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Abstract: The discovery of epidermal growth-factor receptor (EGFR)-activating mutations 

and the introduction of oral EGFR tyrosine kinase inhibitors (EGFR-TKIs) have expanded 

the treatment options for patients with non-small cell lung cancer. The first two reversible 

 EGFR-TKIs, erlotinib and gefitinib, are approved for use in the first-line setting in patients with 

known EGFR-activating mutations and in the second- and third-line settings for all NSCLC 

patients. These first-generation EGFR-TKIs improve progression-free survival when compared 

to chemotherapy in patients with EGFR-activating mutations in the first-line setting. However, 

nearly all patients develop resistance to EGFR-directed agents. There is a need for further 

therapy options for patients with disease progression after treatment with reversible EGFR-

TKIs. Afatinib is an irreversible ErbB family blocker that inhibits EGFR, HER2, and HER4. 

In vitro and in vivo, afatinib have shown increased inhibition of the common EGFR-activating 

mutations as well as the T790M resistance mutation when compared to erlotinib and gefitinib. 

Clinically, afatinib has been evaluated in the LUX-Lung series of trials, with improvement in 

progression-free survival reported in patients with EGFR-activating mutations in both first- and 

second-/third-line settings when compared to chemotherapy. Further investigation is needed to 

determine the precise role that afatinib will play in the treatment of patients with non-small cell 

lung cancer and EGFR-activating mutations.

Keywords: afatinib, EGFR, irreversible EGFR inhibitor, EGPR-TKIs, LUX lung, resistance 

mutation, targeted therapy

Introduction
Lung cancer is the leading cause of cancer death globally, with a low 5-year survival 

rate of 15%.1 Non-small cell lung carcinoma (NSCLC) is the most common type, 

comprising 85% of lung cancers.1 Risk factors for lung cancer are well described, 

and include first- and secondhand cigarette smoking,2,3 radon gas,4 asbestos,5 and 

other airborne chemicals and particulates.1 However, among lung cancer patients who 

have not been exposed to traditional risk factors, a substantial proportion are found to 

have oncogene-driven malignancies, including patients whose tumors are driven by 

epidermal growth-factor receptor (EGFR).

The vast majority of NSCLC patients are diagnosed at advanced stages, at which 

point locoregional therapy is not an option.1 Until recently, cytotoxic chemotherapy 

administered intravenously was the only treatment option for these patients, with 

 unsatisfactory median overall survival rates in the 12-month range.6 With the discovery 

of EGFR mutations, and subsequent introduction of oral EGFR tyrosine kinase inhibi-

tors (EGFR-TKIs), the therapeutic options have expanded for NSCLC patients.
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Epidermal growth factor receptor-
activating mutations
The EGFR family of cell surface-receptor tyrosine kinases 

controls the intracellular signaling pathways that promote 

cell growth, proliferation, differentiation, and migration.7 

Members of the ErbB family include EGFR (HER1/ErbB1), 

HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4). These 

cell-membrane receptors are composed of an extracellular 

domain containing a ligand-binding pocket and an intracellu-

lar catalytic domain.8 Binding of extracellular growth-factor 

ligands causes dimerization of the receptors, leading to 

homo- or heterodimers.9 Formation of these dimers activates 

the receptors’ tyrosine kinase activity, initiating intracellular 

signaling cascades.

Lung adenocarcinoma with activating EGFR muta-

tions is now a well-described molecular subgroup of lung 

 adenocarcinoma. Multiple aberrations in the signal-transduc-

tion pathways controlled by EGFR have been implicated in 

NSCLC. For example, mutations in genes encoding EGFR 

pathway proteins result in dysregulation of the proteins’ 

tyrosine kinase activity and lead to proliferation, survival, 

and dissemination of malignant cells.10,11 Elevated gene copy 

number and increased expression of the receptor proteins 

have also been described.11

Multiple specific EGFR-activating mutations have 

been identified, including short in-frame single nucleotide 

 mutations, in-frame duplications/insertions, and single-

 nucleotide substitutions, all surrounding the adenosine 

triphosphate (ATP)-binding pocket.12 The most common 

EGFR mutations in patients with lung adenocarcinoma 

are deletions in exon 19 (the LREA deletion) and a single 

amino acid substitution in exon 21 – L858R. These muta-

tions are located within the catalytic domain and result in 

constitutive EGFR activation (Figure 1).8 Exon 19 dele-

tion and exon 21 L858R mutation account for 10%–15% 

of Caucasian patients and 50% of Asian patients with 

NSCLC. Less common mutations include L861Q in exon 

21 and G719X in exon 18.13 While EGFR-activating muta-

tions occur at a higher prevalence in certain populations, 

such as females, never-smokers, and Asians, clinical char-

acteristics alone cannot be used to predict EGFR status, 

and National Comprehensive Cancer Network (NCCN) 

guidelines recommend mutational analysis of tumor tissue 

to verify the presence of EGFR mutations prior to initiat-

ing EGFR-directed therapy. Roughly 20,000 patients in the 

United States are diagnosed with lung adenocarcinoma with 

activating EGFR mutations yearly.

