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Background: Over 3000 cell lines from over 150 species are commercially available today 

from the American Type Culture Collection. These cell lines offer alternative approaches to 

investigating the interactions between arboviruses and other vertebrates at the cellular level. 

The various cell origins, types, and morphologies can be valuable resources for studying viral 

ecology and examining hypotheses regarding viral reservoirs. Dengue viruses (DENV) are 

major re-emerging pathogens that have been studied classically in only a few cell lines.

Methods: We evaluated the susceptibility of 19 distinct mammalian, avian, and reptilian cell 

lines to DENV infection. Cell lines were infected with DENV serotypes 1–4 and evaluated for 

susceptibility via focus-forming unit assays and quantitative reverse-transcription polymerase 

chain reaction.

Results: Both methods demonstrated the ability of DENV to replicate in 14 cell lines derived 

from various vertebrates with viral titers ranging from 1 × 103 to 1 × 107 infectious units per 

milliliter. Cell line susceptibility to DENV infection was serotype specific, with DENV-1 and 

DENV-4 infecting more cell lines than either DENV-2 or DENV-3. Cellular type also seemed 

to affect the infectivity of DENV. Human endothelial cells were only susceptible to DENV-4. 

Of six fibroblast lines, 100% were susceptible to at least one DENV serotype whereas only 62% 

of 13 epithelial lines were susceptible to DENV serotypes 1–4.

Conclusion: These data indicate that a variety of cell lines from human and animal species 

can be used to culture DENV. The serotype-specific susceptibility for certain cell lines may 

provide a tool to help characterize specific DENV serotypes as well as an in vitro platform for 

the study of host–pathogen interactions and the co-circulation of DENV serotypes in a specific 

region or individual.
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Introduction
Dengue viruses (DENV) are major re-emerging pathogens that are endemic in all 

continents except Europe and Antarctica. Over half of the world’s population is at 

risk of infection.1 DENV is the most common human arboviral infection and the 

most important public health threat from mosquito-borne viral pathogens. It causes 

an estimated 50 million cases of dengue infection, half a million hospitalizations, 

and approximately 15,000 deaths each year.2 Children are much more likely to die 

from DENV complications than adults.3 In the past 50 years, the incidence of dengue 

infection has increased 30-fold.4

During the 1950s and 1960s, DENV was found to propagate well in Vero, LLC-

MK2, baby hamster kidney, and mosquito cell lines (Table 1).5–8 Other continuous 
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human epithelial cell lines have been used to investigate 

DENV–host interactions,9,10 while human monocyte cell 

lines have been used to investigate antibody-dependent 

enhancement (Table 1).11–13 The early studies that discovered 

the utility of these cell lines were focused on determining 

whether DENV could replicate and plaque in a specific cell 

line. They also often examined the duration of persistent 

infection within the culture.5–10 Since then, DENV has been 

rarely studied in other cell lines (Table 1).

The Vero, LLC-MK2, baby hamster kidney, and human 

monocyte cell lines were sufficient during the twentieth 

century when research was focused on virus propagation, 

vaccines, and treatment strategies. However, the multitude 

of cell lines commercially available today offer alternative 

approaches to investigating the interactions between DENV 

and other organisms at the cellular level and can be valuable 

resources for evaluating vector ecology and alternative viral 

reservoirs.

Mounting evidence indicates that accounting for variation 

in the ecology and epidemiology of dengue serotypes and 

strains will be important for the development of more 

effective, locally adapted control programs.14–17 Advances 

in genomics, proteomics, host cell defense, and methods 

for genetic manipulation allow us to examine the complex 

interactions between viruses and their hosts at cellular 

and molecular levels. These processes can be studied in a 

variety of animal models or cell lines. Here, we report on 

the susceptibility of different vertebrate cell lines to DENV 

infection and the level of propagation in susceptible cells.

