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Abstract: Differential scanning calorimetry has been applied to identify protein denaturation 

patterns, or thermograms, in blood plasma samples that are indicative of health status. Data sets 

generated by differential scanning calorimetry are high dimensional, and it is complex to analyze 

and classify thermogram patterns. The I-RELIEF method is commonly used for group classifica-

tion from high-dimensional data sets, such as gene expression data. We report the development 

and validation of a new method of data reduction and modeling of high-dimensional data sets. 

The performance of our method was demonstrated through its application to the analysis of 

differential scanning calorimetry plasma thermogram data. Our method was found to provide 

superior classification performance compared with the I-RELIEF method.

Keywords: plasma thermogram, differential scanning calorimetry, group classification

Introduction
The goal of classification is to predict class outcomes. Existing data of known classes 

are used to build a model. This model is then applied to predict class outcomes on 

data where the class outcomes are blinded or not yet known. Some of the first devel-

oped and still commonly used classification methods are linear discriminant analysis 

(LDA),1 logistic classification,2 and nearest neighbors.3 LDA is closely related to linear 

regression and analysis of variance (ANOVA). Logistic classification is a generalized 

linear model with fewer assumptions than LDA. One of the challenges of classification 

involves what is known as high-dimensional data, that is, data in which the number 

of features is much greater than the sample size. It is well known that, for example, 

genomic or proteomic data often include many features but that only a few of these 

may be relevant. In this situation, use of effective feature selection or feature reduction 

is needed during the classification process.

The three classification methods mentioned briefly above all require separate fea-

ture selection/reduction methods in the presence of high-dimensional data. Recently 

developed methods which have built-in procedures to address this issue include 

Random Forests, Support Vector Machines and Boosting.4–7 Boosting and Random 

Forests are also ensemble methods, since they use a combination of many models 

to improve prediction and reduce classification error. The method proposed in this 

work is an ensemble method, as are some extensions of the feature selection and clas-

sification algorithm RELIEF, proposed by Kira and Rendell.2 Dietterich8 considered 

RELIEF-F to be one of the most successful preprocessing algorithms because of its 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1

O R i G i N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/OAMS.S40069

O
pe

n 
A

cc
es

s 
M

ed
ic

al
 S

ta
tis

tic
s 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:shesh.rai@louisville.edu
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/OAMS.S40069


Open Access Medical Statistics 2013:3

random sampling mechanism and because of the way in 

which it selects and weights features. However, the main 

drawback of RELIEF is that it makes an implicit assumption 

that the nearest neighbors found in the original feature space 

are the ones in the weighted space, which is highly unlikely 

in practical application and lacks a mechanism to eliminate 

outlier data.3 Hence, Sun and Li3 proposed an analytic solu-

tion, I-RELIEF, to resolve these two issues; also, I-RELIEF 

converges to a unique solution regardless of initial starting 

points, under certain conditions. Further, Steinberg et al9 

developed a method that allowed for optimal allocation of 

the sample data sets between case and control cohorts as well 

as computing sample size, when the goal of the study is to 

prove that the test procedure exceeds prestated bounds for 

positive and negative predictive values (PPV and NPV). In 

this paper, we propose a new ensemble classification method, 

which uses an extended linear model approach together with 

random sampling without replacement.

Classification error is an overall measure that can be 

used to compare different classification methods.4 However, 

when predicting classes, such as disease status, there may 

be different consequences associated with incorrectly clas-

sifying an individual. For this reason, classification methods 

are often characterized by more specific measures, such as 

sensitivity (Sens), specificity, (Spec), PPV, and NPV. We 

use these characteristics to compare our new classification 

method with the I-RELIEF method.

This paper is organized in the following way: The next 

sections describe first, the motivating example and then, 

the assessment of the performance of the classification 

method. The existing method, I-RELIEF, is then introduced, 

 followed by the description of our proposed method. We 

then detail the application of both I-RELIEF and our new 

method to the analysis of differential scanning calorimetry 

(DSC) thermogram data and provide discussion of the results. 

The overall conclusions and future direction is given in the 

last section.

