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Objective: The study reported here aimed to analyze the anti-inflammatory and 

immunmodulatory impact of arginine, glycine, glutamine, and the combination of these amino 

acids on the intracellular expression of proinflammatory cytokines during sepsis. These amino 

acids were tested on lipopolysaccharide (LPS)-stimulated human monocytes in a whole-blood 

system and examined using flow cytometry.

Materials and methods: The whole blood of twelve healthy volunteers processed immediately 

after withdrawal was incubated with arginine (2 and 5 mM), glycine (2 and 5 mM), glycyl-

glutamine (2 and 5 mM), and the amino acid and dipeptide solution Glamin® (Fresenius Kabi, 

Bad Homburg, Germany) at three concentrations (5%, 10%, 20%), with or without LPS 

(0.2 ng/mL) stimulation. Cytokine-producing monocytes were phenotyped in whole blood 

and the intracellular expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α 

was assessed by flow cytometry.

Results: In whole-blood samples from volunteers, used to best imitate physiological cellular 

interactions, the amino acid and dipeptide solution Glamin, containing arginine, glycine, glycyl-

glutamine, was able to significantly and dose-dependently diminish LPS-induced production 

of proinflammatory cytokines such as IL-6, IL-8, and TNF-α in human monocytes. However, 

single incubation with the amino acids arginine, glycine, and glycyl-glutamine individually did 

not affect alterations in the expression of IL-6, IL-8, or TNF-α.

Conclusion: The amino acid and dipeptide solution Glamin, composed of glycine, arginine, 

and glycyl-glutamine, had strong anti-inflammatory and immunomodulatory effects during 

the induced experimental sepsis, as it significantly downregulated intracellular expression of 

proinflammatory cytokines in human whole-blood monocytes. However, only incubation with 

a combination of amino acids (ie, Glamin), rather than individual amino acids, demonstrated 

an inhibitory impact on cytokine production in LPS-stimulated monocytes. The results indicate 

that a combination of amino acids may potentiate the anti-inflammatory response, leading to a 

marked suppression of TNF-α, IL-6, and IL-8 during sepsis.

Keywords: sepsis, anti-inflammatory response, glycine, arginine, glycyl-glutamine, Glamin®

Introduction
Bacterial lipopolysaccharide (LPS) (or endotoxin) is a major component of the outer 

cell membrane of Gram-negative bacteria. It has remarkable potency as a signaling 

molecule that initiates the innate immune system’s systemic liberation of proinflam-

matory cytokines.1 About 80% of invading organisms are Gram-negative bacteria.2 The 

possibility of removing this initiating agent early to attenuate the excessive activation of 

the innate immune response accompanied by the release of proinflammatory mediators 

has been viewed as a reasonable and optimal approach to sepsis, but anti-endotoxin 
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strategies to significantly reduce the mortality rate in human 

septic shock so far remain unproven.1,3

The amino acid arginine can modulate proinflammatory 

cytokine production and, subsequently, the immune 

response,4,5 most notably through immunomodulation via 

decreased proinflammatory cytokine production.6,7 Moreover, 

arginine can also serve as a substrate for polyamine synthesis, 

which is strongly involved in protein synthesis enhancement8 

and could facilitate mucosal healing.9,10 Finally, arginine is 

the most important substrate in the formation of nitric oxide.11 

However, the European Society for Parenteral and Enteral 

Nutrition (ESPEN) guidelines do not currently recommend 

the application of arginine as a supplement in parenteral 

nutrition in adults, as there is no firm clinical evidence to 

support this additional supplementation with its putative 

advantages in situations of stress in the critically ill.12 

Further, there are insufficient data on safety as a result of the 

endogenous nitric oxide production by arginine that occurs 

when it produces citrulline during septic conditions.13

Glycine has similarly prevented inflammatory 

complications in several experimental models, such as 

ischemia/reperfusion, transplantation, shock, endotoxemia, 

and diabetes.14,15–21 Glycine is non-noxious and nontoxic 

with a median lethal dose of 2.6 g/kg when administered 

intravenously. Glycine has been shown to significantly 

blunt the inflammatory reaction of macrophages and 

neutrophils through binding to specific glycine-gated chloride 

channels.22–25 Glycine administration has been reported to 

reduce the induction of interleukin (IL)-6, tumor necrosis 

factor (TNF)-α, and mRNA, which are associated with 

attenuation in postoperative leukocyte recruitment. Glycine 

pretreatment has also been found to diminish molecular and 

cellular inflammatory events after major surgery or during 

sepsis.