Methods
Cells
All cell lines were obtained from the American Type Culture 

Collection (Manassas, VA) and cultured in Dulbecco’s 

modified Eagle medium (DMEM) supplemented with 10% 

(v/v) fetal bovine serum, 1% (v/v) L-glutamine, 1% (v/v) 

Table 1 Cell lines traditionally used for dengue virus research

Cell line Species Tissue Use

BHK Mesocricetus auratus Kidney fibroblast Plaque assays and culture6,45 
Vero Cercopithecus aethiops Kidney epithelial Plaque assays and culture7,22,43

LLC-MK2 Macaca mulatta Kidney epithelial Plaque assays and culture8,43

C6/36 Aedes albopictus Clone Culture5,44,45

HeLa Homo sapiens Cervix epithelial Culture10,46

THP-1 Homo sapiens Peripheral blood monocyte Antibody-dependent enhancement13,47

HepG2 Homo sapiens Liver epithelial Plaque assay9,48

U-937 Homo sapiens Monocyte Antibody-dependent enhancement11,27

K-562 Homo sapiens Bone marrow lymphoblast Antibody-dependent enhancement12,43

Abbreviations: BHK, baby hamster kidney; HepG2, hepatocellular carcinoma; THP-1, human acute monocytic leukemia.

nonessential amino acids, 1% (v/v) sodium pyruvate, 100 U/

mL penicillin, 100 µg/mL streptomycin, and placed in a 37°C 

incubator with 5% CO
2
. Table 2 describes the cell lines used 

in this work.

Virus
The following serotypes and strains were obtained from the 

Walter Read Army Institute of Research and were used for 

all experiments. Strain identities are as follows: DENV-1: 

West Pak 74 (Western Pacific strain from Nauru Island 1974), 

DENV-2: s16803 (Southeast Asia), DENV-3: CH5548904500, 

DENV-4: 341750.

Infection of cells with DEnV
All infections were performed using 12-well standard cell 

culture plates seeded with cells to reach 90% confluency 

upon infection. Individual wells were inoculated with 1000 

infectious units (IU) of a DENV serotype in modified Eagle 

medium and then rocked at 37°C for 1 hour after which the 

inoculum was removed, rinsed twice with sterile phosphate-

buffered saline, then overlaid with 1 mL of DMEM (10% 

fetal bovine serum, 1% glutamine, 1% nonessential amino 

acids, 100 mg/mL penicillin/streptomycin, 1% sodium 

pyruvate) and placed in a 37°C incubator with 5% CO
2
. The 

culture supernatant was collected at 1 hour and at 72 hours 

postinfection (PI).

Virus detection via immunostaining
DENV infection was visualized in cells via immunostaining 

infected cell lines 72 hours PI cells infected with DENV 

were fixed and permeabilized using 1 mL of a 1:1 acetone/

methanol solution with a 60-minute incubation at 4°C. 

Virus foci were detected using a specific mouse monoclonal 

antibody from hybridoma 2H2 (EMD Millipore, Billerica, 

MA), followed by a horseradish peroxidase-conjugated goat 

anti-mouse immunoglobulin (Millipore), and developed 
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using a 50 mg tablet of 3,3′-Diaminobenzadine tetra-

hydrochloride (Sigma-Aldrich, St Louis, MO) dissolved in 

20 mL phosphate-buffered saline with 8 µL 30% hydrogen 

peroxide.

Virus detection via real-time polymerase 
chain reaction (PCR)
Viral RNA was extracted from cultured supernatant using 

the Ambion MagMax-96 extraction kit (Life Technologies, 

Grand Island, NY) per the manufacturer’s instructions. 

Quantitative real-time reverse-transcriptase PCR (qRT-

PCR) was conducted utilizing the Bio-Rad iQ5 platform 

(Bio-Rad, Hercules, CA) with the Bio-Rad Superscript 

One Step SYBR Green qRT-PCR kit, using primers Den_F 

(TTAGAGGAGACCCCTCCC) and Den_R (TCTC-

CTCTAACCTCTAGTCC) from Chutinimitkul et al42 and the 

following cycling conditions: reverse transcription at 50°C 

for 10 minutes and 95°C for 5 minutes, followed by 40 cycles 

of denaturation and amplification at 95°C for 10 seconds and 

48°C for 30 seconds, respectively.