The motivating example
We have recently applied DSC analysis of human blood 

plasma as a method to detect and monitor disease-related 

changes in the plasma proteome.10–13 DSC analysis in bio-

chemistry is a thermoanalytical technique that monitors the 

thermal properties of biomolecular solutions as a function 

of temperature. The technique directly and precisely mea-

sures the heat capacity of thermal events, yielding a profile 

known as a thermogram, which is characteristic for a given 

biomolecule. DSC is extremely sensitive to the precise 

composition of biomolecular mixtures, with the observed 

signal related to the amount and interaction of component 

biomolecules. It is this characteristic that forms the basis 

of the utility of DSC as a monitor of health status, via the 

detection of changes in the blood plasma proteome associ-

ated with the development of human disease. Figure 1 shows 

a schematic of a DSC instrument and thermogram output. 

Two identical chambers (sample and reference) are heated 

at a controlled rate, under constant pressure, by the main 

instrument heaters. The temperature difference between 

these chambers (∆T), resulting from thermal events occur-

ring in the sample cell, is monitored and electrical power 

applied to feedback heaters to keep the chambers in thermal 

balance. The feedback power signal provides a direct mea-

surement of the heat capacity of thermal events occurring 

within the DSC chamber. For the ideal case of the two-state 

thermal denaturation of a pure single-domain protein, the 

DSC thermogram is represented by a unimodal melting 

curve, where the midpoint temperature corresponds to the 

melting temperature of the protein, and the area represents 

the denaturation enthalpy. For multiple domain proteins or 

mixtures of proteins, the thermogram appears more complex, 

with composite features of the proteins in the test solution. 

Data from our laboratory has shown that the thermogram of 

plasma from healthy “normal” individuals reflects the sum of 

thermograms of the component proteins, weighted accord-

ing to their abundance in plasma.10 Plasma thermograms 

from patients suffering from a variety of diseases appear 

different in amplitude and denaturation temperature.10,13 

Preliminary data show that these differences correlate with 

the type and stage of disease, and we hypothesize that these 

are related to disease-specific changes of concentration, 

modification, or intermolecular interaction of components, 

within the plasma proteome. For some diseases, dramatic 

alteration of the plasma thermogram relative to that of 

normal individuals would make qualitative  identification 
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Figure 1 (A) Schematic of a DSC instrument (S and R refer to the sample and 
reference chambers of the instrument (see text); (B) DSC thermogram for an ideal 
two-state denaturation of a pure single domain protein.
Abbreviations: DSC, differential scanning calorimetry; R, reference; S, sample; 
∆T, temperature change.
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of disease status trivial. For other diseases, changes are 

less dramatic and disease classification is challenging. The 

motivation behind the analyses described in this article 

was to develop an approach for the classification of plasma 

thermograms according to disease status, an essential step in 

the development of the clinical utility of DSC thermograms. 

Specifically, the objective was to develop a method to clas-

sify subjects between control and case groups, based on the 

characteristics of thermogram data sets. The performance of 

the method was demonstrated through its application to two 

clinical groups, commercially obtained plasma samples from 

healthy normal individuals (the Normal group) and plasma 

specimens obtained from patients attending the Division of 

Gynecologic Oncology clinic of the James Graham Brown 

Cancer Center (the Cervical group).

Plasma thermogram data was obtained for the two clinical 

groups according to our previously published procedure.10 

Briefly, small aliquots of plasma samples (100 µL) were dia-

lyzed for 24 hours at 4°C against a standard phosphate buffer 

(10 mM potassium phosphate, 150 mM sodium chloride, 

15 mM sodium citrate, pH 7.5), to ensure normalization of 

buffer conditions. After dialysis and before use, recovered 

samples and final dialysis buffer were filtered. Samples were 

diluted 25-fold with dialysis buffer, to obtain a suitable con-

centration for DSC analysis. Thermograms were collected 

using an automated DSC instrument at 0.1°C increments 

over the temperature range 20°C–110°C, normalized for the 

total protein content of the sample and analyzed using the 

instrument-supplied software, to yield final thermogram data 

in the form of excess specific heat capacity (cal/°C-g) versus 

temperature (°C). For each sample, duplicate thermogram 

measurements were performed. Thermograms were truncated 

to a temperature range of 45°C–90°C which encompassed 

denaturation profiles of all major plasma proteins. Thus, each 

thermogram comprised 451 data points and, with duplicate 

measurements, 902 data points for each subject.