The era of EGFR-TKIs
There is evidence that tumors with EGFR-activating muta-

tions become completely dependent on EGFR to activate 

downstream intracellular signaling cascades. When inhibited 

P
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(activating mutation)

L858R (exon21)
(activating mutation)

Ligand-binding
pocket

Extracellular space

Intracellular space

T790M (exon20)
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ATP-binding pocket/
target for EGFR-TKI binding 

Figure 1 The EGFR receptor and locations of activating and resistance mutations.
Abbreviations: EGFR, epidermal growth-factor receptor; ATP, adenosine triphosphate; TKI, tyrosine kinase inhibitor.
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by EGFR-TKIs, the tumor cells are unable to replicate and 

undergo apoptosis.14 TKIs compete with ATP at the receptor 

intracellular catalytic domain, thus preventing ATP bind-

ing, autophosphorylation, and downstream intracellular 

signaling.9,15 Erlotinib and gefitinib, the first-generation 

EGFR-TKIs, bind reversibly to the kinase domain and effec-

tively inhibit both wild-type and mutated EGFR.13

Initial FDA approval for erlotinib in 2004 was based on 

the results of the BR21 trial, a phase III international, ran-

domized, double-blind, placebo-controlled trial comparing 

erlotinib 150 mg daily plus best supportive care (BSC) with 

BSC alone in second- and third-line settings in 731 unse-

lected patients with stage IIIB or IV NSCLC and Eastern 

Cooperative Oncology Group performance status of 0–3.16 

The response rate (RR) to erlotinib was 9% versus 1% for 

placebo (P , 0.001). Progression-free survival (PFS) was 

longer in the erlotinib group, at 2.2 months versus 1.8 months 

for placebo (P , 0.001). Note that EGFR mutation testing 

was not part of this trial.

As the biology of EGFR-activating mutations was better 

clarified, first-generation EGFR-TKIs were tested specifi-

cally in patients with EGFR-activating mutations. Tumors 

with activating EGFR mutations were found to have unique 

sensitivity to targeted therapy with EGFR-TKIs,17,18 with 

RRs around 75% in the first-line setting,19,20 a vast improve-

ment over the 9% seen in unselected populations. Some 

data suggest that patients with EGFR exon 19 deletions are 

more susceptible to the activity of reversible EGFR-TKIs 

compared to those with the exon 21 L858R mutation.18,21

Further studies then compared first-generation EGFR-

TKIs (erlotinib and gefitinib) to chemotherapy in patients 

with EGFR-activating mutations in advanced NSCLC. In 

the first-line setting, a European randomized trial, EURTAC, 

compared erlotinib 150 mg daily to platinum-containing che-

motherapy regimens (cisplatin or carboplatin with docetaxel 

or gemcitabine) in 174 patients with advanced NSCLC. PFS 

was 9.7 months in the erlotinib group versus 5.2 months in 

the chemotherapy group. There was no difference in overall 

survival (OS). There were fewer adverse events in patients 

treated with erlotinib.22 Similar results were reported in an 

analogous trial in Chinese patients – OPTIMAL.23 Based on 

these studies, the NCCN guidelines were amended in 2011 

to recommend erlotinib for first-line use in patients with 

documented EGFR mutations.

Gefitinib is approved in the European Union for use in 

advanced-stage EGFR-mutated NSCLC.24 Its approval is 

based on demonstrated improved PFS when compared to 

chemotherapy in the first-line setting for Asian patients with 

EGFR mutations in three phase III randomized controlled 

 trials (IPASS, NEJ002, and WJTPG3405).25–27 While gefi-

tinib is not approved in the United States, the NCCN guide-

lines comment that “in areas of the world where gefitinib is 

available, it may be used in place of erlotinib.”1

At the present time, erlotinib and gefitinib are used in 

the first-line treatment of patients with advanced NSCLC 

and EGFR-activating mutations. Erlotinib and gefitinib can 

also be used in second- and third-line settings in unselected 

patients, regardless of EGFR mutation status.1 While RR 

and PFS in the EGFR-mutated population favors the use of 

EGFR-TKIs as compared to chemotherapy in the first-line 

setting, disease progression typically occurs after a median 

of 10–14 months on an EGFR-TKI.25,28 Once progression 

occurs, further treatment options are limited, particularly for 

patients with moderate to poor performance status who will 

be unable to tolerate toxicities from cytotoxic chemotherapy. 