A series of controls was performed for each cell 

line to identify true positives not related to background. 

A no- template control and a no-primer control were per-

formed to verify that the reagents and equipment were 

working as expected. A positive virus control of DENV-1 

to DENV-4 cultured on LLC-MK2 cells collected from cell 

culture supernatants was performed to verify that the PCR 

primers were functioning as expected. A noninfected control 

from both LLC-MK2 cells and the cell line being tested was 

included to verify that there was no increase in nonspecific 

binding from the PCR primers that could cause a higher 

background signal. Finally, the cell culture supernatant col-

lected 1 hour PI with DENV from both LLC-MK2 cells and 

the cell line being tested was assayed to ensure that qRT-PCR 

results, 72 hours PI, were not convoluted by input virus. Cycle 

threshold (Ct) values were used to estimate relative viral titers 

of infected cell lines according to a standard curve created 

using a serial dilution technique of known viral concentra-

tions derived from LLC-MK2 control cells. Each of the three 

independent assays was amplified in triplicate for a total of 

nine measurements per cell line tested.

Statistical analysis
Mean relative titers between a specific cell line and the 

LLC-MK2 cell line were compared with an unpaired t-test, 

with the Satterthwaite unequal variance method used where 

appropriate. Analyses were performed using SAS v 9.2 

(SAS Institute, Inc, Cary, NC).

Results
A number of cell lines were susceptible 
to DEnV
For these experiments, 19 distinct cell lines were selected 

from the inventory at the American Type Culture Collection. 

Cell lines were selected based on the susceptibility of the 

host species to flaviviral infection and utility of the cell line 

Table 2 Cell lines evaluated for susceptibility to dengue virus infection

Cell line Common name Species Tissue Reference

TB 1 Lu Free-tailed bat Tadarida brasiliensis Lung epithelial 49
DF-1 Chicken Gallus gallus Embryonic fibroblast 50
Sf 1 Ep Cottontail rabbit Sylvilagus floridanus Epidermis epithelial 51
EA.hy926 Human Homo sapiens Vascular endothelial 52
CRFK Domestic cat Felis catus Kidney epithelial 53
E.Derm Horse Equus caballus Dermis fibroblast 54
FoLu Grey fox Urocyon cinereoargenteus Lung fibroblast 55
Pl 1 Ut Raccoon Procyon lotor Uterus fibroblast 56
OHH1.K north American mule deer Odocoileus hemionus hemionus Kidney fibroblast 57
OK Virginia opossum Didelphis marsupialis virginiana Kidney epithelial 58
MDOK Sheep Ovis aries Kidney epithelial 59
Dnl.Tr nine-banded armadillo Dasypus novemcinctus Trachea fibroblast 60
PK(15) Domestic pig Sus scrofa Kidney epithelial 61
LLC-MK2 Rhesus monkey Macaca mulatta Kidney epithelial 62
BT Cow Bos taurus Turbinate 63
MDCK Domestic dog Canis familiaris Kidney epithelial 64
WCH-17 Eastern woodchuck Marmota monax Liver epithelial 65
TH-1 Eastern box turtle Terrapene carolina Heart epithelial 66
Mv1 Lu American mink Neovison vison Lung epithelial 67