The Normal group comprised 100 commercial plasma 

samples purchased from Innovative Research (Novi, MI, 

USA) . The demographic characteristics were: 25 Caucasian 

males, 25 Caucasian females, 15 Hispanic males, 15 Hispanic 

females, ten African-American males and ten African-

American females, ranging in age from 18–61 years (mean 

35.8 years). Three samples were excluded from subsequent 

analysis as a result of sample handling or technical issues, 

giving 97 samples in the Normal group. Even though male 

subjects were not represented in our second clinical group, 

that of cervical disease, we decided not to exclude these 

data sets for two reasons: (1) we have observed little effect 

of gender on the thermogram profile, and (2) we wanted to 

incorporate the use of a general Normal control set for use 

in the subsequent development of our classification methods. 

The Cervical group consisted of plasma specimens obtained 

from the Division of Gynecologic Oncology Tissue Bank in 

the James Graham Brown Cancer Center at the University 

of Louisville, KY as part of a study reviewed and approved 

by the University of Louisville Institutional Review Board 

(Study 08.0108). Samples represented patients with differ-

ent stages of invasive cervical cancer and different grades of 

precancerous cervical lesions. A total of 44 patient specimens 

were analyzed during a pilot study to evaluate the utility of 

DSC as a clinical diagnostic tool for the detection of cervical 

disease. Demographic characteristics were: 33 Caucasian, 

three Hispanic, seven African-American, and one Vietnam-

ese, with an age range of 18–66 years (mean 35.5 years). 

Five patients were excluded from subsequent analysis: four 

patients for whom the primary site of the lesion or cancer 

was not confined solely to the cervix, and one patient who 

represented a very early stage of precancerous lesion for 

which there was only one sample. This gave 39 samples in 

the Cervical group.

Performance measurement  
of classification methods
The ability to correctly classify a test sample can be measured 

by Sens, Spec, PPV, and NPV, which are defined in Table 1.

Suppose A samples from A + C and D samples from 

B + D were correctly classified into case and control groups, 

respectively; then, we define Sens as A/(A + C) and Spec as 

D/ (B + D). Sens and Spec represent the fraction of true case 

and true control classification results, respectively and are 

common metrics describing the performance of a diagnostic 

method. Similarly, PPV can be defined as A/ (A + B) and 

NPV as D/(C + D). PPV (NPV) represents the chance that a 

sample classified into the case (control) group corresponds 

to an actual case (control) sample. The classification rate can 

also be calculated as (A + D)/(A + B + C + D). Higher values 

for each of these statistics indicate higher quality diagnostic 

performance.

Table 1 Measurement of classification methods

Group True Total

Case Control

Classified
 Case A B A + B
 Control C D C + D
Total A + C B + D A + B + C + D
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Introduction to the existing 
method, I-RELIEF
Sun and Li3 introduced I-RELIEF to identify a hybrid 

signature through the combination of both genetic and 

clinical markers of gene-expression data. They concluded that 

I-RELIEF performs significantly better than other methods, 

including the 70-gene signature, clinical markers alone, and 

the St Gallen consensus criterion. We outline the I-RELIEF 

method below.

Let D Y G n Nn n= ={( , ), , , }1 …  denote a training data-

set, where Y
n
 is the nth data sample (a vector  valued) 

and G
n
 ∈ {1,0} is the group indicator, ie, case or  control. 

The ith component of Y
n
 is the ith measurement in the 

nth sample. A margin for the sample Y
n
 is defined as 

ρn n n n nd Y NM Y d Y NH Y= − − −( ( )) ( ( )), where NM(Y
n
) and 

NH(Y
n
) are the nearest miss and nearest hit of Y

n
, which can 

be regarded as two functions that, given an input Y
n
, return 

the nearest neighbors of Y
n
 from the opposite and same 

classes, respectively; d(⋅) is a distance function defined as 

d Y yi
i

K

( ) | |,= ∑
=1

 where K is a dimension of Y. Note that ρ
n
 . 0 

only if Y
n
 is correctly classified by a one-nearest-neighbor 

classifier. Then the averaged margin in a weighted feature 

space is maximized as follows:

 

max ( )

max | ( ) | | ( ) |( ) ( ) ( ) ( )

W n
n

N

W i n
i i

n n
i i

n

W

w Y NM Y Y NH Y

ρ
=

∑

= − − −{ }
1

ii

K

n

N

==
∑∑

11

with W W
2

2
1 0= ≥and , where ρ

n
(W) is the margin of Y

n
 

computed with respect to W, where W is a weight vector, which 

needs to be estimated. It has been proven that the optimization 

scheme in the above equation can be solved with a closed-

form solution and is equivalent to the well-known RELIEF 

algorithm.2,3 One major drawback of RELIEF, however, is that 

the nearest neighbors are defined in the original feature space, 

which is highly unlikely to be the ones in the weighted space. 