Thus, there is a need for therapy options after progression 

on first-generation anti-EGFR agents.

Resistance to first-generation EGFR-TKIs
Nearly all EGFR-mutated patients eventually develop resis-

tance to reversible EGFR-TKIs after a median of 14 months.28 

In clinical practice, it is not always feasible to obtain tissue 

sampling with EGFR testing at the time of progression. For 

these reasons, Jackman et al29 proposed criteria to define 

acquired resistance that have been used in multiple clinical 

studies.

The Jackman criteria are as follows: patients who have a 

tumor known to harbor an EGFR-activating mutation (such 

as exon 19 deletion or exon 21 L858R mutation, amongst 

others), or show objective clinical benefit from treatment with 

EGFR-TKI as defined by objective response or durable stable 

disease (.6 months), and then have systemic progression 

of disease while on continuous treatment with EGFR-TKI 

should be considered to have acquired resistance. These 

criteria have been noted to have a positive predictive value 

of 66% for EGFR-sensitizing mutations.29

There are multiple known mechanisms of resistance to 

first-generation EGFR-TKIs. Most mechanisms are thought 

to be secondary (acquired). The most common secondary 

resistance mutation is the T790M missense mutation in 

exon 20, which accounts for 50%–60% of patients with dis-

ease progression while on a first-generation EGFR-TKI.30–32 

The T790M mutation is referred to as the gatekeeper muta-

tion, as it occurs within the ATP-binding site in a similar 

location to known resistance mutations in other tyrosine 

kinases  (Figure 1).8,14 It is hypothesized to interfere with 
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first-generation EGFR-TKI binding by steric hindrance; the 

T790M mutation produces a bulky methionine side chain in 

the receptor kinase domain.33 Besides T790M, other second-

ary resistance mutations include D761Y in exon 19,34 T854A 

in exon 21,35 and L747S in exon 19.36

An additional mechanism of resistance is amplification 

of MET tyrosine kinase, which can occur in up to 22% of 

patients and can coexist with or be independent of EGFR 

T790M.37 Less common resistance mechanisms include 

histologic transformation to a small-cell carcinoma, occur-

ring in up to 14% of patients resistant to EGFR-TKIs,31,32 

and morphologic changes consistent with an epithelial–

mesenchymal transition, the therapeutic implications of 

which are unknown.38

There are also reports of primary resistance genotypes, 

including T790M missense mutation, in a small subset of 

patients.39 It has been hypothesized that low levels of T790M 

in the presence of common activating mutations might 

reduce effectiveness of reversible EGFR-TKIs in first-line 

treatment.39–41 Indeed, up to 20%–30% of EGFR-mutated 

patients do not respond to first-generation EGFR-TKIs.18,25

Attempts to overcome resistance
Currently, there is no standard option for advanced NSCLC 

patients who experience progression after treatment with a 

reversible EGFR-TKI, and patients who are candidates for 

further therapy are typically treated with cytotoxic chemo-

therapy or enrolled in clinical trials investigating novel agents 

for acquired resistance. Some have advocated continuing an 

EGFR-TKI, either the same medication or switching to the 

other first-generation option;42–44 however, there is no consen-

sus surrounding this practice. The rationale for continuing a 

first-generation TKI is that many tumors remain addicted at 

least in part to the EGFR signaling pathway despite acquired 

resistance.42 Riely et al42 demonstrated decreased positron 

emission tomography avidity and tumor size with reintroduc-

tion of an EGFR-TKI even after progression on an EGFR-TKI.

Many drugs have been studied in patients who progressed 

after treatment with a reversible EGFR-TKI, including 

XL-647,45 dasatinib,46 and neratinib,47 with little success. 

Combinations of therapy such as cetuximab plus erlotinib48 

and gefitinib plus everolimus42 have also been tried. The 

most promising drug thus far has been afatinib (BIBW2992; 

Boehringer-Ingelheim Pharma, Ingelheim, Germany),49,50 

an ErbB family blocker with reported in vitro and in vivo 

activity against EGFR mutant tumors harboring exon 19 

deletions, exon 21 L858R mutations and the exon 20 T790M 

“resistance” mutations.