Abbreviations: CRFK, Crandell-Rees feline kidney; MDCK, Madin–Darby canine kidney; MDOK, Madin–Darby ovine kidney.
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in virus research. Table 2 describes the selected cell lines 

and references their use for in vitro virology studies. Of the 

19 cell lines tested for DENV infection, 14 showed posi-

tive Ct values for at least one DENV serotype based upon 

qRT-PCR data at 72 hours PI (Table 3). Of these 14 cell 

lines, TB 1 Lu and DF1 cell lines showed positive Ct val-

ues for DENV-1 alone. SF1 and EA.hy.926 were positive 

for DENV-4 alone. Five cell lines were positive for both 

DENV-1 and DENV-4 (E.Derm, FoLu, Pl 1.Ut, OHH1.K, 

and OK). Crandell-Rees feline kidney (CRFK) and DNl.Tr 

were positive for three serotypes, DENV-1, DENV-3, and 

DENV-4. Only the Madin–Darby ovine kidney (MDOK) 

cell line was positive for DENV-1, DENV-2, and DENV-4. 

The LLC-MK2 and PK(15) cell lines were the only two to 

show positive Ct values for all four serotypes.

DEnV can replicate to high titers  
in a number of cell lines
Real-time data allowed for the estimation of relative virus 

titers for each cell line with a positive Ct value. This 

was based upon a standard curve analysis using known 

virus concentrations derived from LLC-MK2 cells, as well 

as confirmation of viable virus via immunostaining. Rela-

tive titers of positive samples were found to be in the expo-

nential range of 1 × 103 to 1 × 107 IU/mL, with the MDOK 

and LLC-MK2 cell lines having the highest propagation 

potential (Figure 1).

Considering each serotype, one cell line yielded a 

significantly higher mean relative titer compared with the 

other cell lines (P , 0.05). The LLC-MK2 cell line yielded 

the highest mean relative titer for DENV-1, DENV-2, and 

DENV-3 serotypes; the MDOK cell line yielded the high-

est mean relative titer for DENV-4. For the only two cell 

lines to test positive for all four serotypes, LLC-MK2 had 

significantly higher mean relative titers for all four serotypes 

compared to PK(15) (P , 0.05).

Cell susceptibility to DEnV infection  
is serotype dependent
DENV susceptibility based upon tissue type was evaluated. 

Of the 19 cell lines investigated, 13 (12 mammalian and one 

reptilian) were epithelial and six (five mammalian and one 

avian) were fibroblast. All six (100%) of the fibroblast cell 

lines and eight of 13 (62%) of the epithelial cell lines were 

susceptible to infection with at least one serotype of DENV. 

All fibroblast lines were susceptible to DENV-1, five (83%) 

to DENV-4, one (17%) to DENV-3, and none to DENV-2. 

Only LLC-MK2 and PK(15), both epithelial cell lines, were 

found to be susceptible to all four serotypes. Of the five kidney 

epithelial cell lines investigated, LLC-MK2 and PK(15) were 

susceptible to all four serotypes, MDOK and CRFK were 

susceptible to three serotypes, and Madin–Darby canine 

kidney (MDCK) was found not susceptible to any serotype.

Some cell lines had a similar performance 
to the LLC-MK2 cell line
Although the LLC-MK2 cell line yielded the highest 

mean relative titer for DENV-1, DENV-2, and DENV-3, 

other cell lines yielded sufficiently high relative titers to 

be candidates for further study (Figure 1). For DENV-4, 

the LLC-MK2 cell line yielded a mean relative titer lower 

than the MDOK cell line (P = 0.02), and was not statisti-

cally different from the cell lines OHH1.K, OK, FoLu, and 

CRFK (Figure 1).