In the presence of many irrelevant features, which is the case 

in microarray data analysis, the performance of RELIEF can 

degrade significantly. Hence Sun and Li3 proposed I-RELIEF, 

which provides an analytic solution to mitigate the problem 

of RELIEF.

Def ine  two se ts  M i i N G Gn i n= ≠{ : , }1   and 

H i i N G G nn i n= = ≠{ : , }1  , i  associated with each 

sample Y
n
. Suppose the nearest hit and miss are known for 

each sample and the indices of which are recorded in the set 

S s sn n n= ( )1 2, , where s
n1

 ∈ M
n 
and s Hn n2 ∈ . Then the objective 

function to be optimized can be formulated as

 C W Y Y Y Yn S W n S W
n

N

n n
( ) ,= − − −( )

=
∑ 1 2

1

where Y w y
W i i

i

K

= ∑
=

| |
1

 and the equation can be easily 

optimized using RELIEF. However, we do not know the 

set S S n Nn= ={ , , , }.1 …  By following the principle of the 

Expectation Maximization algorithm, the elements of S = {S
n
} 

are regarded as hidden random variables, and we can derive 

the probability distributions of the unobserved data. First, an 

estimate is made of the weight vector W. The probability of the 

ith data point being the nearest miss of Y
n
 if i ∈ M

n
, or being 

the nearest hit of Y
n
 if i ∈ H

n
, can then be defined as

 P i Y W
f Y Y

f Y Y
m n

n i W

n j W
j Mn

( | , ) =
−( )
−( )

∈
∑

and

 P i Y W
f Y Y

f Y Y
h n

n i W

n j W
j Hn

( | , ) ,=
−( )
−( )

∈
∑

respectively, where f(⋅) is a kernel function. One  commonly used 

kernel function is f(d) = exp(−d/σ), where σ is a user-defined 

parameter and σ = 2 is  commonly used based on empirical 

experience. For notational  brevity, define α i n m n
tP i Y W,

( )( | , ),=  

βi n h n
tP i Y W,

( )( | , ),=  Ω = ={ : , },W W W
W

1 0  M Y Yn i n i, | |= − 

M Y Yn i n i, | |= −  if i Mn∈  and H Y Yn i n i, | |= −  if i Hn∈ . Thus, 

 I-RELIEF can be summarized as follows:

Step 1: After the ith iteration, the Q function is calcu-

lated as:

 

Q W W E C W Y Y

Y Y

t
S i n

i M
n i W

n

N

i n
i H

n i W

n

n

( | ) ( )( )
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,
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where M Mn i n n i
i Mn

=
∈
∑ α , ,  and H hn i n n i

i Hn

=
∈
∑ β , , .

Step 2: Estimation of W in the (t + 1)th iteration is:

 W Q W W v
v

t
W

t( ) ( )arg max ( | ) .+
∈

+

+= =1

2

Ω

where v vi i
+ = max( , ).0
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Alternating iteration of Steps 1 and 2 is performed until 

convergence is reached, ie, W Wt t( ) ( ) ,+ −1 θ  where θ is a 

small positive number. Sun and Li3 have proven mathematically 

that I-RELIEF converges to a unique solution regardless of the 

initial weights if the kernel function is properly selected, with 

convergence typically achieved within a few iterations.

I-RELIEF combines the merits of both filter and wrap-

per methods. Note that the objective function optimized 

by I-RELIEF approximates the leave-one-out accuracy 

of a nearest-neighbor classifier. Therefore, I-RELIEF can 

be regarded as a wrapper method and thereby, it naturally 

addresses the issues of feature correlation and the removal of 

redundant features. Moreover, I-RELIEF can be solved ana-

lytically and thus avoids any heuristic combinatorial search. 