Several studies have outlined that glutamine is essentially 

involved in intracellular nitrogen transport;26–28 intermediary 

metabolism; cellular redox mechanisms; and the production 

of nucleotides, glucose, and glutathione.29–33 A meta-analysis 

of 14 randomized trials including 737 patients has shown that 

the administration of glutamine to surgical and critically ill 

adult patients reduces infectious complications and shortens 

length of hospital stay without any adverse effect on mortal-

ity.34 In addition, externally delivered glutamine results in a 

reduction in pneumonia, bacterial superinfections, and severe 

sepsis after polytrauma,35 as well as a decreased incidence 

of bacterial abdominal translocation that in turn leads to a 

reduction in sepsis.36–38 Glutamine-containing dipeptides 

(glycyl-glutamine), as these are hydrolyzed immediately after 

infusion into their components glutamine and glycine, are 

more stable and soluble, therefore providing the opportunity 

to improve the nitrogen balance more quickly and, thus, the 

outcome in critically ill patients.12,39–41 An infusion solution 

for parenteral nutrition containing essential and nones-

sential amino acids such as Glamin® (Fresenius Kabi, Bad 

Homburg, Germany) (composition: arginine 11.3 g, glycine 

10.3 g, glycyl-glutamine 30.3 g, among other ingredients) 

positively affects and ensures the optimal utilization of the 

externally applied amino acids and dipeptides leading to 

immunomodulatory effects in clinical trials.42 Therefore, the 

ESPEN guidelines highly recommend adding a glutamine 

solution to the standard enteral formula for burn and trauma 

patients and to administer glutamine when parenteral nutrition 

is indicated in intensive care unit patients.12

The available data concerning the immunomodulating 

effects of arginine, glycine, and glutamine are only based 

on suppression of TNF-α, IL-6, and IL-8 in human and rat 

peripheral blood mononuclear cells and human coronary 

artery endothelial cells.43–49 These results were obtained in 

supernatants using enzyme-linked immunosorbent assay after 

peripheral blood mononuclear cells and human coronary 

artery endothelial cells were isolated from whole blood by 

density gradient separation.

Monocytes, as an essential part of the immune and 

inflammation systems, are a major source of proinflammatory 

cytokines such as TNF-α, IL-6, and IL-848–50 after stimulation 

with LPS. Cytokines have been shown to be critical mediators 

of septic shock and are associated with increased mortality. As 

far as the authors are aware, there are no available data on the 

effect of arginine, glycine, glycyl-glutamine, and Glamin on 

intracellular cytokine production in single cells, as assessed 

by flow cytometry. Further, no investigation has examined 

the effects of glycine, arginine, and glutamine on whole 

blood, which retains all blood components including serum. 

We therefore developed a system employing the stimulation 

of whole peripheral blood followed by identification of 

monocytes using monoclonal antibodies to their cell-surface 

markers and by detection of cytokines using intracellular 

staining, as a physiological ex vivo approach.51

The investigation reported here was performed to explore 

the effects of arginine, glycine, glycyl-glutamine, and Glamin 

on the expression of IL-6, IL-8 and TNF-α in monocytes 

under non-septic conditions in an ex vivo model with whole 

blood, imitating best physiological conditions. Further, the 

investigation of the effects of arginine, glycine, glycyl-

glutamine, and Glamin on the expression of proinflammatory 

cytokines IL-6, IL-8, and TNF-α in monocytes during 
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endotoxemia was also one of the study’s objectives. 

Lastly, we also wanted to examine the alterations of human 

monocytes at the level of the single cell using fluorescence-

activated cell sorter analysis.

Methods
The Ethics Committee of the Martin Luther University of 

Halle approved this investigation. After informed consent 

was obtained from twelve healthy volunteers (average age, 

31.2 ± 1.8 years), intravenous blood samples (200 µL) were 

collected in sterile tubes prefilled with lepirudin (Refludan®; 

CSL Behring, Marburg Germany; final concentration, 

1 µg/mL) directly before stimulation and processed 

immediately under sterile conditions (Heraclean, Heraeus, 

Germany).