Discussion
The data show that DENV infects numerous cells lines and 

infection is serotype specific in vitro. Although in vitro 

work does not always reflect in vivo systems, these results 

raise some challenging questions regarding DENV–host 

 interactions. The literature has shown that livestock, com-

panion, and peridomestic animals can serve as hosts and/or 

alternate reservoirs for flaviviruses that are closely related to 

Table 3 Quantitative real-time reverse-transcription polymerase 
chain reaction results for cell lines tested for dengue virus (DEnV) 
infection across four virus serotypes (DEnV-1 to DEnV-4)

Source Cell line DENV-1 DENV-2 DENV-3 DENV-4

Bat TB.1 Lu + − − −
Chicken DF-1 + − − −
Rabbit SF 1 Ep − − − +
Human EA.hy.926 − − − +
Cat CRFK + − + +
Horse E.Derm + − − +
Fox FoLu + − − +
Raccoon PL 1 Ut + − − +
Deer OHH1.K + − − +
Opossum OK + − − +
Sheep MDOK + + − +
Armadillo Dn1.Tr + − + +
Pig PK(15) + + + +
Monkey LLC-MK2 + + + +
Cow BT − − − −
Dog MDCK − − − −
Woodchuck WCH-17 − − − −
Turtle TH-1 − − − −
Mink Mv1 Lu − − − −

Note: +DEnV detected.
Abbreviations: CRFK, Crandell-Rees feline kidney; MDCK, Madin–Darby canine 
kidney; MDOK, Madin–Darby ovine kidney.
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Figure 1 Mean relative titers of dengue virus (DEnV) ± standard error of the mean produced from cell culture supernatants from 19 cell lines collected at 72 hours postinfection. 
Note: Relative viral titers of infected cell lines were calculated according to a standard curve created using a serial dilution technique of known viral concentrations.
Abbreviations: CRFK, Crandell-Rees feline kidney; MDCK, Madin–Darby canine kidney; MDOK, Madin–Darby ovine kidney.

Table 4 Vertebrate animals that exhibit viremia and/or seroconversion to flaviviruses

Virus Host

West nile virus Cat,68 dog,68 horse,69 alligator,18 deer,70 primates,71,72 rodents,20 rabbit,71,73 reptiles,74 opossum,19 birds,75,73 
raccoon,23 squirrels23

Japanese encephalitis virus Birds,76,77 pig,78,79 cow,77 horse,24 monkeys,24 rodents,23 reptiles80

St Louis encephalitis virus Birds,29 armadillo,29 rodents,28,30 opossum,20,30 raccoon,20 squirrel76,77

Yellow fever virus Monkeys,27,43,78,79 opossum,21,77 rodents,22 kinkajou,21 bats,24,45 hedgehog,46 wild dog,30 mongoose,29 wild birds,48 
anteater,21 squirrel20,59

Dengue virus Bats,34,81 chipmunk,32,33 rabbits,32,33 guinea pig,32,33 mice,32,33 Yucatan miniature pig,82 horse35

and morphologically similar to DENV (Table 4). For instance, 

chipmunks, alligators, raccoons, opossums, and squirrels are 

animals that have been shown to be susceptible to infection 

with St Louis encephalitis, West Nile virus, yellow fever 

virus, and Japanese encephalitis virus.18–24 Yellow fever 

virus, a flavivirus that is defined as having humans and other 

primates as natural hosts,25,26 has been shown to cause viremia 

and seroconversion in a variety of vertebrates.27 The same has 

been observed for the St Louis encephalitis virus, which has 

a transmission cycle limited to humans and birds.20,28–30

DEnV infects vertebrates in vivo
It is accepted that the natural hosts for dengue are humans 

and other primates.31 However, the results of our experi-

ments support previous studies that indicate that there may 

be alternate hosts or reservoirs for DENV. During a DENV 

outbreak in 1942 in Japan, sick animals were observed in 

Osaka and Kobe.32 Subsequent animal studies in Japan using 

the outbreak strains showed that guinea pigs (Cavia porcel-

lus), rabbits, mice, rats (Rattus rattus and Rattus norvegicus), 

and striped squirrels (Eutamias asiaticus) were susceptible to 
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DENV and exhibited morbidity, mortality, or both.32,33 DENV 

has been isolated from bats34 and recent work has shown that 

horses infected with DENV develop an antigenic response.35 

These incidents of faunal infections were isolated and may 

be a function of the DENV strain, which was circulating in 

that specific location at that specific time. However, if DENV 

does infect other vertebrates in vivo, this may explain how 

the virus is maintained during inter-epidemic periods.