Pharmacology
Afatinib is a highly selective, irreversible inhibitor of EGFR, 

ErbB2/HER2, and ErbB4/HER4.49 Like gefitinib and erlo-

tinib, afatinib is an aniline–quinazoline derivative.50 Afatinib 

covalently binds directly to the ATP-binding site in the kinase 

domains of both EGFR (Cys 773) and HER2 (Cys 805).49 

The irreversible, covalent binding of afatinib leads to longer 

suppression of receptor kinase activity than with reversible 

first-generation EGFR-TKIs, as the kinase activity is sup-

pressed until the synthesis of new receptors.9 Afatinib further 

improves on the activity of first-generation EGFR-TKIs by its 

activity against multiple receptors. The irreversible binding 

of afatinib to HER2 inactivates the preferred dimerization 

partner of EGFR, preventing the dimer formation that pro-

motes the receptors’ tyrosine kinase activity.33,49

Afatinib has shown preclinical activity in both first-line 

and second-line settings. Both in vivo and in vitro  models 

have shown that afatinib has increased affinity for the 

EGFR L858R mutation compared to the first-generation 

EGFR-TKIs.51 In cell-culture models, acquired resistance 

may develop at a slower rate when irreversible or second-

generation EGFR-TKIs such as afatinib are used in the 

first-line setting.52 Additionally, afatinib has higher potency 

than reversible EGFR-TKIs in reducing survival of NSCLC 

cell lines with the T790M resistance mutation (Table 1)49 

and in cell lines with the less common secondary resistance 

mutation T854A.35 Finally, afatinib has shown activity in 

xenograft models with EGFR L858R/T790M double-mutant 

murine lung tumor.49

The recommended phase II dose of afatinib is 50 mg 

orally daily based on phase I trials in patients with advanced 

solid tumor malignancies as well as specifically in patients 

with advanced NSCLC.50,53,54 At 50 mg, more than 90% 

of patients experienced a treatment-related adverse event, 

but dose-limiting adverse events were experienced in an 

acceptable number of patients.50,53 Because the severity 

(but not the overall incidence) of adverse events increases 

Table 1 Inhibition of EGFR cell lines by afatinib compared to 
erlotinib as shown by EC50 values

Wild-type L858R mutation L858R + T790M

Afatinib 60 0.7 99
Erlotinib 110 40 .4000
Gefitinib 157 5 .4000

Notes: Units in nM.
Abbreviations: EGFR, epidermal growth-factor receptor; EC50, half maximal 
effective concentration.
© 2008. Nature Publishing Group. Adapted with permission from Li D, Ambrogio L, 
Shimamura T, et al. BIBw2992, an irreversible EGFR/HER2 inhibitor highly effec-
tive in preclinical lung cancer models. Oncogene. 2008;27(34):4702–4711.49
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with dose increases from 40 mg daily to 50 mg daily, some 

phase II trials begin at a starting dose of 40 mg daily.54–56

To maximize plasma drug concentrations, afatinib should 

be taken while fasting.50 Maximal plasma concentrations are 

attained 3–6 hours after drug administration.50,57 With once-

daily dosing, afatinib reaches a steady state after 7 days50 

and has a half-life of 30–40 hours.53 Afatinib undergoes 

minimal metabolism and has no identified major circulating 

metabolites. It does not require dose adjustment for renal 

impairment. Unlike erlotinib, there is no detectable cyto-

chrome P450-mediated metabolism of afatinib.58

Safety and tolerability
EGFR is expressed in the epithelium; it helps maintain mucosal 

integrity and promote mucosal repair in the gut and maintains 

the protective barrier of the skin.56,57  Therefore, the most 

common treatment-related adverse events of  EGFR-TKIs in 

general, and afatinib in particular, are gastrointestinal (GI) 