Two hundred microliters of whole blood was diluted 

1:5 with 800 µL of Roswell Park Memorial Institute 

medium 1640 Cell Culture Medium (Life Technologies, 

Carlsbad, CA, USA) in 5 mL Falcon® polystyrene tubes 

(BD, Franklin Lakes, NJ, USA). Thereafter, 1 µL of 

GolgiPlug™ (PharMingen, San Diego, CA, USA), a protein 

transport inhibitor containing brefeldin A, was added to 

each tube.52 Blood was stimulated with LPS (055:B5) from 

Escherichia coli (Sigma-Aldrich, St Louis, MO, USA) 

(final concentration 0.2 ng/mL) and incubated with arginine, 

glycine, glycyl-glutamine, and Glamin (final concentrations 

in each experiment were 2 mM and 5 mM for glycine, glycyl-

glutamine, and arginine; for Glamin, the final concentration 

in each experiment was 5%, 10%, and 20%). Samples were 

incubated at 37°C in a CO
2
 (5%) humidified atmosphere for 

3 hours.

After stimulation, cell samples were washed once with 

1 mL of CellWash (PharMingen) per tube followed by 

centrifugation at 500 g for 5 minutes. The supernatants were 

removed. The pellets were vortexed, washed with 1 mL of 

staining buffer (PharMingen) per tube, and vortexed again, 

followed by centrifugation at 500 g for 5 minutes. After 

removing the supernatants, a pellet of approximately 100 µL 

was vortexed again and 10 µL of fluorescein isothiocyanate-

conjugated CD14 (PharMingen) was added. The samples 

were stored at room temperature in the dark for 10 minutes. 

Thereafter, the samples were twice washed with staining 

buffer.52

For fixation, the cell pellets were resuspended in 250 µL 

of Cytofix/Cytoperm™ (PharMingen) and stored at 4°C in 

the dark for 10 minutes. The thoroughly resuspended, fixed, 

and permeabilized cells (100 µL) were then mixed with 10 µL 

per tube of phycoerythrin-conjugated anti-human IL-6, IL-8, 

or TNF-α or an appropriate isotype control (PharMingen) and 

incubated at 4°C in the dark for 30 minutes. After incubation, 

the cells were washed twice with Perm/Wash-Buffer 

(PharMingen) and resuspended in 300 µL of staining buffer.52

Flow cytometric analyses were performed with a BD 

Biosciences FACSCalibur™ flow cytometer using Cell-

quest™ software (v 3.3) (San Jose, CA, USA). The CD14+ 

monocytes were identified by immunofluorescence. At least 

20,000 CD14+ monocytes were analyzed per sample. The 

CD14+ monocytes were gated for subsequent measuring of 

intracellular cytokines with phycoerythrin-labeled antibodies. 

Unstimulated samples and isotype controls were used as 

negative controls.

Ten measurements were undertaken per experiment. For 

analysis, the number of cytokine-positive monocytes and mean 

fluorescence intensities were assessed. Statistical analyses were 

performed using autonomous office for statistics Mogk and 

Reitze (MoReData) with SPSS (v 11.0.1; IBM Corporation, 

Armonk, NY, USA) software. Normal distribution of data 

was examined using the Shapiro–Wilk test. Data values for 

cytokine-positive monocytes and total fluorescence values 

were taken as mean ± standard error of the mean (SEM). The 

significance for each titration curve was calculated for repeated 

measurements to the significant levels of P , 0.05, P , 0.01, 

and P , 0.001. Pairwise comparisons were Bonferroni 

adjusted. The figures in this paper were created using Origin 

software from OriginLab (Northampton, UK).

Results
To analyze if arginine, glycine, glycyl-glutamine, and 

Glamin under non-septic conditions alter the expression 

of proinflammatory cytokines (IL-6, IL-8, TNF-α) in 

monocytes, whole blood was incubated with these substances 

without LPS. IL-6, IL-8, and TNF-α production were not 

affected by glycine, glycyl-glutamine, arginine (Figure 1) 

or Glamin (Figure 2). The percentage of gated monocytes, 

which was comparable to their fraction in a white blood cell 

count, did not decrease during incubation with any amino acid 

solution (glycine, glycyl-glutamine, arginine, Glamin) at any 

concentration (2 or 5 mM for glutamine, glycyl-glutamine, 

arginine; 5%, 10%, 20% for Glamin; data only shown for 

5 mM glutamine, glycyl-glutamine, arginine and Glamin 

20%). These results show that a decrease in cytokine-positive 

cells resulting from a possible toxic effect of amino acids in 

higher concentrations can be excluded.