Cell line susceptibility is serotype specific
The results from the work presented here demonstrate 

that DENV affinity for cell lines may be serotype specific. 

This feature may be useful in the study of host–pathogen 

interactions in vitro including mechanisms of virus entry/

exit, and virus replication. The data suggest that DENV-1 

and DENV-4 may infect a broader diversity of cell lines 

than DENV-2 and DENV-3. Currently, most DENV research 

is performed using a few strains of DENV-2, usually 

DENV-2 New Guinea C or DENV-2 16681 whereas this 

study employed DENV-2 16803. Here, the data showed that 

DENV-2 had a very limited infectivity range, replicating only 

in MDOK, PK(15), and LLC-MK2 cells. Contrary to our 

results, which indicate that DENV-2 does not infect MDCK 

cells, infection of a different strain of DENV-2 was recently 

demonstrated in MDCK cells.36

This strain-dependent infectivity may explain the co-

circulation and maintenance of distinct DENV serotypes 

in one niche/biospace. The competitive exclusion principle 

states that no two species can permanently occupy the same 

niche: either the niches will differ or one will be excluded by 

the other. The co-circulation of DENV serotypes in the same 

biospace is contrary to this principle and has puzzled scientists 

for decades. The movement and evolution of DENV serotypes 

has been studied but not defined, and remains an area of active 

epidemiologic research.37,38 Furthermore, increases in replica-

tion fitness have not yet been detected for any given DENV 

genotype, thus the characteristics of a particular DENV sero-

type that allow it to disperse to other geographical areas have 

yet to be defined and/or measured.39 The serotype-specific 

host susceptibility we observed might provide insights into 

the basic ecology of DENV that include: co-circulation of 

DENV serotypes as well as establishment and displacement 

of serotypes or strains in a geographic area.

Tissue type contributes to susceptibility
This work also evaluated the susceptibility of human 

EA.hy.926 cells,  which originate from vascular 

 endothelial tissue. Due to the hemorrhagic nature of DENV 

and other work with DENV in endothelial cells,40,41 it was 

hoped that these cells might be useful in evaluating viral 

pathogenicity as well as exhibit obvious cytopathic effect and 

develop plaques more rapidly than Vero or LLC-MK2 cells. 

Study data showed that EA.hy.962 cells were only susceptible 

to DENV-4. This observation was unexpected, since this cell 

line has been shown to be susceptible to other DENV strains 

and serotypes.41 In addition, it was observed that all fibroblast 

cell lines were susceptible to DENV, whereas only 62% of 

the epithelial cell lines were susceptible. The ability for a 

DENV serotype to exploit unique tissues may contribute to 

understanding the phenomena of co-infections with multiple 

DENV serotypes and the co-circulation of DENV serotypes 

in the same biospace. However, the wide variety of species 

and the nonrandom selection of the cell lines limit the amount 

of meaningful quantitative analysis available. Perhaps the 

species from which the cell line was selected is far more 

important than tissue type, or perhaps the nonrandom selec-

tion of cell lines has skewed the results.

Although these experiments have raised some provoca-

tive questions, the study has some limitations that should be 

addressed. For instance, the serotype-specific infectivity we 

observed may be a function of the DENV strains that were 

used for the experiments. These strains may not accurately 

reflect the characteristics of DENV currently circulating or 

that of other laboratory-adapted strains. Finally, the behavior 

of DENV in the laboratory does not reflect the behavior of 

DENV in its natural environment.

Conclusion
The data showed that DENV is capable of infecting multiple 

and varied cell lines from a wide range of host species, which 

may provide researchers with new tools to study the virus. 

The data also showed that susceptibility to DENV is serotype 

specific. This specificity may shed light on the co-circulation 

of DENV serotypes in a specific region or individual.
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