The effectiveness of the algorithm has been demonstrated 

through large-scale experiments on simulated data and six 

microarray datasets.3

The proposed method
In this section, we introduce a new classification method in 

a few steps as follows. Suppose we have a dataset with two 

groups of samples: a control group including n
1
 samples 

and a case group including n
2
 samples, where n

1
 + n

2
 = N. 

There are K measurements at K points, such as temperature, 

for each sample. Let Y and X be the response variable and 

covariate vector, respectively, and G be the group indicator, 

0 for control and 1 for case.

Step 1: Compute 95% quantile of residuals at each point 

using N observations from all samples of both groups.

We use all measurements from N samples to fit the regres-

sion model below:

 Y G XT= + + +α β β ε0 .  (1)

Based on this model, we calculate the residu-

als for each one of N × K observations, denoted as 

R i K j Ni j, ( , , , , ),= =1 1… …and  and then calculate the 

95% quantile of each of N absolute values of residuals,

R Ri i N, ,, , ,1 …  for each temperature point i i K( , , ),= 1 …  

denoted as q qk1, , .…
Step 2: Fit the regression model (Equation 1) using obser-

vations from m
1
 control samples and m

2
 case samples.

We randomly select m
1
 samples from n

1
 control samples 

and m
2
 from n

2
 case samples and use m

1
 + m

2
 samples to fit 

the regression model (Equation 1).

Step 3: Validate the classification method using the 

remaining n
1
 − m

1
 control samples and n

2
 − m

2
 case 

samples.

Based on the model (Equation 1) fitted in Step 2 using m
1
 

control samples and m
2
 case samples, we compute the pre-

dicted observation for (n
1
 − m

1
 + n

2
 − m

2
) samples, Y G� ( )= 0  

and Y G� ( ),= 1  and their prediction residuals for both G = 0 or 

G = 1, no matter which group the sample was from. Thus, we 

have 2K residuals for each sample data point, r
i
 (G = 0) for 

G = 0 and r
i
 (G = 1) for G = 1 (i = 1, …, K). Each K residuals 

were compared to the quantiles derived in Step 1 for both 

G = 0 and G = 1, and P-values were calculated according to 

Equation 2 below:

 P G j
of r G j q i K

K
ji i( )

# {| ( ) | , , }
, .= =

= =
=

 , 
   for  1    

1
0

…

 (2)

Step 4: Compute the Sens, Spec, PPV, NPV, and the 

classification rate.

Step 5: Repeat steps 2 and 3 a total of B times (B = 5000 in 

the following application) and compute the average P(G = 0) 

and P(G = 1) values to yield P G( )= 0  and P G( ).= 1  If 

P G P G( ) ( ),= =0 1      we classify the sample into the case 

group; otherwise, it is classified into the control group. Note 

that other covariates (such as demographic, etc) can also be 

included in addition to thermogram data, for model building 

and prediction.

Application of the proposed 
method to the analysis of plasma 
thermogram data
Evaluation and data reduction
For initial comparison and analysis of thermograms, each data 

set collected at 0.1°C intervals over the temperature range 

20°C–110°C was subsequently truncated to a temperature 

range of 45°C–90°C that spanned the region of interest 

encompassing thermal denaturation of the major plasma 

proteins. Figure 2 shows composite plots for all thermograms 

analyzed during this study, with duplicate scans for 97 Normal 

and 39 Cervical samples. Each thermogram comprised 451 

data points and, with duplicate measurements, 902 data points 

for each sample. The entire data set of 97 Normal samples 

and 39 Cervical samples was extremely data rich, with a total 

of 122,672 observations from 136 samples. For development 

of the classification model, it was necessary to significantly 

reduce the complexity of this high-dimensional data set. 

Closer examination revealed negative or low-heat capacity 

values below 50°C and above 75°C, and these temperature 

ranges were excluded from analysis. Also, significant thermo-

gram variation was observed within and between each group. 
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Figure 2 Composite plots of duplicate scans for (A) 97 Normal samples; and (B) 39 Cervical samples, analyzed during this study.
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Figure 3 Scatter plot of DSC thermogram data for the Normal and Cervical groups, 
after data reduction.
Abbreviation: DSC, differential scanning calorimetry.