In contrast, LPS-stimulated human monocytes showed a 

strong liberation of IL-6, IL-8, and TNF-α expression. The 

portion of  CD14+ cytokine-producing cells (IL-6: 0.30 ± 0.03 
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to 64.10% ± 6.20%; IL-8: 0.20 ± 0.03 to 93.20 % ± 2.20%; 

TNF-α: 0.20 ± 0.03 to 83.80% ± 5.80%), as well as the 

mean fluorescence intensity (MFI) (IL-6: 12.2 ± 0.3 to 

31.1 ± 4.8; IL-8: 13.1 ± 0.3 to 162.2 ± 41.2; TNF-α: 

11.9 ± 0.2 to 95.2 ± 18.8), which represent the intracellular 

cytokine expression of each monocyte, increased significantly 

(Figures 1 and 2).

To investigate if arginine, glycine, and glycyl-glutamine 

are involved in the regulation of IL-6, IL-8, and TNF-α 

expression, both the portion of CD14+ cytokine-producing 
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Figure 1 Effect of lipopolysaccharide (LPS) alone and LPS + glycine at two different concentrations (2 and 5 mM) on intracellular interleukin (IL)-6, IL-8, and tumor necrosis 
factor-α expression in monocytes taken from human whole blood measured by flow cytometry.
Notes: Figure shows the portion (%) of cytokine-producing CD14+ cells on total CD14+ cells and mean fluorescence intensity, representing the intracellular cytokine 
expression of each monocyte. n = 10 experiments per group. Data values are mean ± standard error of the mean.
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cells and the MFIs were investigated. For arginine, glycine, 

and glycyl-glutamine, both the portion of CD14+ cells and 

the MFI of IL-6, IL-8, and TNF-α were not significantly 

affected in LPS-stimulated human monocytes, even 

after incubation with varying elevating concentrations 

of added arginine, glycine, and glycyl-glutamine 2 and 

5 mM; data for arginine and glycyl-glutamine not shown, 

data for glycine are demonstrated in Figure 1. Arginine 

did not alter production of IL-6 (LPS: 66.2% ± 2.8%; 

LPS + arginine 5 mM: 63.6% ± 3.2%), IL-8 (LPS: 
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Figure 2 Effect of lipopolysaccharide (LPS) alone and LPS + Glamin® (Fresenius Kabi, Bad Homburg, Germany) at three different concentrations (5%, 10%, 20%) on intracellular 
interleukin (IL)-6, IL-8, and tumor necrosis factor (TnF)-α expression in monocytes taken from human whole blood measured by flow cytometry.
Notes: Figure shows the portion (%) of cytokine-producing CD14+ cells on total CD14+ cells and mean fluorescence intensity, representing the intracellular cytokine 
expression of each monocyte. n = 10 experiments per group. Data values are mean ± standard error of the mean; P , 0.05 versus LPS.
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91.2% ± 1.8%; LPS + arginine 5 mM: 92.06% ± 2.0%), 

or TNF-α (LPS: 76.4% ± 4.8%; LPS + arginine 5 mM: 

78.0% ± 4.2%) in LPS-stimulated human monocytes. 

Similarly, glycyl-glutamine did not affect production 

of IL-6 (LPS: 62.2% ± 6.8%; LPS + glycyl-glutamine 

5 mM: 61.4% ± 6.2%), IL-8 (LPS: 94.2% ± 2.8%; 

LPS + glycyl-glutamine 5 mM: 94.4% ± 2.0%), or TNF-α 

(LPS: 83.4% ± 2.8%; LPS + glycyl-glutamine 5 mM: 

83.2% ± 3.2%) in LPS-stimulated human monocytes. When 

assessing the MFI for IL-6, IL-8, and TNF-α, the results 

for arginine and glycyl-glutamine were comparable with the 

data analyses of the percentage of cytokine-positive cells.

In contrast, the amino acid/dipeptide solution Glamin 

was found to strongly inhibit IL-6 and TNF-α expression of 

human monocytes stimulated with LPS in a dose-dependent 

manner by downregulation of both CD14+ cytokine-producing 

cells and intracellular, monocyte cytokine expression.