and cutaneous side effects, specifically diarrhea and rash.22,55

Almost all patients experience at least one treatment-

related adverse event when receiving afatinib therapy, with 

90% of patients experiencing either a GI or cutaneous adverse 

event.50,53,55,57 GI side effects include diarrhea (95%), nausea, 

vomiting, stomatitis, and decreased appetite.  Cutaneous 

adverse events include rash, acne, dry skin, folliculitis, and 

palmar-plantar disorders. The rash is usually located on the 

face and trunk; when severe, it can cause ulceration and 

desquamation.57 In combined data of treatment-related adverse 

events from recent phase II/III trials, 88% of patients had 

diarrhea and 81% experienced a rash (n = 489).55,61 Of these 

patients, the majority (.80%) had grade 1 or 2, and none had 

grade 4, adverse events.55,61 Both GI and cutaneous adverse 

events are usually manageable with supportive care, dose 

reduction, or interruption of treatment.50,57,59 Afatinib was 

associated with possible treatment-related interstitial lung dis-

ease (4/129 patients) in only one study,55 similar to the infre-

quent reports of interstitial pneumonia, pneumonitis, acute 

respiratory distress syndrome, pulmonary fibrosis, and alveo-

litis associated with erlotinib.60 In phase II/III trials, afatinib is 

associated with a dose-reduction rate of 38%–67%55,56,61 and 

a drug-discontinuation rate of 8%–20%.55,62

Efficacy studies
Clinically, afatinib has shown promise in the LUX-Lung 

series of trials. The complete series of afatinib trials in 

advanced NSCLC is summarized in Table 2.

LUX-Lung 1 was a phase IIb/III study of 585 patients 

with stage IIIb or IV NSCLC (adenocarcinoma) who 

 progressed on chemotherapy including at least one platinum-

based regimen and at least 12 weeks of erlotinib or gefitinib.61 

Patients were randomized to afatinib 50 mg/day plus BSC 

or placebo plus BSC. Patients were treated until disease 

progression or undue toxicity. While the primary end point 

of OS was not statistically significant, OS of 10.78 months in 

the afatinib group versus 11.96 months in the placebo group 

(hazard ratio [HR] 1.077, P = 0.74), there was a statistically 

significant difference in the secondary end point of PFS in 

favor of afatinib. Median PFS in the group receiving afatinib 

was 3.3 months versus 1.1 months for patients who received 

placebo (HR 0.38, P , 0.0001). Partial RR was 7% in the 

afatinib group versus 0.5% in the placebo group (P , 0.01). 

Disease-control rate was 58% in the afatinib group versus 

19% in the placebo group (P , 0.0001).

There are several potential reasons why LUX-Lung 1 

did not show a difference in OS for afatinib. First, the study 

design was based on the assumption that the control-group 

OS would be a median of 4.7 months, as observed in the sec-

ond-line and third-line phase III trial of erlotinib,16 but instead 

OS survival in the placebo group surprisingly exceeded 

10 months. This could be attributable to the additional 

therapies given after progression on the trial. Notably, more 

patients in the placebo group (79% versus 68%) received 

additional chemotherapy upon progression. In an exploratory 

analysis of the 191 patients who did not receive subsequent 

systemic treatment upon progression on this trial, there was 

a survival advantage for patients who received afatinib over 

placebo (5.8 vs 4.6 months, HR 0.65).

It is important to note that EGFR mutation status was not 

required for study entry, and so the number of patients with 

EGFR mutations is unknown. Less than half of the patients 

in the study had complete or partial response to previous 

reversible EGFR-TKI therapy, less than would be expected 

if they all had EGFR-activating mutations. Indeed, a more 

robust improvement in PFS was seen in the 96 patients 

who were known to harbor EGFR-activating mutations. 

Similarly, when analyzing patients who met Jackman criteria 

for acquired resistance,29 the PFS difference was 4.5 months 

for those treated with afatinib versus 1.0 month for those 

who received placebo, suggesting that afatinib may have 

its greatest impact in subgroups of patients with EGFR 

mutations.61

LUX-Lung 2 was a phase II open-label, single-arm 

trial in 129 patients with stage IIIb/IV adenocarcinoma 

of the lung with confirmed EGFR-activating mutations.55 

 Sixty-one patients received afatinib as first-line treatment, 

and 68 patients received afatinib as second-line treatment 
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after progressing following cytotoxic therapy. No patients had 

been exposed to prior EGFR-TKIs. The patients continued 

on afatinib 50 mg/day (later decreased to 40 mg/day for 

improved tolerability) until progression or undue toxicity.

At median follow-up of 22 months, planned analysis 

was performed. The primary end point, overall RR, was 

61%. Notably, 66% of those with exon 19 deletion or exon 

21 L858R mutations had a response to treatment, while only 

39% of those with less common EGFR mutations did. The 

vast majority (87%) of responses occurred within 8 weeks. 

There was no difference in RR based on prior  chemotherapy. 