An estimate of the reproducibility of individual DSC mea-

surements was provided by a comparison of duplicate sample 

measurements and was found to be highly reproducible 

compared with the biological variability of the samples. For 

each sample, heat capacity values were averaged for duplicate 

thermograms and also within each 1°C increment, ie, from 

50.0°C to 50.9°C, 51.0°C to 51.9°C, and so on, to yield 

average heat capacity values from 20 measurements at each 

temperature. The result was a total of 26 observations for each 

sample at 1°C intervals over the temperature range of 50.0°C 

to 75.9°C, that is, K = 26, n
1
 = 39 and n

2
 = 97.

Figure 3 shows a composite scatter plot for Normal 

and Cervical samples. It can be seen that the heat  capacity 

distributions were asymmetric and also very similar between 

the two groups of samples, which indicated that it was dif-

ficult to classify the two groups using general classifica-

tion procedures. Because of the observed asymmetry, we 

transformed the original measurements and performed the 

Shapiro–Wilk normality test at each temperature point. 

Since all values of heat capacity were between 0 and 

0.5, we considered five transformations denoted as H as 

follows: H H H it H H it H1 2 30 5 2ˆ log( ), ˆ log ( / . ), ˆ log ( ),= = =  

H e eH H
4 1ˆ /( ),= +  and H e eH H

5
2 21ˆ /( ),= +  where log(⋅) is the 

natural logarithm. The P-values for the normality test are 

presented in Table 2, for the original data and each of the five 

transformations. The P-values values show that the logarithm 

transformation (H
1
) performed the best for the normality 

test, and this transformation was adopted for the statistical 

 analysis. Note that in practice, the most common transforma-

tion understood by clinicians is the log transformation that 

we used for the classification method.

Model fitting
Using the proposed method, in Step 1, we fit the regres-

sion model (Equation 1) using all observations from 

136 samples

 
H T T T T G G T

G T G T
1 1 1 2 2 3 3 4 4 5 6 1

7 3 8 4

= + + + + + + ×
+ × + × +
α β β β β β β

β β ε

where H H1 = log( ), T T1 62 5 25= − . / , T Ti
i= 1
 (i = 2, 3 and 4), 

and G is the group indicator, 0 for Normal and 1 for  Cervical. 

G × T
2
 was excluded from the model because of its 

 insignificancy. The resulting coefficient estimates, standard 
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errors and P-values are presented in Table 3. Having 

defined the parameters of the classification model, the 

quantiles q q1 26, ,…  were subsequently derived. We then 

randomly selected 57 out of the 97 Normal samples and 

19 from the 39 Cervical samples and used these 76 samples 

to fit the regression model, as described in Step 2. Following 

Steps 3 and 4, the model was subsequently validated using the 

Table 2 P-values from the Shapiro–Wilk normality test at each 
temperature point

Temperature 
(°C)

Transformation

H H1 H2 H3 H4 H5

50 0.000 0.113 0.097 0.097 0.000 0.000
51 0.000 0.447 0.438 0.438 0.000 0.000
52 0.000 0.562 0.568 0.568 0.000 0.000
53 0.000 0.896 0.895 0.895 0.000 0.000
54 0.000 0.381 0.345 0.345 0.000 0.000
55 0.000 0.847 0.830 0.830 0.000 0.000
56 0.003 0.636 0.631 0.631 0.003 0.003
57 0.000 0.595 0.544 0.544 0.000 0.000
58 0.000 0.089 0.039 0.039 0.000 0.000
59 0.000 0.025 0.003 0.003 0.000 0.000
60 0.000 0.011 0.000 0.000 0.000 0.000
61 0.000 0.312 0.000 0.000 0.000 0.000
62 0.090 0.136 0.000 0.000 0.116 0.209
63 0.357 0.000 0.106 0.090 0.281 0.118
64 0.000 0.000 0.009 0.010 0.000 0.000
65 0.052 0.000 0.083 0.085 0.043 0.024
66 0.306 0.590 0.248 0.247 0.322 0.369
67 0.053 0.290 0.045 0.045 0.057 0.071
68 0.061 0.538 0.036 0.036 0.069 0.094
69 0.186 0.799 0.075 0.073 0.207 0.276
70 0.247 0.677 0.080 0.079 0.273 0.350
71 0.193 0.671 0.103 0.101 0.215 0.285
72 0.133 0.879 0.231 0.228 0.150 0.208
73 0.011 0.931 0.096 0.095 0.013 0.021
74 0.000 0.479 0.011 0.011 0.000 0.001
75 0.000 0.010 0.001 0.001 0.000 0.000
Mean 0.065 0.420 0.212 0.211 0.067 0.078
No of P . 0.05 10 20 16 16 9 9

% of P . 0.05 38 77 62 62 35 35

Note: H is the heat capacity.