CD14+ IL-6-producing cells were strongly suppressed, 

from 67.2% ± 4.8% (LPS) to 53.2% ± 5.8% (Glamin 10%) 

and 38.4% ± 4.2% (Glamin 20%). The MFI for IL-6 was 

significantly reduced, from 14.2 ± 1.8 (LPS) to 10.2 ± 1.0 

(Glamin 20%) (Figure 2). Additionally, CD14+ TNF-α-

producing cells were strongly inhibited, from 75.2% ± 4.2% 

(LPS) to 65.2% ± 4.2% (Glamin 5%), 57.2% ± 4.5% 

(Glamin 10%), and 28.4% ± 3.2% (Glamin 20%). The MFI 

for TNF-α was significantly suppressed, from 30.8% ± 3.8% 

(LPS) to 19.2% ± 1.3% (Glamin 20%) (Figure 2).

However, Glamin did not affect either portion of CD14+ 

IL-8 producing cells nor the MFI for IL-8 in the present ex 

vivo sepsis model (Figure 2).

These data suggest a summating effect of arginine, 

glycine, and glutamine in the combined amino acid solution 

Glamin, leading to an additive, exponential reduction in IL-6 

and TNF-α production in septic conditions (Figure 2).

Discussion
Septic shock is the most common cause of death in intensive 

care units; approximately 50% of patients admitted with septic 

shock die of refractory hypotension or progressive multiorgan 

failure.53,54 Excessive release of proinflammatory cytokines such 

as TNF-α or IL-6/8 produced from LPS-activated monocytes/

macrophages and T cells, is the key mediator in the early phase 

of septic shock.55–57 Several therapeutic trials58–63 have been 

performed in septic patients, but until now these studies have 

all failed to show clinical efficacy. Antibodies to endotoxin 

have been prepared to counteract and block the primary 

agents responsible for the inflammation, and therapies against 

cytokines have been developed.58–63 However, although these 

antibodies have been effective in animal models, they have not 

had the potency to reduce mortality in humans. Recent studies 

have shown that a supply of amino acids in pharmacological 

quantities was able to reduce mortality in intensive care unit 

patients, possibly via an influence on monocyte phenotype 

and function.64,65 Studies on the mechanisms of amino 

acid-mediated reduction of septic mortality have provided 

compelling evidence for amino acid-induced suppression of 

proinflammatory cytokines in monocytes being an important 

part of the innate immune system.

Therefore, our investigation set out to analyze the 

synthesis of the proinflammatory cytokines IL-6, IL-8, and 

TNF-α in LPS-stimulated human monocytes influenced by 

different concentrations of the amino acids arginine, glycine, 

glycyl-glutamine, and a combination of all of these. As high 

values of IL-6, TNF-α, and IL-8 are associated with a poor 

outcome in septic patients, downregulation of cytokine 

formation by amino acids could have positive effects on 

morbidity and mortality of patients with sepsis.

Our data could not detect any amino acid-dependent 

regulation of IL-6, IL-8, or TNF-α in the absence of LPS 

stimulation. These results are in line with clinical data 

demonstrating unaltered cytokine levels after glutamine 

administration and emphasize again the innocuous impact 

of amino acid administration on monocytes.66

Further, our results demonstrate that Glamin – a 

proprietary amino acid solution containing arginine, 

glycine, and glycyl-glutamine – is effective in significantly 

suppressing the production of TNF-α, IL-6, and IL-8 in 

human monocytes in a dose-dependent manner. Using flow 

cytometry, we demonstrated that the MFI – which shows the 

amount of cytokine produced per cell, as well as the portion of 

cytokine-producing monocytes in relation to the total number 

of monocytes – was positively affected by Glamin in the same 

way. These data are in line with other trials demonstrating 

immunomodulatory effects in clinical trials by infusion 

solution for parenteral nutrition containing essential and 

nonessential amino acids covered in Glamin.42,67 However, 

other studies could not show reduced blood mononuclear cell 

cytokine release in endotoxemia68,69 – but it should be noted 

that these studies were performed with cells that had passed 

through one or more steps of purification. Using this method, 

it is not possible to determine which specific cell population 

in whole blood is responsible for cytokine production. In 

contrast, our investigation used whole blood, which retains 

all blood components, including serum, and maintains the 

in vivo ratios of the cells and non-cellular components.34 

This biological system permits interactions between the 
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normal blood constituents and mimics the physiological 

in vivo situation. Further, by using flow cytometry, it is 

possible to reveal and analyze responses at the level of the 

single cell in the context of unselected cellular backgrounds. 

