphia-negative myeloproliferative syndromes 

(polycythemia vera, essential thrombocytosis, essential 

myelofibrosis) are clonal hematological neoplasms in which 

an increased risk of arterial thrombosis occurs. A growing 

body of clinical and experimental evidence suggests that 

these variable phenotypes can follow a graded natural 

history, from initial essential thrombocytosis to subsequent 

polycythemia vera, and eventual spent-phase secondary 

myelofibrosis.75 These three disorders are associated with 

increased risk of arterial thrombosis, and in polycythemia 

vera, this risk is 20% at 10 years.75

In essential thrombocytosis, the abnormal clone seems 

to lose sensitivity to the proliferation-control effects of 

TGF-β1.76 In polycythemia vera, the abnormal clone equally 

loses response to the cytokine.77

However, essential or secondary myelofibrosis is the 

chronic myeloproliferative syndrome which is associated 

with the shortest survival rate.78 The risk of thrombosis is 

similar to that found in essential thrombocythemia (1%–3% 

per patient per year).79 This is the variant of myeloproliferative 

syndrome which has the strongest link to dysregulation of the 

TGF-β1 pathway.78 In fact, TGF-β increases myelofibrosis 

in murine models.80 In cell culture models, TGF-β secretion 

seems to be regulated by NFκB.81 In myeloproliferative 

syndromes, there seems to be a progressive grading in 

TGF-β1 in the prefibrotic state, although established 

myelofibrosis has lower TGF-β1 levels.82 Higher TGF-β 

levels seem to be correlated with increased allelic charge of 

JAK2, and decreased EPC levels.82,83

Therapy of myelofibrosis is a clinical challenge and 

supportive care has been the only treatment to date.77 Current 

JAK-2 inhibitors have shown only a limited benefit in regard to 

spleen size.84 Advances in the knowledge of TGF-β signaling 

in myeloproliferative syndromes may guide the choice of 

synergistic novel therapies such as small-molecule TGF-β 

pathway blockers including, SB-431542/ALK-4 inhibitor 

of the ALK-4 kinase activity2, heat-shock protein inhibitors, 

NFκB inhibitors,85 or epigenetic drugs.86

Thus, progressive TGF-β dysfunction can be considered 

as a shared pathogenic event in atherosclerosis and 

Philadelphia-negative myeloproliferative syndromes, and a 

putative diagnostic and therapeutic tool.

Conclusion
TGF-β1 is a key factor in diseases affected by cardiovascular 

disorders, such as atherosclerosis and myeloproliferative 

syndromes. The current knowledge of the complex TGF-β1 

regulation of physiological and pathological processes may 

help to design novel diagnostic techniques and target-designed 

innovative therapies.
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