Table 3 Coefficients used in the regression model

Parameter Variable Estimator SE P-value

α intercept −1.672 0.010 ,0.031
β1

T1 6.773 0.048

β2
T2 −18.332 0.212

β3
T3 −16.610 0.281

β4
T4 51.221 0.901

β5
G 0.085 0.013

β6
GT1 −0.362 0.090

β7
GT3 −1.118 0.516

β8
GT4 2.058 0.569

R2 0.957

Abbreviation: SE, standard error.
Note: T1 = (T − 62.5)/25, and Ti = T i

1 where (i = 2,3,4), and G is the group indicator.

Table 4 Results from the application of our method to the 
classification of plasma thermogram data for Normal and Cervical 
samples

Group True Total

Case Control

Classified
 Case 20 2 22
 Control 0 38 38
Total 20 40 60

remaining 40 Normal and 20 Cervical samples. The results 

are shown in Table 4. The method achieved the correct clas-

sification of 38 samples from the Normal group and 20 from 

the Cervical group, corresponding to a classification rate of 

96.7%, (20+38)/60. The diagnostic performance was also 

evaluated through the calculation of Sens, Spec, PPV, and 

NPV with values of Sens = 1.000, Spec = 0.950, PPV = 0.909, 

and NPV = 1.000 (Tables 3 and 5). (Tables 2 and 6). We 

observed that all 120 P-values ( ( ) ( )P G P G= =0 1and  were 

between 0.019 and 0.237.

Using I-RELIEF
For comparison purpose, the I-RELIEF method was employed 

to analyze the same data for Normal and Cervical samples and 

compared with the performance of our classification method 

described previously. The results are presented in Tables 5 

and 6. The I-RELIEF method correctly classified 34 samples 

from the Normal group and ten from the Cervical group, to 

give a classification rate of 73.3%, (10 + 34)/60. This can 

be compared with the classification rate of 96.7% from the 

application of our classification method. The diagnostic 

performance of I-RELIEF was characterized by values of 

Sens = 0.500, Spec = 0.850, PPV = 0.625, and NPV = 0.773, 

which were significantly lower than those of Sens = 1.000, 

Spec = 0.950, PPV = 0.909, and NPV = 1.000, using our 

classification method.

Discussion
One of the focuses of our research is to reduce the dimen-

sionality and develop a method of classification. For each 

subject, we have raw data from 902 repeat measures. We have 

reduced data dimension by systematic grouping. For the raw 

data, normality was often rejected, which was not the case 

for the grouped data. Nevertheless, our classification method 

has worked really well on the grouped data. So we built the 

model only on the reduced data. If the classification method 

does not work on the reduced data in another setting, one 

should consider different groupings or no grouping at all.
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to develop the distance measure. The fact that the proposed 

method has a lower classification error than the I-RELIEF 

method may indicate that for the current data set, the linear 

model assumptions hold at least approximately. For further 

development of this classification model and for its prospec-

tive application, Equation 1 could be limited to the training 

set, since it is only used to determine a constant that can be 

used to compare the proportion of residuals exceeding the 

given constant, for each of the defined class models.

Due to the high-dimensional data and varying shapes, it 

is somewhat cumbersome to build any simplistic model, such 

as auto-regressive of lag 1, for correlation in simulations, to 

study properties of the proposed and existing methods of 

classification. However, we plan to consider some parametric 

models as extensions of this research.

Conclusion
This report proposes a new classification method for the 

analysis of high-dimensional data sets. The method is simple 

but efficient and relies entirely on statistical analysis. We 

have demonstrated that our method performs significantly 

better than I-RELIEF for the application of DSC thermogram 

data. Future direction includes evaluation of the new clas-

sification method with additional data sets and modification 

of the method to include use of only training set data for the 

model-fitting step and a mixed-model approach to account 

for between-subject variation.
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