Flow cytometric methods are based on the direct detection 

of intracellular cytokine expression with fluorochrome-

conjugated anti-cytokine antibodies after short periods (3 to 

6 hours) of activation.

This is also in contrast to O’Riordain et al’s study,69 

which used long, unphysiological incubation periods (of up 

to 24 hours) with very high concentrations of LPS that did 

not mimic septic conditions. Our previous investigations 

showed a significant correlation between cytokine expression 

and LPS dose, with a median effective dose of 0.2 ng mL−1 

(ie, achieving 50% stimulation of cytokine expression) (data 

not shown).52,70,71 For this reason, and taking into account 

Opal et al’s measurement of the median endotoxin level 

in patients with sepsis as 0.3 ng/mL,72 we used the median 

effective dose of 0.2 ng mL−1 to mimic septic conditions.

In contrast to Glamin incubation, LPS stimulation in 

combination with administration of an individual amino acid 

(glycine, arginine) or the dipeptide glycyl-glutamine resulted 

in unaltered TNF-α, IL-6, and IL-8 levels of LPS-incubated 

monocytes. The impact of glycine on cytokine production 

and release has been described earlier in endotoxin or shock 

models of the liver20,73 and the musculoskeletal system,74 

demonstrating that glycine pretreatment prevents TNF-α and 

IL-6 mRNA induction during sepsis.14 However, these trials 

only investigated regional tissue cytokine concentration and 

not systemic intracellular cytokine production of monocytes 

in whole blood. Having protective effects on hepatic Kupffer 

cells, glycine is indirectly able to downregulate regional 

expression of proinflammatory cytokines in the liver without 

having any negative impact on the complete organism.75

Vincent et al have suggested that the intracellular intake 

of glutamine is improved by the simultaneous administration 

of glycine.41 This suggests that critically ill patients might 

benefit more from the administration of glycyl-glutamine 

than from glycine. However, in our study, glycyl-glutamine 

was unable to attenuate the LPS-induced cytokine expression 

of human monocytes. The literature indicates that glycyl-

glutamine infusion can reduce immunosuppression; 

however, these trials could only demonstrate a glycyl-

glutamine-mediated restoration of anti-inflammatory 

cytokine production after LPS stimulation, not a significant 

downregulation of proinflammatory mediators after 

experimental sepsis.2 A further explanation for our divergent 

results in relation to glycyl-glutamine-induced regulation 

of proinflammatory cytokines compared with the literature 

might be that most previous trials reporting positive effects 

on cytokine expression investigated trauma patients rather  

than septic conditions, the focus of our study.2,47,76

In line with data from previous studies,4,7,77 arginine alone 

did not modify the production of any of the proinflammatory 

cytokines tested in our study. According to results from both 

other studies and the study described here, arginine does not 

play a decisive role in immunomodulation during sepsis, 

although it is used as a carrier substance for glutamine as a 

dipeptide for parenteral infusion.

Conclusion
Monocytes, a major source of proinflammatory cytokines, 

are an important part of the innate immune system. Using 

flow cytometry, we were able to demonstrate that Glamin, 

a proprietary combination of arginine, glycine, and glycyl-

glutamine, has a strong immunomodulating effect in an ex 

vivo whole-blood setting by inhibiting, in particular, the 

production of TNF-α and IL-6 in LPS-stimulated human 

monocytes in a dose-dependent manner. The administration 

of the amino acids arginine and glycine or the dipeptide 

glycyl-glutamine individually did not modify the production 

of any of the proinflammatory cytokines tested in our 

study.

The results of this investigation suggest that the well-

known anti-inflammatory and immunomodulating effects 

of arginine, glycine, and glycyl-glutamine individually do 

not suffice to significantly downregulate the expression 

of proinflammatory cytokines in LPS-stimulated human 

monocytes. However, in combination, these three substances 

potentiated the anti-inflammatory impact, leading to marked 

suppression of TNF-α, IL-6, and IL-8 in an experimental 

model of sepsis.
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