The median response duration was 12.9 months by 

independent assessment and 14 months by investigator 

 assessment. Median PFS was slightly shorter in the subset 

of patients with less common mutations, 10.1 months (95% 

CI 8.12–13.80 months), and slightly longer in those for 

whom afatinib was first-line treatment. These results are 

similar to those seen in analogous trials of first-generation 

EGFR-TKIs. The median OS was 23.3 months (95% CI 

18.53–38.01 months) in those patients receiving afatinib in 

the second-line setting and was not reached for patients who 

received afatinib as first-line treatment.

The results of the LUX-Lung 3 trial were presented at 

the annual American Society of Clinical Oncology meeting 

in June 2012. In this phase III trial, 345 patients with EGFR 

mutation-positive advanced NSCLC were randomized to 

receive afatinib or cisplatin/pemetrexed as first-line therapy. 

After a median follow-up of 8 months, PFS in the afatinib 

group was 11.1 months compared to 6.9 months in the 

chemotherapy arm (HR 0.58, P = 0.0004). Among the 308 

patients with the common mutations exon 19 deletion or exon 

21 L858R mutation, the difference in PFS was even more 

striking: 13.6 months with afatinib compared to 6.9 months 

in the chemotherapy group (HR 0.47, P , 0.0001). OS data 

will be available in 2 years.62

Upcoming and ongoing trials of afatinib include additional 

single-agent afatinib trials in the LUX-Lung series (Table 2) 

as well as a phase II trial of afatinib in the third-line treatment 

of EGFR wild-type advanced NSCLC63 and a phase Ib/II com-

bination trial with afatinib and cetuximab after progression 

on a first-generation EGFR-TKI. Thus far, results have been 

promising in this latter trial, with disease control reported 

in the first 26 patients, including 36% with partial responses 

and four out of 13 responses in T790M-mutated patients.64

Patient-focused perspectives
Despite the frequency of side effects, patients report improved 

quality of life with afatinib treatment.59,61 When compared 

with placebo, patients with advanced, non-small cell lung 

cancer treated with afatinib (vs placebo) reported statistically 

significant improvement in cough (46% vs 25%), dyspnea 

(51% vs 36%), and pain (50% vs 32%).61 Preliminary results 

from LUX-Lung 3 comparing afatinib versus cisplatin and 

pemetrexed as first-line treatment in patients with advanced 

lung adenocarcinoma demonstrate a statistically significant 

delay in onset of cough (HR 0.60) and dyspnea (HR 0.68) 

with afatinib treatment.62 LUX-Lung 3 also demonstrated 

improvement in health-related quality of life with afatinib 

compared to chemotherapy. A higher proportion of patients 

treated with afatinib (vs placebo) had a 10-point or more 

improvement in cough (67% vs 60%), dyspnea (64% vs 

50%), and pain (59% vs 48%) when analyzed using the 

European Organisation for Research and Treatment of Cancer 

(EORTC) standardized quality-of-life questionnaire for lung 

cancer (QLQ-LC13).65 Quality of life and its determinants 

were evaluated using the EORTC QLQ-C30 questionnaire, 

and patients treated with afatinib experienced improvements 

in their overall well-being and physical, cognitive, and role 

functioning compared with chemotherapy (P , 0.05).65

Conclusion
The first-generation reversible EGFR-TKIs erlotinib and 

gefitinib have yielded impressive clinical benefits for patients 

with EGFR-mutated NSCLC. Unfortunately, these benefits 

are transient due to the mutability of tumor-cell genomes 

and the resultant resistance that develops to these agents. 

Thus, additional treatments that can overcome or prevent 

resistance are needed. Just as erlotinib and gefitinib are most 

effective in patients with EGFR-activating mutations, irre-

versible EGFR-TKIs such as afatinib likely have their own 

particular niche. At the present time, afatinib’s role is not 

yet defined. It may be best utilized as a second- or third-line 

TKI in patients with the most common resistance mutations. 

Or it may simply prove to be a third EGFR-TKI option for 

patients with EGFR-activating mutations.

At a minimum, afatinib appears comparable to current 

first-generation EGFR-TKI options. In the first-line treat-

ment of patients with common activating mutations, phase 

III studies show PFS of 9.7–13.1 months with erlotinib,22,23 

9.2–9.4 months with gefitinib,25,27 and 11.1 months with 

afatinib.62 Admittedly, cross-trial comparisons do not take 

into account different patient characteristics such as EGFR 

mutation status, thus a head-to-head comparison would be 

prudent. In the meantime, continued efforts to determine the 

molecular subtype of patients who will most benefit from 

afatinib are ongoing.
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